基于统计能量法的液压提升机硐室噪声预测与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压提升机因具有体积小、结构紧凑、安装灵活、操作简单及良好的防爆性能与恒扭矩输出等优点而广泛应用于矿山,且绝大多数安装于井下硐室之中,是提升矿石、物料和人员的主要设备。但液压提升机在运转过程中产生的噪声强度大、声级高,并且噪声频带宽、频谱复杂,在五面封闭的硐室中,噪声反射能力强,衰减缓慢,严重威胁着提升司机的身心健康,甚至掩盖安全警报信号而导致重大事故的发生。因此开展提升机硐室噪声预测与控制的研究对建设安静矿山、安全矿山有重大的现实意义。
     本论文分析了液压提升机及其硐室环境下的噪声源特性和噪声声场环境特点,开展了井下硐室噪声环境现场测试和数据处理分析;基于统计能量分析方法,划分了整个液压提升机硐室系统的子系统和模态群,通过数值计算和试验研究获得了各个子系统统计能量分析的模态密度、内损耗因子、耦合损耗因子和输入功率等参数;应用声学分析软件VA One仿真分析了整个系统的噪声振动特性,从而揭示了液压提升机及硐室噪声场特性,噪声传播规律与能量传递特性;从硐室的几何结构,形状尺寸、阻尼和声学特性等方面,探讨了液压提升机硐室噪声控制的途径和方法,为液压提升机井下硐室环境噪声治理提供依据。
The hydraulic hoist that mainly installed in underground chamber has these advantages of small volume, compact structure, flexible installation , simple operation , good performance of the explosion-proof housing and constant torque output , is widely used in mining as the key equipment to raise the ore, materials and person. While high strength, loud sound level, wide frequency band and complicated spectrum are caused in the running process of hydraulic hoist, and also strong reflecting capacity, slow attenuating sound are appeared in the closed five chamber, which have serious threat to the physical and mental health of lifting driver, even cause security warning singal covered and lead to significant accident. Therefore, research on the forecast and control of sound in lifting chamber has a great significance for the construction of quiet and security mine.
     Noise sources and noise field characteristics in hydraulic lifting and related chamber environment are analyzed, experimental tests and data analysis of noise enviment in underground chamber are developed. Subsystem and modal group of the whole hydraulic lifting system are divided based on statistical energy analysis method, parameters about modal density, inner loss factor, coupling loss factor and input power of statistical energy analysis in each subsystem are obtained by adopting numerical calculation and experimental study. Noise and vibration characteristics of the whole system are analyzed by VAOne, which reveal noise field characteristic, noise spread law and energy transmission characteristic of hydraulic lifting and its chamber. Noise control means and methods of hydraulic lifting chamber are discussed in geometric structures, size and shape of damping and acoustic characteristics, which provide reference for noise reduction of underground chamber in hydraulic lifting.
引文
[1]叶义华.矿山井下噪声污染特点及噪声治理[J] :噪声与振动控制,1996, (2): 34-37
    [2]张伟,龙如银.煤矿区自然环境污染状况评价指标体系探讨[J]:中国煤炭, 2005, (6): 45-48
    [3]牛国庆.矿井噪声及其防治[J]:安全, 2002(5):15-17
    [4]中国安全天地网,我国煤矿职业安全卫生现状分析: http:// www. aqtd.cn/ aqlw/ HTML/ 116322_4. html, 2008, 2
    [5]白胜利,范文琴,王明州等.矿山设备噪音与高血压相关性的调查研究[J]:中国医学理论与实践, 2007,17(1): 115-116
    [6]黄意府,王清海,黄鲜华.某露天矿山噪声作业工人听力损害调查[J]:应用预防医学, 2007, 13(2): 87-88
    [7]彭佑多等.环境友好型矿山机械内涵及其研究现状[J]:煤炭学报, 2009(4): 560-571
    [8]彭佑多,刘德顺等.基于以人为本的矿山机械设计理念[J]:中国工程科学. 2005(2): 86-90
    [9]司千字.煤矿噪声的控制[J].劳动保护, 1996(08).
    [10] Morfey, C.L, Hu, Z.W. and Wright, M.C.M. Modelling of turbulent jets and wall layers: Extensions of Lighthill's acoustic analogy with applications to computational aeroacoustics (Invited Keynote Paper), European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006), Egmond aan Zee, The Netherlands, 5-8 September 2006, Paper 567, 2006.
    [11] Morfey, C.L and Wright, M.C.M. Extensions of Lighthill’s acoustic analogy with application to computational aeroacoustics, Proceedings of the Royal Society A, 463(2085), 2007, 2101-2127.
    [12] Self, R.H. Jet noise prediction using the Lighthill acoustic analogy, Journal of Sound and Vibration, 275, 2004, 757-768.
    [13] Elliott. S. J. Radiation Modes and the Active Control of Sound Power. J. Acoust SocAm, 1993, 94(4): 2194-2204.
    [14] Borgiotti G.V.The Power Radiated by a Vibrating Bodying an Acoustic Fluid and Its Determination from Bound-ary Measurements . J. AcoustSocAm,1990,88(4):1884-1893.
    [15] PhotiaisDM. The Relationships of Singular Value Decomposition toWave 2Vector by Three 2Dimensional Structures . J .Acoust Soc Am, 1990, 88(4):1152-1159.
    [16] Cunfare. K. A. On the Exterior Acoustic Radiation Modes of Structure . J. Acoust, Soc, Am, 1994, 96(4): 2302- 2312.
    [17]朱锡,孙雪荣,石勇.船舶水下结构噪声数值计算方法研究概况[J]:船舶工程, 2004, 26(1): 9-12
    [18]李再承,侯国祥,吴崇健.管系湍流噪声辐射研究方法进展[J].中国舰船研究, 2007, 2(1): 34-38.
    [19]石焕文,盛美萍,孙进才等.环筋对水下平底圆柱壳的声振特性影响[J]:应用声学, 2007 (26)4:244-252.
    [20]卢剑伟,张宪民,沈允文.高速机构梁类弹性构件声辐射分析与计算[J]:中国机械工程, 2002(13) 24: 2151-2154.
    [21] Berk hoff A P, Broadband radiation modes: estimation and active control. J. Acoust. Soc. Am, 2002 ,92(4): 1998-2005.
    [22]朱从云,赵则祥,李春广等.噪声控制研究进展与展望[J]:噪声与振动控制, 2007(3):1-8.
    [23] Park, W.S., Thompson, D.J. and Ferguson, N.S. Variability of the coupling loss factor between two coupled plates. J. Journal of Sound and Vibration, 279, 2005, 557-79.
    [24] Yoo, J.W., Thompson, D.J. and Ferguson, N.S. Investigation of the coupling of a beam-plate structure in terms of statistical energy analysis, Proceedings of Institute of Acoustics Spring Conference, Institute of Sound and Vibrat-ion Research, Southampton, UK, 29-30 March 2004, 26(2), 2004, 510-521.
    [25] Wu, T.X. and Thompson, D.J. Wheel/rail non-linear interactions with coupling between vertical and lateral direc-tions . J. Vehicle System Dynamics, 41, 2004, 27-50.
    [26] Samir Ziada. Control of Fluid-Structure-Sound Interaction Mechanisms by Means of Synthetic Jets. JSMEInternational Journal Series C, 2003,46(3): 873-880.
    [27]高红,傅新,扬华勇等,锥阀阀口气穴流场的数值模拟与实验研究[J],机械工程学报,2002(28)8:27-30.
    [28] Active control of fluid borne noise. http: //www.bath.ac.uk/ptmc/, 2009, 2.
    [29] Ericson L, lvander J, and Palmberg J-O, Flow Pulsation Reduction for Variable Displacement Motors using Cross-angle .Proceedings of Power Transmission and Motion Control 2007, PTMC, Bath, UK, 12~14, September 2007. 103– 116.
    [30] Ericson L, and Palmberg J-O, The Source Admittance Method for pumps with complex outlet channels in Proceedings of the 10th International Conference on Fluid Power. J. SICFP'07, Tampere, Finland, 21-23, May 2007. 279– 293.
    [31] B.-H. Kim, D. R. Williams, S. Emo, and M. Acharya.Modeling pulsed-blowing systems for flow control. J. American Institute of Aerospace & Aerodynamics. 43, No. 2, 2005, pp. 314-325.
    [32] Sever, A. C. and Rockwell, D. Oscillations of Shear Flow along a Slotted Plate: Small- and Large-Scale Structures. J. Journal of Fluid Mechanics, Vol. 530, pp. 213-222.
    [33]张锐,黄晓明,赵永利等.隧道噪声的调查与分析[J],公路交通科技, 2006, 23(10): 29-32.
    [34]师利明,罗德春,邓顺熙.公路隧道内噪声预测和降噪措施的理论研究[J],中国公路学报, 1999, (12): 101-104.
    [35] Rustighi, E, Carmignani, C and Forte, P. Experimental identification of the dynamic coefficients of mechanical systems by means of modulating functions, IFToMM The Eleventh Word Congress in Mechanism and Machine Science, Tianjin University, Tianjin, China, 1-4 April 2004, CD-rom, 2004.
    [36] Vaidyanathan, R. Chung, B, Gupta, L. Kook,H. Kota,S. and West, J.D. Tongue-movement communication and control concept for hands-free human-machine interfaces, IEEE Internations on Systems, Man and Cybernetics Part A: Systems and Humans, 37(4), 2007,533-546.
    [37] Vaidyanathan, R. Fargues, M. Gupta, L. Kota, S. Lin, D. and West, J. A human-machine interface architecture for rehabilitative device control based on aural flow monitoring, IEEE International Conference on Biomedical Robotics and Biomechatronics(RAS-EMBS), Pisa, Italy, 20-22 February 2006, 927-932.
    [38]常振臣,王登峰,周淑辉等.车内噪声控制技术研究现状及展望[J],吉林大学学报, 2002, 34(4): 86-90.
    [39]雷凌,单颖春,刘献栋.行驶车辆噪声辐射研究进展及展望[J],振动与噪声控制, 2006, (4):1-6.
    [40] Ford, R.A.J. and Thompson, D.J. Simplified contact filters in wheel/rail noise predicton, Proceedings of the 8th International Workshop on Railway Noise, Buxton, UK, 8-11 September 2004, 1:21-31.
    [41]朱桂华,宫镇,胡均平,徐海良,陆森林,曾发林.统计能量分析用于工程机械驾驶室噪声预估[J]:中南工业大学学报(自然科学版). 2003(34), 2:166-169.
    [42]董一平,赵海江,赵健.船舶舱室噪声预报的方法[J]:船舶.2008(8): 13-15.
    [43]周敬宣,周少雄,谢宁.统计能量法在电厂球磨机噪声预测中的应用[J]:华中理工大学学报, 1998, 26 (Ⅰ): 41-43.
    [44]张建润,孙庆鸿,陈南.轿车声学建模的统计能量法[J]:中国机械工程, 2004(10): 1865-1870.
    [45]王彦琴,盛美萍,孙进才.统计能量分析预测飞机壁板隔声量及舱室内声场分布[J]:声学技术. 2003, 22(4): 219-222.
    [46]马纪军,张军,兆文忠.统计能量法及其在提速客车噪声预测中的应用[J]:大连铁道学院学报. 2005, 3(26) 1: 53-56.
    [47]王宪成,张晶,张更.基于统计能量分析法的船艇机舱噪声建模计算[J]:兵工学报. 2007, 11(28)11: 1367-1371.
    [48]丁少春,朱石坚,楼京俊.运用统计能量法研究壳体的振动与声辐射特性[J]:船舶工程. 2007(6): 30-32.
    [49]彭佑多,罗善明,郭迎福等.环境友好型矿山机械内涵及其现状研究[J].煤炭学报, 2009, 4: 560-571.
    [50]马大猷.噪声与振动控制工程手册[M].北京:机械工业出版社, 2002: 734-742.
    [51] Louis Lefebvre, Fre’de’ric Laville. Noise source identification for mechanical systems generating periodic impacts. J. Applied Acoustics, 2008,69(9): 812-823.
    [52] Peng Youduo,Guo Yingfu,Wu Litao. The main projects and development status of noise forecasting and controlling on working face in coal mine, Journal of coal science &engineering,2010,16(2):198-205.
    [53]吴辉海.液压绞车[M].煤炭工业出版社. 1989, 12.
    [54]舒歌群,高文志,刘月辉.动力机械振动与噪声[M].天津.天津大学出版社, 2008: 218-225.
    [55]武艳波,阎文兵,樊文欣.发动机噪声的声压测量与分析[J]. 2007, 6: 115-118.
    [56]姚德源,王其政统计能量分析原理及其应用[M].北京.北京理工大学出版社. 1995.
    [57] http://www.esi-group.com/.
    [58]龙智勇.基于统计能量法的吸尘器噪声分析预测与控制研究[D].哈尔滨.哈尔滨工业大学. 2008, 6.
    [59]张邦俊.翟国庆.环境噪声学[M].杭州.浙江大学出版社. 2001, 9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700