水生植物和微生物联合修复富营养化水体试验效果及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水问题是全球所面临的最热点环境问题之一,而其中氮磷污染与富营养化又是水体污染最为普遍的现象,也是国内外水污染治理的难题,随着人们对生态环境重视程度的提高,使用生态修复的方法来治理富营养化已经越来越受到人们的关注,因为该方法以低廉高效的太阳能为能源,保护并恢复了我们的生态系统。本论文以植物营养生态学的理论为基础,应用水体修复小试和中试等技术平台,较为系统地研究了水体植物—微生物联合作用对富营养化水体中氮磷的去除和修复效应及其机制。主要研究内容包括:夏季漂浮水生植物及冬季沉水植物与固定化氮循环细菌(INCB)联合修复富营养化水体的效应及技术基础;固定化光合细菌与不同水生植物联合作用对重富营养化水体修复效果及其机理的研究;探讨了水生植物对不同形态氮吸收动力学特性及其根系分泌有机酸组分特点以及根系粗分泌物对固定化氮循环细菌和光合细菌作用的研究。取得的主要研究结果和结论包括:
     1.应用物理生态工程的技术和原理,在夏季利用漂浮植物凤眼莲(Eichhornia crassipes)作为先锋植物并结合固定化氮循环菌可以起到对富营养化水体原位修复的目的。通过对接种固定化氮循环菌在水体中的定量分析,并且结合漂浮植物的修复方法,来评价它们对氮素等水质变化的影响和作用机理。研究表明:接种的固定化氮循环菌和漂浮植物凤眼莲都有较大的净化水质的潜能,并且两者相结合时表现出了最佳的净水效果:与处理前的水质相比较,试验期间总氮降低了70.21%,亚硝态氮和铵态氮分别降低了92.21%和50.91%;水体的透明度由修复前的0.5m提高到修复后的1.8m。此外,该系统中还具有较低含量的叶绿素a,COD_(Mn)和较低的pH值。当固定化氮循环微生物接种于漂浮植物系统中时,除了氨化菌变化不明显外,亚硝化菌,硝化菌,反硝化菌群数量与对照相比可以增加1-2个数量级,其中增加的微生物势必对氮素的去除和水质的提高产生作用。因此,我们可以得出夏季利用的漂浮植物—微生物(INCB)系统可以达到原位提高富营养化水体水质的目的。
     2.由于沉水植物和漂浮植物栖息环境不同,因此它们对于水生态系统平衡所起的主要作用也各不相同。漂浮植物生长季节主要在夏秋季,而要取得周年的修复效果,就需要在冬春季节有维持和提高水体水质的体系来支持。以沉水植物伊乐藻(Elodea nuttallii)和固定化氮循环微生物为主体的原位修复技术可以起
Water pollution is one of the major environmental problem all over the world, and eutrophication has been a serious phenomenon, become the most difficulty in environmental remediation for water pollution. With the increase of attention to the environmental ecology, using the ecological remediation methods to treat eutrophic water has become more and more popular. Becauese the ecological remediation technology is to rebuilt a healthy and self-purification ecosystem by using sun light as energy supply and higher green plants as the systems major components, not only low cost, but also environmentally and the ecologicall sound. In this paper, based on plant nutritional ecology theory and methods, and experimental technic platforms for remediating water eutrophication, the effectiveness and mechanisms were systematically studied of using aquatic macrophytes combined with bacteria to remediate eutrophic water body. The main contents include: effects of using the immobilized nitrogen cycling bacteria combined with floating macrophyte (Eichhornia crassipes ) on remediating in-site eutrophic water during the summer;Effectiveness of using the submerged macrophyte (Elodea nuttallii) combined with immobilized nitrogen cycling bacteria on in-site remediating eutrophic water in the winter-spring season. The effectiveness and mechanisms of using immobilized photosynthetic bacteria with aquatic macrophytes (Elodea nuttallii and Jussiaea stipulacea Ohwi) on treating heavy eutrophic water. The kinetics of NH_4~+ and NO3" was uptaken by three aquatic macrophytes. Characteristics of organic acids exudation by the three aquatic macrophytes and the crude exudates of macrophytes effects on microbe growth. The main results and conclusion are summarized as below:1. The aim of this study was to assess their influence on the nitrogen removal by combination of immobilized nitrogen cycling bacteria (INCB) with aquatic macrophyte Eichhornia crassipes in summer season, and to get an insight into
    different mechanisms involved in nitrogen removal by physical-ecological engineering technology. The results showed that floating macrophyte + bacteria (INCB) performed best effectiveness in improving water quality and decreased total nitrogen (TN) by 70.21%, nitrite and ammomium by 92.21% and 50.91%, respectively, during the experimental period. The water transparency increased from 0.5 to 1.8 m. When INCB inoculated into the floating macrophyte system, the populations of nitrosation, nitrifying, and denitrifying bacteria increased by 1 to 2 orders of magnitude compared to the un-inoculated treatments. However, the ammonifying bacteria showed no obvious difference between different treatments. And lower values of chlorophyll a, CODMn and pH in the microbial-plant integrated system were noted as compared to the Control. These results indicate that combination of floating macropht with immobilized nitrogen cycling bacteria is an effective plant-microbe system to remediate eutrophic water body in summer season.2. In order to get year-round remediation of water eutrophication, we need building the new system to maintain and improve the water quality during the winter. Using the submerged macrophye combined the INCB could achieve the goal. The results showed that the combination of submerged macrophyte and INCB performed the best effectiveness in improving the water quality, and resulted in the lowest values of TN, NO3-N, NH3, Chlorophyll a, and CODMn, whereas highest transparency by the end of the experiment among all the treatments. The reduction in TN, NO2-N, and NH4-N reached to 40.2%, 98.7%, and 85.2%, respectively, for the treatment of Elodea nuttallii + INCB. The nutrient removal from the eutrophic water body was improved more effectively by submerged macrophye in combination with the inoculated INCB. The submerged macrophyte could not only absorb nutrients from water bu also prevent nutrient transfer from the sediment to water. In addition, combination of submerged macrophy with INCB stimulated the processes of ammonification, nitrification and denitrificaton. All these may account for the better effects of plant-microbe integrated system in remediating eutrophicated water during the winter season. The effects of submerged macrophyte and immobilized bacteria on the growth of four bacteria communities: ammonifying bacteria;nitrosobacteria;nitrobacteria;denitrifying bacteria were evaluated. The results showed that combination of submerged macrophyte with INCB increased most the growth of the four communities for N cycling bacteria. Beside the ammonifying bacteria, there were 1 -3 order magnitude increase in other three kinds of bacteria and achieve significant
    difference (PO.01) between the treatments and the Control. Therefore, planting submerged macrophyte combined with inoculated nitrogen cycling bacteria may be a good approach to increase N removal and accelerated the nitrogen transformation in winter season.3. This study was to determine the effectiveness of nutrient reduction in eutrophic water by aquatic macrophytes (Elodea nuttallii, Jussiaea stipulacea Ohwi), immobilized photosynthetic bacteria and the interaction of macrophytes with immobilized photosynthetic bacteria from a pilot-scale experiment, and to get an insight into different mechanisms involved in nutrient removal. Two aquatic macrophytes and immobilized photosynthetic bacteria were used to treat the artificial waste water druing 19-day batch experiment. The results illuminated that effective simultaneous removal of TN, TP, nitrate and ammonium was observed after 6 days with different treatments. After 19 days treatment, photosynthetic bacteria combined with the macrophyte of Jussiaea stipulacea Ohwi(P+F) performed better results to reduce nutrient and decrease of TN, TP, NH4-N by 98.01%, 90.26% and 98.52% respectively. The highest reduction of CODMn was achieved by photosynthetic bacteria treatment and the value was 83.13% and the reduction for TN, TP and ammonium was 57.54%, 59.65%, 62.84%, 83.13% respectively during the 19-day treating period. Greater DO in water body treated with aquatic plants or photosynthetic bacteria was found than Control. TN, TP reduction due to biomass production of Jussiaea stipulacea Ohwi accounted for 36.31% and 34.68% respectively. Beside higher biomass production, the higher nitrification and denitrification rates with the floating macrophyte than submerged macrophyte also reduced more N. Therefore, using the plant-microbe integrated systems may be a feasible remediation way to treat eutrophic water.4. Nitrogen is one of the most important nutrients causing water eutrophication, and inorganic nitrogen is the major form in water body. NH4+-N and NO3"N are the two major inorganic nitrogen forms in eutrophic water. Understanding kinetics characteristics of NH4"1" and NO3" uptake by aquatic macrophyte help to select the proper aquatic macrophyte according to the status of eutrophic water. So the experiment compared the kinetics of NR?+ and NO3". Uptake kinetics of NH4+ and NO3" by three aquatic macrophyte-Jussiaea stipulacea Ohwi, Elodea nuttallii, Eichhornia crassipes were measured. The results showed that Jussiaea stipulacea Ohwi and Eichhornia crassipes had higher values of Vmaz and Km than Elodea
    nuttallii, implying that the two floating macrophytes are proper for pre-treatment of the seriously polluted water. Lower values of Vmaz and Km for the submerged macrophye could be used for improving and maintaining water quality after been improved to a certain degree.5. Aquatic macrophytes can exudate organic acids, which not only can be used as organic carbon source for microbe, but also change the physical, chemical and biologic conditions of plant-microbe interface. The results showed that three aquatic macrophytes exudated similar major organic acids under no-stress condition. And oxalic acid and tartaric acid could be found in all exudation. The quantity of the two organic acids exudated varied with different aquatic macrophytes and Jussiaea stipulacea Ohwi exudated the greatest amount of oxalic and tartaric acids among all the three aquatic macrophytes. 5.7 (mgl1 h"'g"' root fresh weight) for oxalic acid and 64.48 (mgr'h'V1 root fresh weight) for tartaric acids, respectively.6. The interaction between crude exudates of aquatic macrophyte and functional bacteria play an important role to clean the eutrophic water in the plant-bacteria integrated systems. The effects of inoculated the crude extrudes of three macrophytes on growth of photosynthetic bacteria, INCB community were studied. Results showed that the crude exudates promoted the growth of photosynthetic bacteria, ammonifying bacteria and denitrifying bacteria, but inhibited the growth of nitrosation, nitrifying bacteria communities. And the different macrophyte produced different effects. The results can provid the basis theory for selecting suitabel aquatic macrophyte and functional bacteria to form effective plant-bacteria system to remediate eutrophic water body.
引文
Abeliovich A. Nitrifying bacteria in wastewater reservoirs. Appl. envir. Microbiol, 1987, 53, 754-760.
    Adler P R, Summerfelt S T, Glenn D M, Takeda F,2003. Mechanistic approach to phytoremediation of water. Ecological Engineering, 20 (3): 251-264.
    Alaerts G J, Mahbubar M R and Kelderman P. Performance of a full-scale duckweed—covered sewage lagoon. Wat. Res, 1996, 30: 843-852.
    Andersen J M. Rates of denitrification of undisturbed sediment from six lakes as a function of nitrate concentration, oxygen and temperature. Arch. Hydrobiol, 1977, 80: 147-159.
    Aoyama I, Nishizaki H, Yagi M. Uptake of nitrogen and phosphorus, and purification capacity by water hyacinth (Eichornia crassipes).Water Resour Res, 1990, 26(11):2643~2652.
    Amlg Melzer. Aquatic macrophytes as tools for lake management. Hydrobiologia, 1999, 3395-3396:181-190.
    Atlas R M, Bartha R.Microbial ecology: fundamentals and applications. The Benjamin/Cummings Publishing Company, redwood City, California 1993.
    Azzoni R, Giordani G, Bartoli M, Welsh D T, Viaroli P. Iron, sulphur and phosphorus cycling in the rhizosphere sediments of a eutrophic Ruppia cirrhosa meadow (ValleSmarlacca, Italy). J. Sea Res, 2001,45, 15-26.
    Barry A, Costa P. Preliminary investigation of an integrated aquaculture-wetland ecosystem using tertiary-treated municipal wastewater in Los Angeles County, California. Ecological Engineering, 1998, 10: 341-354.
    Belser L W .Population ecology of nitrifying bacteria. Annu. Rev. Microbiol, 1979, 33: 309-333.
    Belser W, Mays E L, 1982. Use of nitrifier activity measurements to estimate the efficiency of viable nitrifier counts in soil and sediments. Appl. Environ. Microbiol, 43: 945-948.
    Berounsky V and S Nixon. Temperature and the annual cycle of nitrification in Waters of Narragansett Bay. Limnol. Oceanogr, 1990, 35:1610-1617.
    Bolan N S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil, 1991,134, 189-207.
    Brahma T T. Nitrogen and phosphorus removal capacity of four chosen aquatic macrophyte in trophical fresh water ponds.Environ Conser, 1991,18 (2):143~148.
    Brix H. Macrophyte-mediated oxygen transfer in wetlands: transport mechanisms and rates. In: Moshiri GA (ed) Constructed wetlands for water quality improvement. CRC Press, Boca Raton, FL, 1993a.391-398.
    Burgoon P S, Reddy K R, DeBusk TA. Performance of subsurface flow wetlands with batch-load and continuous-flow conditions. Water Environ Res. 1995,67:855-862.
    Carpentar S R, Caraco N F, Correll D F, Howarth R W, Sharpley A N, Smith V H. Nonpoint pollution of surface waters with nitrogen and phosphorus. Ecological Applications, 1998, 8(3): 559-568.
    Carpenter S R. The decline of Myriophyllum spicatum in a eutrophic Wisconsin lake. Can. J. Bot,1980,58: 527-535.
    Chauhahan VS,et al.Eucalyptus kraft black liquor enchances growth and productivity of spirulina in out-door cultures.Biotech.Prog, 1995,457-460.
    Christensen P B, Sorensen J. Temporal variation of denitrification activity in plant-covered littoral sediment from Lake Hampen, Denmark. Appl. Environ. Microbiol, 1986, 51,1174-1179.
    Chung P et al.Production and nutritive value of arthrospira platensis:A spirval blue-green alga grown on swine waters.J Anim Sci, 1978, 47:319-330.
    Compell C D, Grayaton S J. Use of rhizosphere carbon sourcein sole carbon source tests to discriminate soil microbial communities [J]. Journal of Microbiological Methods, 1997, 30: 33-41.
    David M H. The effects of artificial enrichment upon the planktonic and benthic communities in a mesotrophic to hypertrophic loch series in lowland scotland.Hydrobiologia, 1986,137:9-20.
    Dennison W C, Orth R J, Moore K A, Stevenson J C, Carter V, Kollar S, Bergstrom P W, Batiuk R A. Assessing water quality with submerged aquatic vegetation. Bioscience, 1993,43: 86-94.
    Donk Van E, van de Bund W J. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot, 2002, 72: 261-274.
    Donnelly A P, Herbert R A. Bacterial interactions in the rhizosphere of seagrass communities in shallow coastal lagoons. Appl. Microbiol. Symp. Suppl , 1999, 1999, 151S-160S.
    Dunigan E P, Bollich P K, Hutchinson R L, Hicks P M, Zaunbrecher F C, Scott S G,
     Mowers R P .Introduction and survival of an inoculant strain of Rhizobium japonicum in soil.Agron.J, 1984,76:463-466.
    Durako, M.J., Kuss, K.M. Effects of Labyrinthula infection on the photosynthetic capacity of Thalassia testudinum. Bull. Mar. Sci, 1994, 54, 727-732.
    Eighmy T T, Bishop P L. Autotrophic nitrification and its role in nitrogen removal in Elodea nuttallii-based aquatic treatment systems. Water Supply,1988, 6:119-124.
    Eighmy T T, Bishop P L. Distribution and role of bacterial nitrifying populations in nitrogen removal in aquatic treatment systems. Water Res,1989, 23, 947-955.
    Eighmy T T, Bishop P L.Autotrophic nitrification and its role in nitrogen removal in Elodea nuttallii-based aquatic treatment systems. Water Supply, 1988, 6, 119-124. Elbe beiBleckede. Kieler Meeresforschung, 1965,21, 122-123.
    EPA.USA.MeetingtheEnvironmentalChallenge[M].USA:EPA, 1990.46.
    Etchebehere C, Errazquin I, Brrandeguy E, Dabert P, Moletta R, Muxi L. Evaluation of the denitrifying microbiota ofanoxic reactors. FEMS Microbiol. Ecol, 2001, 35, 259-265.
    Eugelink A H. Phosphorus uptake and active growth of Elodea canadensis Mixch. and Elodea nuttallii (Planch.), St. John. Water Sci. Technol, 1998, 37, 59-65.
    Fenchel J .Studies on the decomposition of organic detritus derived from turtle grass Thalassia testudnum Limnol. Oceanogr, 1970,15:14-20
    Fenchel T, Boeker B, Jorgensen. Detritus food chain of aquatic ecosystems: The role of bacteris .In. Advances Loss, Aquantic Botang. 1982,12:1-12.
    Fennessy M S, Gonk J K, Mitsch W J.Macrophyte productivity and community development in created freshwater wetlands under experimental hydrological conditions [J].Eco. Eng, 1994,3(4):469~484.
    Figueroa L A, Silverstein J. The effect of particulate organic matter on biofilm nitrification. Water Environment Research, 1992, 64:728-733.
    Fraser L H, Carty S M, Steer D A. Test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresource Technology,2004, 94(2): 185-192.
    Furukawa K, Ike A, Fujita M. Preparation of marine nitrifying sludge. J. Ferment. Technol, 1993,76, 134-139.
    Georgiev V B,Iliev I P,Bogdallova S M.水库的热分层动态特性及其对富营养化过程的影响.保加利亚科学院水问题研究所,1990,1~4.
    Gersberg R M., Elkins BV, Lyon S R, Goldman C R, Role of aquatic plants in wastewater treatment by artificial wetlands. Water Res, 1986, 20:363-368.
    Glindemann D, Stottmeister U, Bergmann A. Free phosphine from the anaerobic biosphere. Environmental Science& Pollution Research, 1996, 3(1) :17-19.
    Glindemann D, Bergmann A, Spontaneous Emission of Phosphine from Animals Slurry Treatment Processing.Zbl.Hyg., 1995,198:49-56.
    Griffiths B S, Ritzk, Ebblewhiten, et al. Soil microbial community structure: Effects of substrate loading rates [J]. Soil Biology and Biochemistry, 1999, 33:145-153.
    Gulati R D. Can macrophytes be useful in biomanipulation of lakes? The lake Zwenmlust example.Hydrobiologia, 1990, 200/201:399-407
    Gumbricht T. Nutrient removal capacity in submersed macrophyte pond systems in a temperate climate. Ecol. Eng. 1993b, 2,49-61.
    Gumbricht T. Nutrient removal processes in freshwater submersed macrophyte systems. Ecol.Eng. 1993a, 2,1-30.
    Halling-Sorensen B, Jorgensen S G. The Removal of Nitrogen Compounds from Wastewater. ELSEVIER, Amsterdam. Pp19.1993.
    Hamersley M R., Howes B L. Control of denitrification in a septage-treating artificial wetland: The dual role of particulate organic carbon. Water Res. 2002, 36:4415-4427.
    Hamm A. Studie uber Wirkungen und Qualitatsziele von Nahrstoffen in Flied gewassern. Akademia, Sankt Augustin, 1991.
    Hanaki K, Hirunmasuwan S, Matsuo T. Protection of methanogenic bacteria from low pH and toxic materials by immobilization using polyvinyl alcohol. Wat. Res, 1994,28, 877-885.
    Hans W. Paerl, Julianne Dyble, Pia H. Moisander, Rachel T. Noble, Michael F.Piehler, James L. Pinckney, Timothy F. Steppe, Luke Twomey and Lexia M. Valdes. Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies. FEMS Microbiology Ecology ,2003,46( 3, 5): 233-246.
    Hatano, K, Trettin C C, House C H, Wollum A G. Microbial population and decomposition activity in three subsurvace flow constructed wetlands. In: Moshiri GA (ed) Constructed wetlands for water quality improvement. CRC Press, Boca Raton, FL, 1993, 541-547.
    Hawes L, Smith R. Influence of environmental factors on the growth in culture of a New Zealand strain of the fast-spreading algae Hydeodictyon reticulatum (water net).J.Appl.Phycol, 1993,5:437-445.
    Hines M E, Evans R S, Sharak Genthner B R, Willis S G, Friedman S, Rooney Varga
     J N, Devereux R. Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl. Environ. Microbiol,1999, 65,2209-2216.
    Hirata A, Nakamura Y, Tsuneda S. Nitrogen removal from industrial wastewater discharged from metal recovery processes. Wat. Sci. Tech., 2001,44,171-180.
    Hisashi N, Tomohiro K, Masanori W, Ken S. Simultaneous removal of chemical oxygen demand (COD), phosphate,nitrate and H2S in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic bacteria. Biotechnology Letters, 2000,22:1369-1374.
    Home A J, Goldman C R. Linmology(Second Edition),New York: Mc Graw Hill,Inc.,1994.
    Jackson M L. Soil Chemical Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ,1958.
    Jana B. B. and Roy S. K. (1985) Spatial and temporal changes of nitrifying bacterial populations in fish ponds nitrification efficiency in the reactor. When produc- of differing management practices. J. appl. Bact. 59, tivity and macrophyte nitrogen demand is low, the 125-204.
    Janse J H, Van Donk E, Aldenberg T. A model study on the stability of the macrophyte-dominated state as affected by biological factors. Water Research, 1998,32(9): 2696-2706.
    Jenkins R O, Morris T A, Craig P J. Phosphine generation by mixed and monoseptic cultures of anaerobic bacteria. The Science of the Total Environment, 2000,250:73-81.
    Jeppesen E, Kristensen P, Jensen J P, Sondergaard M, Mortensen E, Lauridsen T.Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: duration, regulating factors and methods for overcoming resilience. Mem. Ist. Ital. Idrobiol, 1991,48, 127-148.
    Jingsong Yan, Machijun. Ecological Engineering for wastewater treatment. New York: BokSkogenPublish-ers,1991,80~94.
    Jones D L. Organic acids in the rhizosphere — a critical review[J].Plant and Soil,1998,205(l):25-44.
    Jones R D, Hood M A. Effects of temperature, pH, salinity, and inorganic nitrogen on the rate of ammonium oxidation by nitriflers isolated from wetland environments. Microbiol.Ecol, 1980, 6, 339-347.
    Jorgensen S E. Fundamentals of Ecological Modelling. 2nd Edition. London: Elsever,1994.
    Juan-Pablo Hernandez, Luz E. de-Bashan and Yoav Bashan. Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp.co-immobilized with Azospirillum brasilense. Enzyme and Microbial Technology,2006, 38,190-198.
    Julio A. Camargo, Alvaro Alonso and Marcos de la Puente. Eutrophication downstream from small reservoirs in mountain rivers of Central Spain. Water Research, 2005,39(14): 3376-3384
    Kaplan W A. Nitrification. In E.J. Carpenter and D.G. Capone (ed.) Nitrogen in the marine environment. Academic Press, New York. 1983,139-190.
    Karjalainen H, Stefansdottir, G, Tuominen, L, Kairesalo T. Do submersed plants enhance microbial activity in sediment? Aquatic Botany, 2001,69: 1-13.
    Keizer P, Sinke A J C. Phosphorous in the sediment of the Loosdreht Lakes and its implication for lake restoration perspective. Hydrobiologia, 1992,233:39-50.
    Kelter P. B., Grundman J., Hage D. S., Carr J. D., and others. A Discussion of water Pollution in the United States and Mexico: with High School Laboratory Activities for Analysis of Lead, Atrazine, and Nitrate. Journal of Chemical Education, 1997, 74(12): 1413-1421.
    Kemp M C. Assessment and enhancement of nitrogen transformation and removal in a subsurface flow constructed wetlands system treating municipal wastewater. Ph.D. diss., Tennessee Technological University. 1995.
    Kemp W M, Boynton W R, Twilley R R, Stevenson J C, Means J C. The decline of submerged vascular plants in upper Chesapeake Bay: Summary of results concerning possible causes. Mar. Tech. Soc. [J], 1983,17, 78-89.
    Khan F A, Ansari A A. Eutrophication:An ecological vision. The Botanical Review, 2005, 71(4):449-482.
    Klein D A , Salzwedel J, Dazzo F B. Microbial colonization of plant roots. In: Nakas, J.P., Hagedorn,C. (Eds.), Biotechnology of Plant- Microbe Interactions. McGraw-Hill, New York, NY, 1990, pp. 189-225.
    Koch E W, Durako M J, In vitro studies of the submerged angiosperm Ruppia maritima;auxin and cytokinin effects on plant growth and development. Mar. Biol, 1991, 110,1-6.
    Kokufixta E, Yukishige M, Nakamura I. Coimmobiliz& on of Nitrosomonas europaea and Paracoccus denitrijcans cells using polyelectrolyte complex-stabilized
     calcium alginate gel. J. Ferment. Technol, 1987,65, 659-664.
    Korner S. Nutrient and oxygen balance of a highly polluted treated sewage channel with special regard to the submerged macrophytes. Acta Hydrochim. Hydrobiol, 1997,25,34-40.
    Korner S and Vermaat J E. The relative importance of Lemna gibba L., bacteria and algae for the nitrogen and phosphorus removal in duckweed-covered domestic wastewater.Wat. Res ,1998, 32(12): 3651-3661.
    Kowalcbuk G A, Naoumenko Z S, Derikx P J L, Felske A, Stephen J R, Arkbipcbenkol A.Molecular analysis of ammonia-oxidizing bacteria of the p subdivision of the class proteobacteria in compost and composted materials. Appl. Environ. Microbial, 1999, 65, 396-403.
    Kowalcbuk G A, Stepban J R, De Boer W, Prosser J I, Embley T M,Woldendorp J W. Analysis of y-proteobacteria ammonia-oxidizing bacteria in coastal sand dunes using denaturing gradient gel electrophoresis and sequencing of PCR amplified 16s rDNA fragments. Appl. Environ. Microbial, 1997, 63,1489-1497.
    Kufel L, Ozimek T. Can Chara control phosphorus cycling in Lake Luknajno (Poland) Hydrobiologia,1994, 275-283.
    Kurosawa H, Tanaka H. Advances in immobilized cell culture: development of a co-immobilized mixed culture system of aerobic and anaerobic micro-organisms. Process Biochem.Int, 1990,25,189-196.
    Lambers H, Poorter H. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res,1992, 23,187-261.
    Lauridsen T L, Jeppesen E, Sondergaard M. Colonization and succession of submerged macrophytes in shallow Lake Vaeng during the first 5 years following fish manipulation. Hydrobiologia, 1994,275-276, 233-242.
    Lin Y F, Chen K C. Denitrification and methanogenesis in a co-immobilized mixed culture system. Wat. Res, 1995, 29, 35-43.
    Livingston R J, McGlynn S E, Niu X. Factors controlling seagrass growth in a gulf coastal system: water quality and light. Aquat. Bot, 1998, 60,135-159.
    Lonbl E, Zhao F J, Dcnham S J. Cadminum accumulation in populations of Thlaspi caerulescens and thlaspi goesungense[J] New phytologist, 2000,145(3): 11-20.
    Mallik M K, Singh U K and Ahmed N. Batch digester studies on biogas production from Cannabis sativa, water hyacinth and crop waster mixed with dung and
     poultry litter. Biological Wastes, 1990:315-319
    Manz W, Wendt-Pottboff K, Neu T R, Szewzyk U, Lawrence J R. Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biotilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy. Microb. Ecol, 1999,37,225-230.
    Marschance H. Mineral nutrition of higher plants[M].2nd ed, Diego CA, USA;Academic Press,1995.185-193.
    Marschner P, Yang C H, Liebere R, Crowley D E. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem, 2001,33,1437- 1445.
    Martinei-Toledom V. Root exudates of zeamays and production of auxins gibberellins and cytokinins by Azotobacter chroococcum[J] .Plant and soil,1988,l10:149-155.
    Matulewich V A, Finstin M S. Distribution of autotrophic nitrifying bacteria in a polluted river (the Passaic). Appl. And Environ. Microbiol,1978,35 (1) .67-71.
    Matulewich V A, Strom P F, Finstein M S, 1975. Length of incubation for enumerating nitrifying bacteria presents in various environments. Appl Microbiol, 29(2):265~268.
    Metcalf and Eddy. Wastewater engineering. Treatment, disposal and reuse. Tchobanoglous G. and Burton F. L. [eds.], McGraw - Hill. New York. 1991.
    Mitsch W J. Ecological engineering-the 7-year itch. Ecological Engjineering, 1998.10:119-130.
    Mitsch W J. EcologicalEngineering.l993,2:177-191.
    Moorhead K K, Reddy K R. Oxygen transport through selected aquatic macrophytes. J. Environ. Qual, 1988,17 (1): 138-142.
    Moss B.Engineering and biological approach to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components.Hydrobiologia, 1990,200/201:367-377.
    Moss B.The influence of environmental factors on the distritubtion of freshwater algae:an experimental study.II.The role of pH and the carbon-bicarbonate system. J.Ecol,1972,61:157-177.
    Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes encoding for 16s rDNA. Appl. Environ. Microbiol, 1993,59,695-700.
    Nagadomi H, Kitamura T, Watanabe M, Sasaki K. Simultaneous removal of chemical oxygen demand (COD), phosphate, nitrate and H_2S in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic bacteria. Biotechnology Letters, 2000b, 22: 1369-1374.
    Nielsen L B, Finster K, Welsh D T, Donelly A, Hebert R A, de Wit R, Lomstein B A. Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows. Environ. Microbiol,2001, 3,63-71.
    Niewolak S. Heterotrophic nitrification of fertilized lakes. Rocz. Nauk. Roln., Ser. HT. 100,151-177(1983).
    Nina Cedergreen. Nitrate reductase activity in roots and shoots of aquatic macrophytes. Aquatic botany, 2003, 76:203-212.
    Northup R R,Zengshou Y U,Randy A.Polyphenol control of nitrogen release from pine litter[J].Nature, 1995,377(21):227-229.
    Okabe S, Satob II, Watanabe Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbial, 1999,65,3182-3191.
    Olsen K R, Anderson F, 1994. Nutrient cycling in shallow, oligotrophic Lake Kvie,Denmark. Hydrobiologia. 275/276, 255-265.
    Osamu Ichihashi, Hiroyasu Satoh and Takashi Mino. Effect of soluble microbial products on microbial metabolisms related to nutrient removal. Water Research 2006,29:1-7.
    Oswald W J et al. Large scale production of algae Single-cell proton.MIT press: Cambridge M A,1968,271-305.
    Ottosen L D M, Risgaard-Petersen N, Neilsen L. Direct and indirect measurements of nitrification and denitrification in the rhizosphere of aquatic macrophytes.Aquat. Microb. Ecol. 1999, 19, 81-91.
    Painter H A, Loveless J E. Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process. Water Res, 1983,17,237-248.
    Painter H A. Nitrification in the treatment of sewage and waste-waters, 1986,p.117-126. In Prosser, J. I. (ed.), Nitrification.IRL Press, Oxford.
    Paola Gennaro, Marco Guidotti, Enzo Funari, Salvatore Porrello and Mauro Lenzi. Reduction of land based fish-farming impact by phytotreatment pond system in a marginal lagoon area. Aquaculture, 2006, 6. In Press.
    Phillips G L, Eminson D, Moss B. A mechanism to account for macrophyte decline in progressively eutrophicatedfreshwaters. Aquat. Bot,1978,4, 103-126.
    Pomery L R. Detriua and its role as a food soure. In Fundamantals of aquatic ecosystems Ced by E. D.Le Cren and K. H.Mann), 1980, 84-102.
    Pu P M. Physic-ecological engineering for improving Taihu Lake water quality in intake area of Mashan Drinking Water Plant [A]. In: Proceedings of 5th International Conference on the Conservation and Management of Lakes [C].1993.480- 483.
    Raffaello Cossu. Removal of municipal solid waste COD and NH4-N by phyto-reduction: A laboratory-scal comparison of terrestrial and aquatic species at different organic loads. Ecological Engineering, 2001, 16:459-479.
    Rendell A R, Ottley C J, Jickells T D, Harrison R M.The atmospheric input of nitrogen species to theNorth Sea Tellus-B-Chem-Phys-Meteorol, 1993, 468(1):53-63.
    Reddy K R, Patrick W H, Lindau C W. Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnol. Oceanogr, 1989,34:1004-1013.
    Reddy K R. Fate of nitrogen and phosphorus in a waste water retention reservoir containing aquatic macrophytes. J. Environ. Qual, 1983 ,12,137-141.
    Reddy K R., Sutton D L. Water hyacinths for water quality improvement and biomass production. J. Environ. Qual, 1984,13:1-8.
    Reddy. Diel Variationos in Physico-chemical Parameters of Water in Selected Aquatic Systems, Hydrobiologia, 1981,85:201-207.
    Reeta D S, Ann C W. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering, 2004,22:27-42.
    Ren. Gel Z. Root exudation and microflora populations in the rhizosphere of crop genotypes differing in the tolerance to micronutrient deficiency [J]. Plant Soil, 1992,196.23.
    Rheinheimer G. Der Jahresgang der Nitrit- und NitratbakterienzahlimWasser der Elbe beiBleckede. Kieler Meeresforschung,1965,21,122-123.
    Risgaard-Petersen N, Jensen K. Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnol. Oceanogr, 1997, 42,529-537.
    Rogers X H. Decomposition of potamogetom criapus [J] The effects of drying on the pattern of mass and nutrient loss,Aquatic Botang. 1982.12:1-12.
    Roels J, Verstraete W, Biological formation of volatile phosphorus compounds. BioresourceTechnology.2001,79(3):243-250.
    Sakamoto M, Hayashi H,Otsuki A et al. Role of bottom sediments in sustaining plankton production in a lake ecosystem. Ecol.Res, 1989,4:1-16
    Satoshi T, Vasanthadevi A, Kenji F. Nitrogen removal from domestic wastewater using immobilized bacteria. Water Science and Technology 1996, 34: 431 -440.
    Satoshi Takizawa. Nitrogen removal from domestic wastewater using immobilized bacteria. Water Science and Technology, 1996, 34: 431-44.
    Satoshi Takizawa. Nitrogen removal in seawater using nitrifying and denitrifying bacteria immobilized in porous cellulose carrier. Water Science and Technology, 1996,34,267-274
    Schlesinger W. Biogeochemistry: An Analysis of Global Change. Academic Press. San Diego, CA, USA. 1997.
    Sedlak R. Phosphorus and Nitrogen Removal from Municipal Wastewater;principles and practice. Lewis publisher, xiii, 1991, 224
    Shanta Saha (Das) and Jana B B. Fish-macrophyte association as a low-cost strategy for wastewater reclamation. Ecological Engineering, 2003,21(1): 21-41
    Shengxiayu Zhi Japanese water treatment biology academic magazie [J].1975,11(2) :6-11.
    Siegfried B, Helmy O and Karlheinz G. Treatments of water hyacinth tissue to obtain useful products Biological Wastes. 1990, 33,263-274
    Smith V H, Schwartz G E, Alexander R B. Regional interpretation of water quality monitoring data. Water resource Resaerch,1997,33(12):2781-2798.
    Smith V H, Tilman G D, Nekola J C. Eutrophication: Impacts of excess nutrient imputs on fresh water, marine, and terrestrial ecosystems. Enviornmental Pollution, 1999,100(1-3):179-196.
    Soltan M E, Rashed M N.Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations, Advances in Environmental Research,2003,7: 321-334.
    Sooknah R D, Wilkie A C. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological engineering, 2004,22: 27-42.
    Spencer C P. On the use of antibiotics for isolating bacteria-free cultures of marine phytophlankton organisms.J.Mar.Biol.Assoc,1952,31, 97-106.
    Stary J,Zeman A, Kratzer K. The uptake of phosphate ions by the algae Hydeodictyon reticulatum.Acta hydrochim hydrobiol, 1987,15(3):275-280
    T. Yamamoto. The Seto Inland Sea—eutrophic or oligotrophic? Marine Pollution Bulletin, 2003,47, (1-6): 37-42
    Tanakak,Suminat,NakamuraHetal.Application of nitrification by cells immobilized in polyethylene glycol.Prog.Biotechnol, 1996,11 (immobilized cells) :622—632.
    Tanner C C, Clayton J S, Upsdell M P. Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands—I. Removal of oxygen demand, suspended solids and faecal coliforms. Water Research, 1995, 29(1): 17-26.
    Tripathi B D, Alkar U..Dairy effluent polishing by aquatic macrophytes. Water, Air, and Soil Pollution, 2002,143: 377-3815
    Twilley R R, Kemp W M,Staver K W, Stevenson J C;Boynton W R. Nutrient enrichment of estuarine submersed vascular plant communities. Part 1. Algal growth and effects on production of plants and associated communities. Mar. Ecol. Prog. Ser, 1985,23,179-191.
    UemotoH,Saikih.Behavior of immobilized nitrosomonase uropaea and paracoccus demotrofocams denitrificans in tubul argel for nitrogen removal in wastewater. Prog. Biotechnol,1996,11 (immobilized cells):695-701.
    Vadstrup M, Madsen T V. Growth limitation of submerged aquatic macrophytes by inorganic carbon.Freshwater Biol, 1995, 34,411-419.
    Vaillant N, Monnet F, Sallanon H, Coudret A, Hitmi A.D.Treatment of domestic wastewater by an hydroponic NFT system. Chemosphere, 2003, 50(1): 121-129.
    Vasanthadevi Aravinthan. Removal from domestic wastewater using immobilized bacteria. Water Science and Technology, 1998, 38: 193-202.
    Vermaat J. E. and Hanif M.K. (1998). Performance of common duckweed species (Lemnaceae) and the Waterfern Azolla Filiculoides on different types of wastewater. Wat. Res. 32: 2569-2576.
    Wang G X, Pu P M. The purification of artificial complex ecosystem for local water in Taihu Lake. China Environmental Science, 1998,18(5):410~414.
    Watanabe K, Teramoto M, Harayama S. An outbreak of nonflocculating catabolic populations caused the breakdown of a phenol-digesting activated-sludge processAppl. Environ. Microbial, 1999, 65,2813-2819.
    Wei F S. Standard methods for the analysis of Water and waste water.Chinese
     Environmental and Science Press,Beijing, 2002.
    Welsh D T. Nitrogen fixation in seagrass meadows: regulation, plant-bacterial interactions and significance to primary productivity. Ecol. Lett, 2000, 3: 58-71.
    Zhou W B, Zhu D W, David H. Extraction and retrieval of potassium from water hyacinth (Eichhomia crassipes) Bioresource Technology, 2006, 4:1-6
    Wijffels R H, Leenen E J T M, Tramper J .Possibilities of nitrification with immobilized cells in waste-water treatment: Model or practical system? Wat. Sci. Tech,1993,27:233-240.
    Wolstenholme R, Bayes C D.An evaluation of nutrient removal by the reed bed treatment system at Valleyfield, Fife, Scotland. In: Cooper PF, Findlater BC (eds) Constructed wetlands in water pollution control. Pergamon Press, Oxford, 1990,139-148.
    Wood D C, Hayasaka S S. Chemotaxis of rhizoplane bacteria to amino acids comprising eelgrass(Zosteria marina L.) root exudate. J. Exp. Mar. Biol. Ecol, 1981, 50, 153-161.
    Xia H L, Ma X J. Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Bioresource Technology, 2006, 97(8): 1050-1054.
    Yasushi K, Yasunofi, Kyoji S et al. Acute toxicity of fatty acids to the freshwater. Green alga Selenasrum capricornuturn[j]. Physiol Plantarum, 2002,114:422-428.
    Yeung K H,Schell A M, Hartel P G. Growth of genentically engineered Pseudomonas aeruginosa and Pseudomonas putida in soil and rhizosphere. Appl. Environ. Microbiol, 1989,55: 3243-3246.
    Zimmerman M S, Livingston R J. Effects of Kraft-Mill effluents on benthic macrophyte assemblages in a shallow bay system. Mar. Biol, 1976, 34, 297-312.
    曹磊.全球十大环境问题.环境科学,1995,16(4):86-88.
    常会庆,杨肖娥,濮培民.微生物除磷研究与工艺技术的发展前景.农业环境科学学报.2005,24(Suppl):375-378.
    常会庆,杨肖娥,濮培民.伊乐藻和固定化细菌共同作用对富营养化水体中养分的影响.水土保持学报,2005:19(3):114-117.
    陈绍铭,郑福寿.水生生物学试验方法.北京:海洋出版社,1985,81-86,227-241.
    陈水勇等.水体富营养化的形成、危害和防治.环境科学与技术,1999,(2):11-15.
    陈宜宜等.西湖底泥中酶活性与养分释放的关系.浙江农业大学学报,1997,23(2):171-174.
    成水平,夏宜铮.香蒲.灯心草人工湿地的净化污水机理研究,湖泊科学,1998,10(6):66-72.
    崔晓萌.海藻酸钠固定化包埋微生物处理有机微污染源水.环境科学,2000,21(6):80-84.
    崔秀丽.白洋淀水体富营养化污染源调查.环境科学,1995,增刊,17-18.
    杜宝汉等.用灰色关联度模型评价湖泊富营养化四川环境,1999,18(4):48-52.
    范成新等.梅梁湖和五里湖水—沉积物界面的物质交换.湖泊科学,1998,10(1):73-78.
    方正,孙迎霞,程晓如.多级模糊模式识别方法用于湖泊水质评价.重庆环境科学,2003,25(10):39-41.
    方云英,杨肖娥,濮培民,常会庆,丁学锋.宁波力洋水库富营养化现状及生态治理对策.水体保持学报.2004,18(6):183-186.
    高超,张桃林.农业非点源磷污染对水体富营养化的影响及对策.湖泊科学.1999,11(4):370-374.
    高光.伊乐藻轮叶黑藻净化养鱼污水效果试验.湖泊科学,1996,8(2):183-188.
    谷孝鸿,陈开宁,胡耀辉.东太湖伊乐藻的营养繁殖及对渔业污水的净化.上海环境科学,2002,21(1):43-45.
    谷孝鸿,陈开宁,胡耀辉.东太湖伊乐藻的营养繁殖及对渔业污水的净化[J].上海环境科学,2002,21(1):43-45.
    国家环保总局.2004年中国环境状况公报.
    郭培章,宋群.中外水体富营养化治理案例研究.北京,中国计划出版社 2003,336.
    韩沙沙,温琰茂.富营养化水体沉积物中磷的释放及其影响因素.生态学杂志,2004,23(2):98-101.
    韩伟明.底泥释放磷及其对杭州西湖富营养化的影响.湖泊 1993,50:71-77.
    胡雪峰等.上海市郊河流底泥氮磷释放规律的初步研究上海环境科学,2001,20(2):66-70.
    金相灿,刘树坤,章宗涉等.中国湖泊环境.北京:中国海洋出版社,1995.
    金相灿.湖泊富营养化调查规范.北京:中国环境科学出版社,1987:271-280.
    金相灿,刘鸿亮,屠清瑛.中国湖泊富营养化.北京:中国环境科学出版社,21-40,1992.
    况琪军等.韩国南汉河的浮游植物及营养水平.长江流域资源与环境,1999,8(2):221-226.
    李飞等.鄱阳湖富营养化的生物学评价.南昌大学学报(理科版,1996,20(3):270-276.
    李阜棣,喻子牛,何绍江主编.农业微生物学试验技术.中国农业出版社,1996,北京.
    李建政,赵丹等.环境工程微生物学.北京:化学工业出版社 2004.
    李勤生,华俐.武汉东湖磷细菌种群结构的研究.水生生物学报.1989,13(4).340-347.
    李维等.生物操纵法治理富营养化湖泊的细菌类群研究.云南大学学报(自然科学版),1996,18(2):131-134.
    李文超.富营养水体中常绿水生植被组建及净化效果研究.中国环境科学.1997,17(1):54-57.
    李霞.微生物对水体中主要有机碎屑的循环作用.松辽学刊:自版.1997(4):34-38
    李小平.美国湖泊富营养化的研究和治理[J].自然杂志.2002,24(2):63~68。
    李训贵.环境与可持续发展.北京:高等教育出版社,2004,174-182.
    李振高,潘映华,李良谟.不同基因型小麦根际细菌及酶活性的动态研究[J].土壤学报,1993,30(1):128.
    李正魁,濮培民.秋冬季环境下固定化氮循环细菌净化湖泊水体氮污染动态模拟,湖泊科学,2000,12(4):321-326.
    李正魁,濮培民.用固定化氮循环菌净化富营养化水体,核技术,2001,8:674-679.
    李正魁,濮培民.秋冬季环境下固定化氮循环细菌净化湖泊水体氮污染动态模型湖泊科学[J],2000,12(4):321~326.
    李正魁,濮培民.冬秋季环境下固定化氮循环细菌净化湖泊水体氮污染动态模拟,2000,湖泊科学.12(4):221-226.
    李正魁,濮培民.辐射聚合固定化反硝化菌去除污水中硝酸盐[J].江苏农科学,2000,37-40.
    李正魁,濮培民.固定化氮循环细菌技术治理湖泊富营养化,江苏农业学报2000,16(4)252.
    李祚泳等.我国若干湖泊水库的营养状态指数TSIc及其与参数的关系.环境科学学报,1993,13(4):391-397.
    梁彦龄,刘伙泉主编.草型湖泊资源、环境与渔业生态学管理(一)[M].北京:科学出版社,1995.
    林婉莲等.四种浮游生物的碎硝形成过程.全国海洋湖泊生态学术讨论会论文汇编,1983:153-154
    刘建康.湖泊与水库富营养化防治的理论与实践。北京:科学出版社,2003.
    刘军,潘登,王斌,王苹.SBR工艺中DO和C/N比对同步硝化反硝化的影响。北京工商大学学报.自然科学版,2003,21(2):7-10.
    刘双江.固定化光合细菌处理豆制品废水产氢研究.环境科学,1995,16(1):42-44.
    刘雨,赵庆良,郑兴灿.生物膜法污水处理技术(第一版).北京:中国建筑工业出版社,2000:45-50.
    楼文高.湖库富营养化人工神经网络评价模型.水产学报,2001,25(5):474~478.
    卢文喜,祝廷成.应用人工神经网络评价湖泊的富营养化.应用生态学报,1998,9(6):645-650
    罗固源等.三峡库区水环境富营养化污染及其控制对策的思考.重庆建筑大学学报,1999,21(3):1-3.
    濮培民,黄宜凯,张圣照.太湖人工生态系统中氮循环细菌分布.中国环境科学,1998,18(5):410-414.
    濮培民等.健康水生生态系统的退化及其修复——理论、技术及应用.湖泊科学,2001,13(3):193-203.
    秦伯强.太湖水环境面临的主要问题、研究动态与初步进展.湖泊科学,1998,10(4):1-7.
    曲格平.中国环境问题及对策.北京:环境科学出版社,1990.
    任黎,董增川,李少华.人工神经网络模型在太湖富营养化评价中的应用.河海大学学报,2004,32(2):147-150.
    森下育子(日本).日本水处理生物学会志[J].1975,11(2):6~11.
    宋祥甫等.浮床水稻对富营养化水体中氮磷的去除效果及规律研究.环境科学学报,1998,18(5):489-494.
    孙文浩,俞子文.凤眼莲无菌培养及其克藻效应植物生理学报,1990,16:301—305.
    隋少峰等.武汉东湖底泥释磷特点.环境科学,2001,22(1):102-105.
    孙刚等.中国湖泊渔业与富营养化的关系.东北师大学报(自然科学版),1999,(1):74-78.
    童昌华,杨肖娥,濮培民.莫干湖流域土—水生态系统的退化及治理对策研究.水土保持学报.2003,17(1):72-75.
    童昌华,杨肖娥,濮培民.水生植物控制湖泊底泥营养盐释放的效果和机理,农业环境科学学报,2003,22(6):673-676.
    童昌华.水体富营养化发生原因分析及植物修复机理的研究,博士论文,2004.
    汪家权,孙亚敏等.巢湖底泥磷的释放模拟试验研究.环境科学学报.2002,22(6):738-742.
    王朝晖等.环境条件对水网藻生长的影响.应用生态学报,1999,10(3):345-349.
    王朝晖等.水网藻在不同环境条件下对氮磷的吸收能力.中国环境科学 9,19(3):257-261.
    王国祥 濮培民 黄宜凯 张圣照.太湖人工生态系统中氮循环细菌分布.中国环境科学,1998,18(5):410—414.
    王国祥,濮培民,黄宜凯.氮循环菌在太湖—人工系统的分布.湖泊科学,1999,11(2):160-164.
    王国祥,濮培民,张圣照.冬季水生高等植物对富营养化湖水的净化作用.中国环境科学,1999,19(2):106-109.
    王国祥,濮培民.人工控制对于富营养化藻类种群动态的影响.环境科学,1999,20(2):71-71.
    王国祥等.若干人工调控措施对富营养化湖泊藻类种群的影响.环境科学,1999,20(2):71-74.
    王磊.固定化硝化菌去除NH_4-N的研究.环境科学,1997,18(2):18-20.
    王平,吴晓芙,李科林,胡日利.应用有效微生物群(EM)处理富营养化源水试验研究.环境科学研究,2004.17(3):40-43.
    魏复盛,毕彤.水和废水监测分析方法.中国环境科学出版社,北京,2002,1254-1284.
    魏世强,青长乐.模拟淹水条件下紫色土镉的释放特征及影响因素.环境科学学报,2002,22(6):696-700.
    吴辉等.凤眼莲根分泌物对细菌降酚的影响[A].生态学研究进展[C],北京:中国科学技术出版社,1994,73—74.
    吴玉树,余国营.水生微管植物对滇池污染水体的净化效率.生态学报,1988,8(4):346-352.
    吴玉树.根生沉水植物菹草对滇池水体的净化作用,环境科学学报,1991,11(4):411-416.
    吴振斌,邱东茹,贺锋.沉水植物重建对富营养水体氮磷营养水平的影响.应用生态学报,2003,14(8):1351-1353.
    谢宏斌.南湖富营养化的人工神经网络评价.广西科学院学报,1999,15(1):29-32.
    熊德琪.一种新的海水富营养化模糊评价方法.海洋通报,1993,12(6):30-35
    杨文龙 杨树华.滇池流域非点源污染控制区划研究.湖泊科学,1998,10(3):55-60.
    杨文龙.湖水藻类生长的控制技术.云南环境科学,1999,18(2):34-36.
    叶志毅,屠振礼.桑树根的分泌物和根际微生物的研究,蚕业科学,2005,33(1):18-21.
    由文辉,刘淑媛,钱晓燕.水生经济植物净化受污染水体的研究。华东师范大学学报(自然科学版),2001,1:99-102.
    袁文权,张锡辉,张丽萍.不同供氧方式对水库底泥氮磷释放的影响.生态学杂志,2004,23(2):98-101.
    战培荣,王丽华,于沛芬.光合细菌固定化及其净化养鱼水质的研究,水产学报, 1997,21(1):97-100.
    张亚丽,董园园,沈其荣,段英华.不同水稻品种对铵态氮和硝态氮吸收特性的研究.土壤学报,2004,41(6):918-923.
    张志勇,王刚卫,田晓丽.棉花钾吸收动力学的初步研究和应用.棉花科学,2005,17(3):165-170.
    赵大君,郑师章.凤眼莲根分泌物氨基酸组分对根际肠杆菌属F2细菌的趋化作用[J],应用生态学报,1996,7(2):207-212.
    赵大君,郑师章.无菌凤眼莲根分泌物组分分析,复旦学报(自然科学版),1996,35(2):176-182.
    郑师章,乐毅全等.凤眼莲及其根际微生物共同代谢和协同降酚机理的研究[J].应用生态学报,1994,5(4):403—408.
    朱亮.水体氮磷营养源控制对策研究.给水排水,1998,24(1):23-25.
    朱鸣,张达崴,许亚同.硝化细菌包埋固定化及其在废水处理中的应用,环境保护,2001,4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700