不同生菜品种对不同铵硝比反应差异及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去的研究表明,将营养液中部分硝态氮用铵态氮来取代不仅能显著提高旱地作物的生物量,而且也能显著降低旱地作物体内的硝酸盐含量,这对提高因硝酸盐含量过高而对市民健康构成严重威胁的叶菜类蔬菜的品质来说具有很重要的作用。因此,在生产上可以通过在蔬菜地上施用铵态氮肥和硝化抑制剂来实现降低蔬菜中硝酸盐含量的目标,进而实现农民增收,农业增效。同时还可以降低因为大量施用硝态氮肥而引发的硝态氮流失所带来的环境风险。然而,有关不同生菜品种对不同铵硝比反应差异及其机理的影响仍然知之不多。本论文以生菜为研究对象,采用水培条件,从植物营养和植物生理的角度来探讨不同生菜品种对不同铵硝比反应差异及其机理的影响规律,并筛选出对不同铵硝配比敏感及钝感的生菜品种,然后利用所筛选出的典型品种生菜研究不同形态氮素营养对生菜的光合特性、根系生长发育特性、NO_3~-的吸收动力学特性、内源激素及液泡中NO_3~-调动特性的影响。研究结果表明:
     1不同铵硝配比对不同品种生菜的生物量(地上部、地下部)有显著的影响,供试5个品种(奶油生菜、中选1号、软尾生菜、耐抽苔生菜和耐热耐抽苔)的生物量(地上部、地下部)均随着营养液中NH_4~+-N比例的增加而增加,并在营养液中铵硝配比为25:75时达最高。然后,随着NH_4~+-N比例的进一步增加,5个生菜的生物量(地上部、地下部)反而迅速下降,当营养液中铵硝配比为50:50时,其生物量反而低于全硝处理。说明通过改变营养液中铵硝配比可以改变生菜的生长发育,但营养液中过高或过低的NH_4~+-N比例均要影响生菜的生物量,只有适宜的铵硝配比对生菜生长发育才具有较好地促进作用。本研究认为适合生莱生长的最佳铵硝配比为25:75。不同铵硝配比对生菜根系的根冠比有影响,随着营养液中NH_4~+-N比例的增加,生菜的根冠比先上升,然后下降。
     2不同铵硝配比对生菜地上部硝酸盐含量有显著影响,5个品种生菜地上部的硝酸盐含量均是随着营养液中NH_4~+-N比例的上升而下降。
     3不同品种生菜对不同铵硝配比的反应不一样。从不同铵硝配比与生菜生物量(地上部、地下部)及生菜地上部硝酸盐含量的响应情况来看,在供试的5个生菜品种中,申选1号(SX 1)和耐热耐抽苔(Nrnct)属于典型生菜品种,其中申选1号对不同铵硝配比最为敏感,是敏感型生菜品种,而耐热耐抽苔对不同铵硝配比敏感程度最低,是钝感型生菜品种。
     4不同铵硝配比对2个典型品种生菜的光合特性有显著的影响。随着营养液中NH_4~+-N比例的增加,生菜叶片叶绿素含量、净光合速率及气孔导度均随着增加,并在营养液中NH_4~+-N比例为25%时达最高。然后,随着NH_4~+-N比例的进一步增加到50%,上述特性反而迅速下降。叶片的胞间二氧化碳浓度随着营养液中NH_4~+-N比例的增加而下降,并在营养液中NH_4~+-N比例为25%时达最低。然后,随着NH_4~+-N比例的进一步增加到50%,叶片的胞间二氧化碳浓度反而有所增加。通过对影响生菜光合作用的影响因子进行分析发现叶肉导度是影响不同形态氮素营养对生莱光合作用的主要限制因子。
     5从不同铵硝配比对不同品种生菜光合特性影响的角度来看,与热耐抽苔生菜相比,申选1号对环境中不同铵硝配比的变化更为敏感,热耐抽苔对环境中不同形态氮素营养及不同铵硝配比的变化钝感。
     6不同铵硝配比对生菜的根系特征参数有显著的影响。随着营养液中NH_4~+-N比例从0%增加到10%及25%,生菜根系表面积、体积、总根长及侧根数量均随之增加,并在营养液中NH_4~+-N比例为25%时达最高,且在0%处理与25%处理的差异均达到显著或极显著水平。随着营养液中NH_4~+-N比例的进一步增加到50%,根系表面积、体积、总根长及侧根数量参数反而迅速下降。同时试验还发现,不同形态氮素营养对不同直径根系长度的影响主要是表现在对直径为0-0.15mm根系上。
     7从不同铵硝配比对不同品种生菜根系特征参数影响的角度来看,与热耐抽苔生菜相比,申选1号对环境中不同形态氮素营养的变化更为敏感。
     8不同铵硝配比对生菜根系和叶片中的内源激素含量有显著的影响。随着营养液中NH_4~+-N比例的增加,生菜根系和叶片的IAA含量及iPAs含量均随着增加,并在营养液中NH_4~+-N比例为25%时达最高。然后,随着NH_4~+-N比例的进一步增加到50%,生菜根系和叶片的IAA含量及iPAs含量反而下降。生菜根系和叶片的ABA含量随着营养液中NH_4~+-N比例的增加而下降,并在营养液中NH_4~+-N比例为25%时达最低。然后,随着NH_4~+-N比例的进一步增加到50%,生菜根系和叶片的ABA含量反而增加。随着试验进程从4叶期推进到6叶期、8叶期,供试生菜根系和叶片中的内源激素水平随之下降。
     9从不同铵硝配比对不同品种生菜内源激素水平影响的角度来看,申选1号根系和叶片中的IAA和iPAs含量均高于耐热耐抽苔,且2个品种的差异均达到显著水平,申选1号根系和叶片中的ABA含量均低于耐热耐抽苔,分别为耐热耐抽苔根系和叶片中的ABA含量的93.0%和96.9%,2个品种的差异均没有达到显著水平。
     10通过对申选1号和耐热耐抽苔吸收NO_3~-的动力学研究发现,在全NO_3~-N营养液中,随着营养液中NO_3~-浓度的增加,2个品种生菜吸收NO_3~-的速率也随着增加,但增加的幅度随着营养液中NO_3~-浓度的增加而减少。环境中NH_4~+-N的存在对生菜吸收NO_3~-的速率有明显影响。将全NO_3~--N营养液中的10%NO-3~--N用NH_4~+-N取代和在全NO_3~--N营养液中直接添加10%NH_4~+-N后,生菜吸收NO_3~-的速率与在全NO_3~--N营养液中相比有明显下降。与全NO_3~--N营养液中生菜吸收NO_3~-的动力学参数比较后发现,环境中NH_4~+-N的存在影响生菜吸收NO_3~--N的动力学参数。将全NO_3~--N营养液中的10%NO_3~--N用NH_4~+-N取代和在全NO_3~--N营养液中直接添加10%NH_4~+-N后对生菜吸收NO_3~-的动力学参数有明显影响。有NH_4~+-N存在时,生菜吸收NO_3~-的Vmax与在全NO_3~--N营养液中相比有显著下降。有NH_4~+-N存在时,生菜吸收NO_3~-的Km与在全NO_3~--N营养液中相比有少量增加,但差异不显著。说明NH_4~+-N存在对生莱吸收NO_3~-的动力学参数的影响主要表现在对Vmax的影响,对Km影响较小。同时还发现环境有NH_4~+-N存在时,生菜吸收NO_3~-的Cmin增加。
     11不同品种生菜吸收NO_3~-的速率不同。不管有无NH_4~+-N的存在,申选1号在有NO_3~--N的营养液中吸收NO_3~-的速率均大于耐热耐抽苔,且随着营养液中NO_3~-浓度的增加,两者的差距逐渐加大。与全NO_3~--N营养液中生菜吸收NO_3~-的动力学参数比较后发现,环境中NH_4~+-N的存在,耐热耐抽苔Vmax下降的程度大于申选1号,耐热耐抽苔Km增加的程度小于申选1号。
     12通过对申选1号和耐热耐抽苔液泡中硝酸根离子的再调动和再利用的研究发现:在正常供应硝酸盐时,液泡中硝酸盐活度远远高于细胞质中硝酸盐活度。在氮亏缺的时候,生菜的地上部、地下部生物量的增长均较缓慢,地下部生长速率相对较快,根冠比逐渐增加。液泡中的硝酸盐迅速下降,但下降到一定程度后就不再下降,而细胞质中的硝酸盐活度在整个氮亏缺培养时期均能够维持在一个较低的浓度(4.0 mmol1~(-1)),并保持基本稳定。在恢复供应硝酸根离子后,细胞质中的硝酸盐继续保持稳定(4.0mmol 1_(-1)),液泡中的硝酸盐活度迅速增加,但地上部、地下部生物量的增长有一个滞后的效应,地上部生长速率相对较快,根冠比逐渐下降。不同生菜基因型在氮亏缺及恢复供应硝酸根时表现不一样。与耐热耐抽苔相比,在氮素亏缺时,申选1号液泡中硝酸盐活度下降的较快,且能维持一个更低的水平。在恢复氮素供应时,申选1号液泡中硝酸盐活度上升较耐热耐抽苔更迅速。
     综上所述,不同铵硝配比通过影响生菜根系特性、光合特性及生菜内源激素含量来影响生菜地上部、地下部生物量;铵硝配比对不同生菜品种的影响存在明显差异,这种差异除了在根系特性、光合特性及生菜内源激素含量上有表现外,还表现在不同生菜品种吸收NO_3~-的速率及吸收动力学参数存在明显的差异,以及在氮亏缺和恢复供氮后液泡中硝酸盐调动速率有明显不同;生菜液泡中的硝酸盐在氮亏缺时能被调动出来,以维持细胞质中硝酸盐浓度稳定,从而保证细胞的正常功能的发挥。
Previous studies showed that partial replacement of nitrate (NO_3) by ammonium(NH_4~+) in nutrient solution could significantly increase the biomass and decrease the NO_3concentration of aerobically growing crops. NO_3 accumulation, especially in leafyvegetables, was paid much attention because of its hazardous effects on human and animalhealth. The consumption of foods including high NO_3 content has a potential hazardousrisk on health when NO3- is reduced to nitrite (NO_2) form. Thus, enhancing the percentageof NH_4~+-N in fertilizer application and addition of nitrification inhibitor in vegetableproduction is a potential nitrogen management. However, the mechanism of the effect ofdifferent nitrogen (N) forms on growth of leafy vegetables is still unknown. Thisdissertation is aimed to clarify the mechanism of NH_4~+ enhancement on lettuce growth fromthe aspects of physiology and biochemistry. Hydroponic experiments were carried out tostudy the effect of different forms of N on photosynthetic characteristics, root growth anddevelopment, NO_3 uptake kinetics, NO_3 release and remobilization in root vacuoles,translation of plant endogenous hormones, as well as the yield and quality of lettuce.
     The results obtained are listed as follows.
     1. Five cultivars of lettuce, very popularly cultivated in south-east China, such as Ny,Sx1, Rw, Net and Nrnct, responded in a significantly different way to different ratios ofNH_4~+-N : NO_3-N. Biomasses of roots and shoots of these cultivars increased with theincreasing of NH4~-N:NO_3-N ratio, and obtained the greatest value at 25:75 ofNH_4~+-N:NO_3-N. Therefore, different ratios of NH4~oN:NO_3-N in nutrient solution couldinfluence the biomass of lettuce, and the best ratio of NH_4~+-N:NO_3-N for lettuce growthand development is 25 : 75. Different ratio of NH_4~+-N:NO_3-N in nutrient solution couldaffect the ratio of root and shoot, which was increased with the increased application ofNH_4~+-N, and then decreased with the further increasing of applied NH_4~+-N.
     2. Different ratios of NH_4~+-N:NO_3-N in nutrient solution significantly affected thecontents of NO_3 in shoots of five cultivars. NO_3 contents of five cultivars decreased withthe increasing of the percentage of NH_4~+-N in total N applied.
     3. Different cultivar of lettuce responded differently to different NH_4~+-N:NO_3~--N ratios innutrient solution. Sx1 was a mostly sensitive eultivar and Nrnct was a mostly insensitivecultivar to different ratios of NH_4~+-N:NO_3~--N in terms of biomass production and NO3_3~-content among the cultivars tested in this experiment.
     4. The photosynthetic characteristics of cultivars, Sx1 and Nrnct, responded in asignificantly different way to different ratios of NH_4~+-N:NO_3~--N. The SPAD readings, netphotosynthesis rate (Pn) and stomatol conductance (Cond) of Sx1 and Nrnct cultivarsincreased with the increasing of NH_4~+-N:NO_3~--N ratio from 0:100 to 25:75, and they werefound to be the highest in 25:75 for NH_4~+-N:NO_3~--N. However, they decreased with theincreasing of NH_4~+-N:NO_3~--N ratio further. In contrast to the responses of SPAD readings,Pn and Cond of these cultivars to different ratios of NH_4~+-N:NO_3~--N, the intercellular CO_2concentration (Ci) of these eultivars decreased with the increasing of, NH_4~+ percentage andthe minimum Ci was found in the treatment of 25:75 for NH_4~+-N:NO_3~--N. This indicatedthat NH_4~+ addition could promote the photosynthesis of lettuce. The enhanced effect ofNH_4~+ addition on photosynthesis characteristics should be attributed to Ci mainly.
     5. Results from the photosynthesis experiments showed that the cultivar named as Sx1was a more sensitive genotype to different ratios of NH_4~+-N:NO_3~--N than the cultivarnamed as Nrnct in this experiment. Therefore, Sx1 was a sensitive genotype and Nrnct wasa insensitive genotype to different ratios of NH_4~+-N:NO_3~--N.
     6. Different ratios of NH_4~+-N:NO_3~--N in nutrient solution could greatly affect the rootgrowth of Sxl and Nrnct. Total root surface area, root volume, total root length and rootnumber increased with increased application of NH_4~+-N, percentage from 0%to 25%, Theywere found to be the highest in 25:75 of NH_4~+-N:NO_3~--N, and then decreased quickly withthe further increase NH_4~+ amount. This result indicated that moderate NH_4~+ addition couldimprove the development of root growth of lettuce. The effects of different N forms anddifferent ratios of NH_4~+-N:NO_3~--N on total root length of these cultivars were exhibitedmainly on the root length of diameter of 0-0.15mm.
     7. In terms of the effects of different ratios of NH_4~+-N:NO3_3~--N on root architectures of Sx1 and Nrnct cultivars, Sx1 had greater response and be more sensitive than that of Nrnct under moderate ratio of NH_4~+-N:NO_3~--N.
     8. The Contents of endogenous hormone in Sx1 and Nrnct were significantly affected. The contents of IAA and iPAs of roots and shoots increased with the increasing of NH_4~+-N:NO_3~--N ratio, and they were found to be the highest in 25:75 of NH_4~+-N:NO_3~--N. However, they decreased with the further increase of NH-4~+-N:NO_3~--N ratio from 25:75 to50:50. In contrast to the responses of IAA and iPAs contents to different ratios ofNH_4~+-N:NO_3~--N, the contents of ABA in roots and shoots decreased as the percent of NH_4~+increased, and the minimum ABA contents in roots and shoots were found in the treatmentof 25:75 for NH_4~+-N:NO_3~--N. Then, they increased with the increasing NH_4~+-N:NO_3~--Nratio from 25:75 to 50:50. With the development of growth from 4-leaves to 6-leaves and8-leaves, the contents of ABA, IAA and iPAs in Sx1 and Nrnct decreased in roots andshoots.
     9. The contents of IAA and iPAs in roots and shoots of Sx1 were higher than those ofNrnct, and there were significant difference between that in Sx1 and Nrnct. The contents ofABA in roots and shoots of Sx1 were 93.0%and 96.9%of that in Nrnct, respectively.
     10. Results from the NO_3~- uptake kinetics by Sx1 and Nrnct showed that, with theincreasing of NO_3~- content, the NO3_3~- uptake rate by Sx1 and Nrnct increased 100%NO_3~- -Nnutrient solution, while the increment of NO_3~- uptake decreased. After replaced 10%NO_3~--N by 10%NH_4-N and enhanced 10%NH_4-N in nutrient solution, the rates of NO_3~-uptake by Sx1 and Nmct decreased significantly, compared with that in the solution withoutNH_3~+-N. Vmax of NO_3~- uptake in 0%NH_4~+-N nutrient solution was higher significantlythan that in nutrient solution with 10%NO_3~--N replacement by 10%NH_4~--N. The Km ofNO_3~-uptake in 0%NH_4~+-N nutrient solution was lower than that in nutrient solution with10%NO_3~-N replacement by 10%NH_4~+-N, but there was no significant difference. Thisindicated that the inhibition of NO_3~- uptake by NH_4~+-N was mainly due to the higher Vmax.NH_4~+-N enhancement also inhibited NO_3~- uptake by increased the Cmin.
     11. Different cultivar has different NO_3~-uptake rate. The NO_3~-uptake rates of Sx1 werehigher than those of Nrnct in solution with NH_4~+-N and without NH_4~+-N. With the NO_3~-content increasing, the difference of NO_3~- uptake rates between Sx1 and Nrnct increased.Added NH_4~+-N, the decreasing percentage of Vmax for Nmct was higher than that for Sx1,and the increasing percentage of Km for Nrnct was lower than that for Sx1.
     12. The activities of NO_3~- in vacuoles were higher than that in cytoplasms during the firstperiod of being planted in Yamazaki solution. After NO_3~- was removed from culturesolution, the biomasses of shoots and roots increased, and also the ratios of root and shootincreased. After the deprivation of NO_3~-, the activities of NO_3~- in vacuoles decreased greatlyfrom the 1st day to 3rd day, and decreased slowly from 4~(th) day to 7~(th) day, while the NO_3~-activities in cytoplasms were 4.0 mmol L~(-1) and did not changed. This suggested that vacuolar NO_3~- could be released into cytosol to maintain a steady NO_3~- concentration forensure normal plant growth. From the second day re-supply NO_3~- again, NO_3~-concentrations in vacuoles increased quickly, and the biomasses boomed since the forth day.As the relative growth rate of shoots were higher than that of roots, the ratios of root andshoot decreased. The NO_3~- activities in cytoplasms were hardly changed in either NO_3~-supplied or deprived conditions. NO_3~- in vacuole of Sx1 had more mobilization than that ofNrnct. In the fifth day after deprivation of N, the NO_3~- concentrations in vacuoles of Sx1and Nrnct were 12.97 mg L~(-1) and 27.67 mg L~(-1), respectively. And the increment of NO_3~-concentration in vacuole of Sx1 was higher than that of Nrnct in re-supply NO_3~- condition.This showed that Sx1 was a high N use efficiency cultivar comparing with Nrnct in term ofthe characteristics of NO_3~- release and remobilization in root vacuoles.
     In conclusion, different ratios of NH_4~+-N:NO_3~--N in solution could significantly affectroot architecture, photosynthetic characteristics and endogenous hormones, which, in turn,affected the root and shoot biomasses of lettuce cultivars. Different species of lettuce had adifferent ways to respond to different ratios of NH_4~+-N:NO_3~--N in solutions. This respondeddifferences were found not only in the changes of root architecture, photosyntheticcharacteristics and endogenous hormone contents, but in NO_3~- uptake characteristics as well.Different cultivars of lettuce had also a different ability to remobilize the NO_3~- in vacuolesafter deprivation and re-supply of N in the solution. The NO_3~- in vacuoles of lettuce plantscould be rcmobilized after deprivation of N in the solution, which could sustain a relativelystable NO_3~- concentration in cytoplasm and thus ensure a normal function of cells.
引文
Alloush G A, Bot J Le, Sanders F E, Kirkby E A. Mineral nutrition of chickpea plants supplied with NO_3~--N or NH_4~+-N.I.Ionic balance in relation to Fe stress[J]. J Plant Nutr, 1990, 13(2):1575-1590.
    Amory A M, Cresswell C F. Effect of inorganic nitrogen ions on photosynthesis and carbon dioxide compensation of the meda triandra and zea mays[J]. Annal of Botany,1984,54:719-727.
    Amr A, Hadidi N. Effect of cultivar and harvest date on nitrate(NO_3) and nitrite(NO_2) content of selected vegetables grown under open field and greenhouse conditions in Jordan[J]. J. of Food Composition and Analysis, 2001, 14:59-67.
    Ashraf M, Bashir A. Relationship of photosynthetic capacity at the vegetative stage and during grain development with grain yield of two hexaploid wheat ( Triticum aestivum L. ) cultivars differing in yield[J]. European Journal of Agronomy, 2003, 19:277-287.
    Barker A V. Variations in nitrate accumulation among spinach cultivars[J]. Amer. Soci. Hort. Sci., 1974,99 (2):132-134.
    Bettina S, George E, M arschner H, et al. Effect of varied soil nitrogen supply on Norway sp ruce[J]. Plant Soil, 1996, 184:291-298.
    Beusichem V, Kirkby E A, Baas R. Influence of nitrate and ammonium nutrition on the uptake, assimilation and distribution of nutrients in Ricinnus communis[J]. Plant Physiol., 1988, 86:914-921.
    Blanke M M, Bacher W, Pring R J, et al. Ammonium nutrition enhances chlorophyll and glaucousness in Kohlrabi[J]. Annals of Botany,1996,78:599-604.
    Blevins D G, Barnett N M and Frost W B. Role of potassium and malate in nitrate uptake and translocation by wheat seedlings[J]. Plant Physiol.,1978,62:784-788.
    Blom-Zandstra M, Lampe J E M. The effects of chloride and sulfate sale on the nitrate content in lettuce plant[J ]. J. Plant Nutr., 1983,6:611-628.
    Blom-Zandstra M. Nitrate accumulation in vegetable crops and its relationship to quality[J]. Ann.Appl.Biol., 1989,115:233-260.
    Bloom A J, Sukrapanna S S, Warner R L. Root respiration associated with ammonium and nitrate absorption by barley[J]. Plant Physiol.,1992,99:1294-1301.
    Botrel A, Kaiser W M. Nitrate reductase activation state in barley roots in relation to energy and carbohydrate status[J]. Planta, 1997,201:496-501.
    Boukcim H, Pages L, Plassard C, et al. Effects of N-fertilization on root system architecture and receptivity to mycorrhizal infection of cedar seedlings[J]. Tree Physiol., 2001, 21:109-115.
    Breteler H, Siegerist M. Effect of ammonium on nitrate utlization by roots of Dwarf Bean[J]. Plant Physiol., 1984,75:1099-1103.
    Britto D T, Kronzucker H J. NH_4~+ toxicity in higher plants: a critical review[J]. Plant Physiol., 2002,159:567-584.
    Burcsh R J. Nitrate Accumulation Loss in a Mungbcan/Lowland Rice Cropping System [J]. Soil Sci. Soc. Am. J. 1989,53:477-482.
    Bussi C, Gojon A, Passama L. In situ nitrate reductase activity in leaves of adult peach trees[J]. J. Hortic. Sci. 1997, 72:347-353.
    Caba J M, Lluch C, Ligero F.Distribution of nitrate reductase activity in Vicia faba: effect of nitrate and plant genotype[J]. Physiol.Plant, 1995,93:667-672.
    Cacco G. Ferrari G, Saccomani M. Variability and inheritance of sulfate uptake efficiency and ATP-sulfurylase in maize[J]. Physiol. Plant,1980, 48:375-378.
    Cantlile, D. Nitrate accumulation in vegetable crops as affected by photopefiod and light duration (beets, radish, spinach, beans) [J]. J. Am. Soc. Hort. Sci. 1992,97:414-418.
    Cao Z H. Environmental issues related to chemical fertilizer use in China[J]. Pedosphere, 1996, 6 (4): 289-303.
    Champigny M, Foyer C. Nitrate activation of cytosolic protein kinases diverts photosynthesis: Basic for a new concept[J]. Plant Physiol.,1992,100(1):7-12.
    Chen B M, Wang Z H, Li S X,et al. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables[J]. Plant Science, 2004,167:635-643.
    Chen W, Luo J K, Shen Q R. Effect of NH_4~+-N/NO_3~--N ratios on Growth and some physiological parameters of chinese cabbage cultivars[J]. Pedosphere, 2005,15(3):310-318.
    Claassen N, Barber S A. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants[J]. Plant Physiol., 1974,54:564-568.
    Claussen W, Lenz F. Effect of ammonium or nitrate nutrition on net photosysnthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry[J]. Plant Soil. 1999, 208:95-102.
    Colmer T D and Bloom A J. A comparision of NH_4~+ and NO_3~- net fluxes along roots of rice and maize. Plant[J]. Cell and Environment,1998,21:240-246.
    Compbell W H. Nitrate reductase and its role in nitrate assimilation in plants[J]. Physiol. Plant,1988,74:214-219.
    Corre W J, Breimer T.Nitrate and nitrite in vegetables. Wageningen: Centre for Agricultural Publishing and Documentation, 1979, 85.
    Coruzzi G M, Zhou L.Carbon and nitrogen sensing and signaling in plants: emerging 'matrix effects' [J]. Current Opinion in Plant Biology, 2001,4:247-253.
    Cox W J, Reisenbuer H M. Growth and ion upetake by wheat supplied nitrogen as nitrate, or ammonium, orboth[J]. Plant Soft. 1973, 38:363-380.
    Crawford M D, Chalk P M. Sources of N uptake by wheat and N transformations in soil treated with a nitrification inhibitor(nitrapyrin)[J]. Plant Soil,1993,149:59-72.
    Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants (Reviews) [J]. Trends in Plant Science, 1998, 3 (10):389-395.
    Davies W J, Tardieu F, Trejo C L.How do chemical signals work in plants that grow in drying soil[J]. Plant Physiol., 1994,104:309-314.
    Dieleman J A, Verstappen F W A, Perik R R J, et al. Quantification of the export of cytokinin from roots to shoot of Rosa hybrida and their degradation rate in the shoot[J]. Physiologia Plantarum, 1997,101:347-352.
    Dong C X, Shen Q R, Wang G. Tomato growth and organic acid changes in response to partial replacement of NO_3~--N by NH_4~+-N[J]. Pedosphere, 2004, 14(2):159-104.
    Drew M C. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot in barley [J]. New Phytol., 1975, 75:479-490.
    Druege U, Nell T A, Clark D G. Postharvest responses of different ornamental products to preharvest nitrogen supply: role of carbohydrates, photosynthesis and plant hormones[A]. Proceedings of the Seventh Internation Symposium on Postharvest Physiology of Ornamental Plants[C]. Ft. Lauderdale, Florida, USA, Acta-Horticulture, 2001,543:97-102.
    Epstein E, Hagen C E. A kinetic study of the absorption of alkalications by barely roots[J]. Plant Physiol., 1952,27:457-474.
    Farguhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology.,1982,33:317-345.
    Fine D H. N-nitresecompounds: Occurences and biological effects (IARC Sci. Publ. NO. 41), Iyon, France IARC:1982,379.
    Fitter A H. Functional significance of root morphology and root system architecture [A]. In: Fitter A H, Editor, Ecological Interactions in Soil [M]. Oxford: Blackwell Scientific Press, 1985.87-106.
    Gangolli S, Van den Brandt P, Feron V, et al. Assessment of nitrate, nitrite, and N-nitroso-compounds[J]. Europ. J. Pharmacol. Environ. Toxicol.-Pharmacol. Sec., 1994,292:1-38.
    Gariglio N F, Pilarti R A, Baldi B L. Using nitrogen balance to calculate fertilizer in strawberries[J]. Hort Technology, 2000,10(1):147-150.
    Gashaw L, Mugwira L M. Ammonium-N and nitrate-N effects on the growth and mineral compositions of Tritical, wheat and rye[J]. Agronomy Journal,1981,73:47-51.
    Gillian Y, Robin C, Nigel H. Monitoring for nitrate in UK-grown lettuce and spinach [J]. Food Additives and contaminants, 1999, 16(7):301-306.
    Glass A D M. Thompson R G, Bordeleau L. Regulation of NO_3~- influx in baeley. Studies using ~(13)NO_3~-[J]. Plant Physiol., 1985,77:379-381.
    Gransted R C, Huffaker R C. Identification of the leaf vacuole as a major nitrate storage pool [J]. Plant Physiol., 1982,70:410-413.
    Greenwood D J, Hunt J. Effect of nitrogen fertilizer on the nitrate contents of field vegetables grown in Britain[J]. J. Sci. Food Agric., 1986, 37:373-383.
    Grime J P, Campbell B D, Mackey J M L, et al. Root plasticity, nitrogen capture and competitive ability [A]. In: Atkinson D. Editor, Plant Root Growth: An Ecological Perspective [M]. Oxford: Blackwell Scientific Publications, 1991, 381-397.
    Guerrero M G, Vega J M, Losada M. The assimilatory nitrate-reducing system and its regulation [J]. Annu. Rev. Plant Physiol. 1981,32:169-204.
    Hageman R H. Ammonium versus nitrate nutrition of higher plants, ln:Huauck R D(ed). Nitrogen in crop production. Madison. Wisconsin. ASA-CSSA-SSSA,1984,67-85; Stantamaria,1997;Mccall et a1,1998.
    Hayakawa T, Hopkins L, Peat L J, Yamaya T, Tobin A K. Quantitative intercellular localization of NADH-dependent glutamate synthase protein in different types of root cells in rice plants [J]. Plant Physiol., 1999,119:409-416.
    Haynes R J, Goh K M. Ammonium and nutrition of plants. Biol Rew, 1978, 53:465-510.
    Haynes R J. In: Mineral nitrogen in plant-soil system. Orlando, Florida: Academic Press Inc,1986,303-358.
    Heuer B. Growth, photosynthesis and protein content in cucumber plants as affected by supplied nitrogen form [J]. J. Plant Nutr., 1991,14:363-373.
    Hewitt E J. Essential and functionalmetals in plant. In: Robb D A and Pierpoint W S. eds. Metals and Micronutrients Uptake and Utilization by Plants. Academic press, New York,1983,277-323.
    Hewitt E.J. Assimilatory nitrate-nitrite reduction [J]. Annu. Rev. Plant Physiol.,1975, 26:73-100.
    Hiroshi Hayami, Gregory R. Carmichael, Factors influencing the seasonal variation in particulate nitrate at CHEJU island South Korea[J]. Atmospheric Environent, 1998,32(8):1427-1434.
    Hisatlmi Harada, Yoshimura. Variations in nitrogen uptake and nitrate-nitrogen concentration among Sorghum groups[J]. Soil Sci. Plant Nutr., 2000,46(1):97-104.
    Huston M A, Smith T M. Plant succession: Life history and competition [J]. American Naturalist, 1987, 130(2):168-198.
    Isabel S. Vieira, Ernesto P. Nitrate accumulation, yield and leaf quality of turnip greens in response to nitrogen fertilization[J]. Nutrient Cycling in Agroecosystems,1998,51:249-258.
    Katarzyna K, Grazyna K, Malgarzata J. Nitrate transport across the tonoplast of Cucumis sativus L. root cells. Journal of Plant Physiology, 2003, 5: 523-530.
    Koch G N W, Schulib E D, Percival F, et al. The nitrogen balance of Raphanus sativax X Pa phanistrum plant.Ⅱ.Growth, nitrogen redistribution and photosynthesis under NO_3 deprivation [J]. Plant, cell and Enviroment, 1988,11:755-767.
    Kosegarten H, Grolig F, Esch A, et al. Effects of NH_4~+, NO_3~- and HCO_3~- on apoplast pH in the outer cortex of root zones of maize, as measured by the fluorescence ratio of fluorescein botanic acid [J]. Planta,1999,209:444-452.
    Kotsiras A, Olympios C M, Drosopoulos J, et al. Effects of nitrogen form and concentration on the distribution of ions within cucumber fruits[J]. Scientia Horticulturae,2002,95:175-183.
    Larsson C M, Ingemarsson B.In: Wary J L, Kinghom J R(eds). Molecular and Genetic Aspects of Nitrate Assimilation. New York: Oxford University Press,1989.
    Lee K H, Jose S B. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient [J]. Forest Ecology and Management, 2003,185: 263-273.
    Lewis O A W, Fulton B, Von Z A A A. Differential distribution of carbon in response to nitrate, ammonium, and nitrate+ammonium nutrition in wheat. In: Ullrich W R, Aparicio P J, Syrett P J, Castillo F, eds. Inorganic nitrogen metabolism. Berlin: Springer-Verlag, 1987,240-246.
    Lorenz, O.A.Nitrate in the Environment.Vol.2. Soil-Plant-Nitrogen Relationship. Donald R, Nielson J GMac Donald (eds).Academic Press, New York,1978,201-209.
    MacLeod J. The nitrogen cycle. In: Proceedings of the Workshop on Nitrate-Agricultural Sources and Fate in the Environment-Perspectives and Direction. Farm Centre, Charlottetown, PEI, February 26. Eastern Canada Soil and Water Cons. Centre, Saint Andre, NB. 1998.
    Magnard D N. Nitrate in the Environment. Vol. 2. Soil-Plant-Nitrogen Relationship. Donald R, Nielson J G Mac Donald(eds). Academic Press, New York, 1978,221-234.
    Majerowiez N, Kerbauy G B, Nievola C C, Suzuki R M. Growth and nitrogen metabolism of Catasetum fimbriatum (orchidaceae) growth with different nitrogen sourses[J]. Enviromental and Experimental Botany,2000,44:195-206.
    Mark S, Cathrin M, Petra M, et al. Steps towards an integrated view of nitrogen metabolism[J]. J. of Experimental Botany, 2002,53:959-970.
    Marschner H, Kirkby E A, Cakmark T. Effect of mineral nutritional status on shoot-root partitioning of photoassilates and cycling of mineral nutrients [J]. J. Exp. Bot., 1996,47:1255-1263.
    Marschner H. Mineral nutrition of higher plants. Harcourt Brace Jovanovich Martin, 1986,197-218, 229-312.
    Martin R B, Abraham J E, Amanda B, Ian G B. Nitrogen-limited growth of lettuce is associated with lower stomatal conductance[J]. New Phyologist,2001,152:97-106.
    Mccall D, Willumsen J. Effects of nitrogen availability and supplementary light on the nitrate content of soil-grown lettuce[J ]. J. of Horticultural Science & Biotechnology, 1999,74(4):458-463.
    Miller A J, Zhen R G Measurement of intracellular nitrate concentrations in Chara using nitrate - selective microelectrodes[J]. Planta,1991,184:47-52.
    Miller A J, Smith S J. Nitrate transport and compartmentation in cereal root cells [J], J. Exp. Bot., 1996. 47:843-854.
    Miller A J, Smith S J. The mechanism of nitrate transport across the tonoplast of barley root cells [J]. Planta. 1992,187:554-557.
    Morcuende R, Krapp A, Hurry V, Mark S. Sucrose-feeding leads to increased rates of nitrate assimilation, increased rates of α-oxoglutarate synthesis, and increased synthesis of a wide spectrum of amino acids in tobacco leaves[J].Planta, 1998,206:394-409.
    Nabrzyski, M, Gajewska R. The content of nitrates and nitrites in fruits,vegetables and other foodstuffs. Rocznik Ranstw Zakl Higiene, 45:167-180.
    
    Nielson,D R. Nitrogen in the environment[J]. Soil-plant -nitrogen relationships, 1978,(2):201-235.
    Oaks A. Are—evaluation of nitrogen assimilation in roots[J].BioScience, 1992,42:103-111.
    Peuke A D, Jeschke W D, Hartung W. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L.III. Long distance transport of abscisic acid depending on nitrogen nutrition and salt stress[J]. J. Exp. Bot.,1994,45:741-747.
    Peuke A D, Jeschke W D, Hartung W. The uptake and flow of C,N and ions between roots and shoots in Ricinus communis L. II. Grown with low or high nitrate supply[J]. J. Exp. Bot.,1994,45:733-740.
    Peuke A D, Jeschke W D, Wolfram H. Foliar application of nitrate or ammonium as sole nitrogen supply in Ricinus communis L. II. The flow of cations, chloride and abscisic acid[J]. New Phytologist, 1998,140:625-636.
    Raab T K, Terry N. Nitrogen source regulation of growth and photosynthesis in Bata vulgaris L[J]. Plant Physiol.,1994,105:1159-1166.
    Rao K, Rains D W. Nitrate absorption by barley. I. Kinetics and energetics[J]. Plant Physiol., 1976,57:55-58.
    Reddy K S, Mills H A, Jones J B J. Corn responses to post-tasseling nitrogen deprivation and to various ammonium/nitrate ratios[J]. Agronomy Journal. 1991,83:201-203.
    Reinink K, Eenink A H. Genotypical differences in nitrate accumulation in vegetables and its relationship to quality[J]. Annals of Applied Biology,1989,115 (3):553-561.
    Sadyd, Rozek S, Myczkowski J.Effect of nitrogen on the quality of lettuce yield[J]. Acta Horticulturae, 1995,401:409-416.
    Santamaria P, Elia A. Producing nitrate-free endive heads: effect of nitrogen form on growth, yield, and ion composition of endive[J]. J. of Am. Soc. Hort. Sci., 1997,122:140-145.
    Schmerder B, Borriss H. Induction of nitrate reductase by cytokinin and ethylene in Agrostemma githago L. embryos[J].Planta,1986,169:585-593.
    Schrader L E, Domska D E, Tung D E, et al. Uptake and assimilation of ammonium-N and their influence on the growth of corn[J]. Agron. J, 1972,64:690-695.
    Schubert S, Yan Y. Nitrate and ammonium nutrition of plants: Effects on acid/base balance and adaptation of root cell plasmalemma H~+-ATPase[J]. Zeitschrift fur Pflanzenemahrung und Bodenkunde,1996,160:275-281.
    Schuster B E, Lee K. Nitrate and nitrite methods of analysis and levels in raw carrots, processed carrots and in selected vegetables andgrain products[J]. J.Food Sci.,1987,52(6):1632-1636,1641.
    Sharma S N. Effects of ammonium and niyrate on CO_2 assimilation, RuBPC, PEPC and dry, matter production[J]. Photosynthesis Research, 1987,12(3):265-272.
    Skrdleta V, Gaudinova A, Nemcova M. Relationships between nitrate level, nitrate reductase activity and anaerobic nitrite production in Pisum sativum leaf tissue[J]. Biol. Plant 1979,21:307-310.
    Smiciklas K D, Below F E. Role of nitrogen form in determining yield of field-growth maize[J]. Crop Science,1992,32:1220-1225.
    Solomonson L P, Barber M J. Assimilatory nitrate reductase: functional properties and regulation[J]. Annu. Rev. Plant Physiol, MoL Biol. 1990,41:225-253.
    Stamp P, Feil B, Schortemeyer M, Richner W. Responses of roots to low tempertures and nitrogen form. In: Anderson H M. Plant Roots-From Cells to System. Netherlands, 1997,143-154.
    Steingrover E, Ratering P, Siesing J. Daily changes in uptake, reduction and storage of nitrate in spinach grown at low light intensity[J]. Physiologia Plantarum, 1986,66:550-556.
    Steingrover E. Woldendorp J, Sijtsma L. Nitrate accumulation and its relation to leaf elongation in spinach leaves[J]. J.of Exp. Bot.,1986,37:1093-1102.
    Tilman D. Plant Strategies and the Structure and Dynamics of Plant Communities [M]. Princeton: Princeton University Press, 1988,52-97.
    Torrey J. Endogenous and exogenous influences on the regulation lateral roots formation. In: Jackson MB, Nijhoff M (eds), New root formation in plants and cuttings. Mass, Boston, 1986,31-66.
    Ulrich W R. Transport of nitrate and ammonium through plant membranes, in Mengel K, Pilbeam D J(eds), Nitrogen metabolism of plants. Clarendon Press, Oxford, 1976,121-137.
    Vaast P. Effects of solution pH, temperature, nitrate/ammonium rations, and inhibitors on ammonium and nitrate uptake by Arabic coffee in shortterm solutiom culture[J]. J.Plant.Nutr.,1998,21(7):1551-1564.
    Wagner B W, Beck E. Cytokinins in the perennial herb Urtica dioica L.as influenced by its nitrogen status[J]. Planta, 1993, 190:511-518.
    Walch-Liu P, Neumann G, Bangerth F, Engels C. Rapid effects of nitrognn form on leaf morphogenusis in tobacco[J]. J. of Exp. Bot.,2000,51:227-237.
    Walter J H, Mohamed A, Franz W. Differences between wheat cultivars in acquisition and utilization of phosphorus[J]. Z. Plfanzenemaehr Bodenkd, 1996,159:155-161.
    WHO. Nitrates, Nitrites and N-Nitroso Compounds[S]. Eniveronmental Health Criteria,1977.
    Winter K, Usuda H, Tsuzuki M, et al. Influence of nitrate and ammonia on photosysnthetic characteristics and eaf anatomy of Moricandia arversia[J]. Plant Physiol.,1982,70:616-625.
    Wu P, Ying L P, Zhang L E Molecular Physiology of Plant Nutrition. Beijing: Science Press, 2001:65-66.
    Xu Q F, TSai C L, Tsai C Y. Interaction of potassium with the form and amount of nitrogen nutrition on growth and nitrogen uptak of maize[J]. J. of Plant Nutrition,1992,15(1):23-33.
    Youngdahl L J, Pacheco R, Street J J, Vlek P L G. The kinetics of ammonium and nitrate uptake and by young rice plants[J]. Plant Soil, 1982,69:225-232.
    Zhang H, Andrea J, Peter W, et al. Dual pathways for regulation of root branching by nitrate [J]. Plant Biology, 1999, 96:6529-6534.
    Zhang H, Forde B G. An arabidopsis MADs-box gene controlling nutrient-induceed changes in root architecture[J]. Science, 1998, 279:407-409.
    Zhang L F, Kato T, Xu X P, et al. Coparative studies on the physiological characteristics in aolanaceous fruit vegetables. (4). Effects of nitrogen form on hormone level in shoot apices, chemical constituents and photosynthetic function[J]. Research Reports of the Kochi University Agricultural Science, 1989,38:35-40.
    Zhen R G, Koyro H W, Leigh R A, et al. Compartmental nitrate concentrations in barley root cells measured with nitrate-selective microelectrodes and by single-cell sap sampling[J]. Planta, 1991,185: 356-361.
    艾绍英,李生秀,唐拴虎,姚建武.两种菠菜累积硝酸盐特性差异的研究[J].土壤与环境,2000,9(4):274-276.
    艾绍英,姚建武,罗晓红,等.蔬菜硝酸盐的还原转化特性研究[J].植物营养与肥料学报,2002,8(1):40-43.
    白纲仪,赵杨景,梁惠英.几种蔬菜中硝酸盐含量及食前处理[J].农业环境保护,1982,(3):21-23.北京农业大学.植物生理学,北京:农业出版社,1979.
    曹翠玲,李生秀.氮素形态对小麦中后期生长阶段生理效应及产量的影响[J].作物学报,2003,29(2):258-262.
    陈锦强,李明启.不同氮素营养对叶片的光合作用、光呼吸的影响及光呼吸与硝酸还原酶的关系[J].植物生理学报,1983,(3):251-259.
    陈巍,罗金葵,姜慧梅,沈其荣.不同形态氮素比例对不同小白菜品种生物量和硝酸盐含量的影响[J].土壤学报,2004,41(3):420-425.
    陈巍,罗金葵,尹晓明,等.硝酸盐在两个小白菜品种体内的分布及调配[J].中国农业科学,2005,38(11):2277-2282.
    陈新平,冀宏杰,张福锁.过量施用氮肥对北京市蔬菜硝酸盐含量的综合评估.见:李晓林,张福锁,米国华主编.平衡施肥与可持续优质蔬菜生产.中国农业大学出版社,2000,270-277.
    陈新平,邹春琴,刘亚萍,等.蔬菜不同品种累积硝酸盐能力的差异及其原因[J].植物营养与肥料学报,2000,6(1):30-34.
    陈振德,马东升.几种叶类蔬菜中硝酸硝酸盐和亚硝酸盐含量变化及其化学调控[J].植物生理通讯,1994,11(3):25-26.
    陈振德.不同收获时期对蔬菜硝酸盐含量的影响[J].中国蔬菜,1989,(3):8-10.
    池田英男,大泽孝也.氮素形态与蔬菜的适应性[J].园艺学会杂志,1990,48(4):435-442.
    #12
    戴廷波,曹卫星,荆奇.氮形态对不同小麦基因型氮素吸收和光合作用的影响[J].应用生态学报,2001,12(6):849-852.
    戴廷波,曹卫星,李存东.作物增铵营养的生理效应[J].植物生理学通讯,1998,34(6):488-493.
    董海荣,李存东,李金才.不同形态氮素比例对棉花苗期生长及物质积累的影响[J].河北农业大学学报,2003,26(1):9-12.
    董园园,董彩霞,卢颖林,等.NH_4~+-N部分代替NO_3~--N对番茄生育中后期氮代谢相关酶活性的影响[J].土壤学报,2006,43(2):261-266.
    杜红斌,王秀峰,崔秀敏.植物NO_3~-积累的生理机制研究[J].中国蔬菜,2001,(2):49-51.
    杜应琼,王富华,李乃坚,等.广东省蔬菜硝酸盐含量的调查与分析[J].生态环境,2004,13(1):19-22.
    段永蕙,张乃明,张守萍,等.太原市蔬菜硝酸盐污染状况及其影响因素[J].农业环境保护.1998,(3):126-128.
    封克,汪晓丽,陈平,盛海君.水稻苗期不同时段NO_3~-吸收特点及其受NH_4~+的影响[J].中国农业科学,2003,36(3):307-312.
    冯柱安,彭桂芬.不同氮素形态对烤烟品质影响的研究[J].中国烟草科学,1998,(4):11-15.
    傅柳松,刘超.钼和双氰胺降低蔬菜硝酸盐积累的效应研究[J].1994,16(3):4-6.
    高祖明,张春兰,倪金应,等.黄瓜等九种蔬菜与NO_3~-—N亲和力的研究[J].南京农业大学学报,1990,13(1):75-79.
    高祖明,张耀栋,张道勇,等.氮磷钾对叶菜硝酸盐积累和硝酸还原酶、过氧化物酶活性的影响[J].园艺学报,1989,(4):293-297.
    GB18406.1-2001.农产品安全质量无公害蔬菜完全要求[S].2001.
    顾晓君.依靠科技进步不断提高蔬菜产品科技含量[J].上海蔬菜,2005,(3):4-6.
    郭红祥,刘卫群,岳俊勤,石永春.烤烟根系激素水平、GS、PMT对氮素形态的响应[J].华北农学报,2006,21(1):72-75.
    郭培国,陈建军,郑燕玲.氮素形态对烤烟光合特性影响的研究[J].植物学通讯,1999,16(3):262-267.
    郭世伟,邹春琴,张福锁,等。铁营养状况及不同形态氮素对玉米体内不同铁库铁再利用的影响[J].土壤学报,2001,38(4):464-470.
    何天秀,何成辉,吴德意.蔬菜中硝酸盐含量及其与钾含量的关系[J].农业环境保护,1992,11(5):209-211.
    何文寿,李生秀,李辉桃.铵、硝态氮配比对作物生长量的影响[J].宁夏农学院学报,1996,17(4):16-20.
    何文寿,李生秀,李辉桃.六种作物不同生育期吸收铵硝态氮的特性[J].作物学报,1999,25(2):221-226.
    何钟佩.作物激素生理及化学控制.北京:中国农业大学出版社,1996,1-42.
    胡承孝,邓波儿,刘国仇.施用氮肥对小白菜、番茄中硝酸盐积累的影响[J].华中农业大学学报,1992,(2):239-243.
    胡承孝,邓波儿等.施用氮肥对小白菜、番茄中硝酸盐积累的影响[J].华中农业大学学报,1992,11(3):239-243.
    胡承孝,刘同仇.过量硼对小白菜品质及氮代谢的影响[J].华中农业大学学报,1995,21(增刊):49-52.
    胡勤海,傅柳松.双氰胺对蔬菜硝酸盐积累抑制作用的研究[J].环境污染与防治,1991,13(1):6-8.
    黄建国、袁玲.重庆市蔬菜硝酸盐、亚硝酸盐含量及其与环境的关系[J].生态学报,1996,16(4):383-388.
    黄启为,周兆德,李天贵.钼锰锌微肥对小白菜产量和品质的影响[J].湖南农学院学报,1991, 17(增刊):400-403.
    黄益宗,冯子炜,王效科,等.硝化抑制剂在农业上应用的研究进展[J],土壤通报,2002,33(4):310-315.
    黄勇强,王利群,董英.蔬菜硝酸盐含量测定与食用安全性探讨[J].2003,56-58.
    贾莉君,范晓荣,尹晓明,等.微电极法测定水稻叶片液泡中硝酸根离子的再调动[J].中国农业科学,2005,38(7):1379-1385.
    贾琦,叶秀莲,杨成根.不同处理对常见叶菜中亚硝酸盐含量的影响[J].江苏农学院学报,1997,18(2):94-96.
    蒋卫杰,余宏军,李红.不同有机肥料种类对生菜硝酸盐含量的影响[J].中国蔬菜,2005,(8):10-12.
    蒋自立,Cemi.BA.农作物积累硝酸盐的农业生态因素[J]国外农业环境保护,1991,(1):24-26.
    雷一清,郭勇,周幼魁,等.兰州市蔬菜中的硝酸盐[J].甘肃农业科技,1996,(12):22-23.
    李彩风.增铵营养对玉米品质影响初探[J].王米科学,2003,11(3):82-84.
    李存东,董海荣,李金才.不同形态氮比例对棉花苗期光合作用及碳水化合物代谢的影响[J].棉花学报,2003,15(2):87-90.
    李秧秧,邵明安.小麦根系对水分和氮肥的生理生态反应[J].植物营养与肥料学报,2000,6(4):383-388.
    李元芳.微生物肥料及其在蔬菜上的应用[J].中国蔬菜,2001,(5):1-3.
    梁命宜,贾来.长沙市蔬菜硝酸盐含量状况分析[J].湖南农业科学,2003,(1):45-46.
    林观捷,林家宝,陈火英.影响蔬菜硝酸盐含量累积因素的探讨[J].上海农学院学报,1995,13(1):47-52.
    林家宝,陈火瑛,林观捷.菠菜硝酸盐含量遗传的初步研究[J].上海农学院学报,1995,13(2):98-102.
    林志刚,赵仪华,薛耀英.叶菜类蔬菜的硝酸盐积累规律及其控制方法研究[J].土壤通报,1993,24:253-255.
    刘明月,秦王芝.NPK施用量与芹菜硝酸盐积累量和产量的相关性[J].中国蔬菜,1998,(6):4-7.
    刘秀茹,孙晓荣,王晓雪.有机肥与氮化肥配施对蔬菜产量及硝酸盐含量的影响[J].辽宁农业科学,1991,(5):50-52.
    刘永菊,曹一平.夏江.不同NPK配比对大白菜产量及硝酸盐累积的影响[J].土壤肥料,1999,(4):26-29.
    卢善玲,周根娣,汪雅谷.上海蔬菜硝酸盐残留状况及其控制途径[J].上海农业学报,1990,6(4):59-66.
    卢善玲,周根娣.上海地区蔬菜硝酸盐含量状况及食用卫生评价[J].上海农业科技,1989,(4):15-16.
    卢善玲,周根娣.施肥对蔬菜中硝酸盐含量的影响[J].上海环境科学,1988,7(9):19-21.
    罗金葵,陈巍,张攀伟,等.增铵对小白菜生长和叶绿素含量的影响[J].土壤学报,2005,42(3):80-84.
    罗金葵,陈巍,张攀伟,沈其荣.小白菜适当增铵下硝酸盐累积机理研究[J].植物营养与肥料学报,2005,11(6):800-803.
    马新明,王志强,王小纯,王书丽.氮素形态对不同专用型小麦根系及氮素利用率影响的研究[J].应用生态学报,2004,15(4):655-658.
    毛达如主编.植物营养研究法.北京:北京农业大学出版社,1994,18.
    莫良玉,吴良欢,陶勤南.高等植物GS/GOGAT循环研究进展[J].植物营养与肥料学报,2001,7(2):106-114.
    牛森主编.作物品质分析.北京:中国农业出版社,1992,184.
    农业部.中华人民共和国农业行业标准—无公害食品.北京:标准出版壮,2001.
    潘洁,赵宏孺,陆文龙,等.天津几种主要蔬菜硝酸盐污染及防治对策[J].天津农业科学,1998,4(3):12-15.
    潘瑞炽,董愚得编.植物生理学.北京:高等教育出版社,1995,53-55,76-77,111.
    彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    邱德运,胡立勇.氮素水平对油菜功能叶内源激素含量的影响[J].华中农业大学学报,2002,21(3):213-216.
    任祖淦,邱孝煊,蔡元旦,等.化学氮肥对蔬菜积累硝酸盐的影响[J].植物营养与肥料学报,1997,3(1):81-84.
    杉山直仪,高桥和彦.园艺学会杂志(日),1958,27(3):13-22.
    商照聪,高子勤.双氰胺对碳酸氢铵在土壤中氮素转化的影响[J].应用生态学报,1999,10(2):183-185.
    申秀英.蔬菜硝酸盐积累机制及影响因素[J].农业环境与发展,1998,15(3):4-6.
    沈明珠,翟宝杰,东惠茹.蔬菜硝酸盐积累的研究I.不同蔬菜硝酸盐、亚硝酸盐含量评价[J].园艺学报,1982,9(4):41-48.
    沈明珠.蔬菜中的硝酸盐[J].农业环境保护,1982,(2):23-27.
    沈明珠译.防治蔬菜硝酸盐的新方向[J].国外农业环境保护,1987,(4):46.
    沈其荣,汤利,徐阳春.植物液泡中硝酸盐行为的研究概况[J].土壤学报,2003,40(3):465-470.
    沈秀瑛,戴俊英,胡安畅,徐世昌.玉米叶片光合速率与光,养分和水分及产量关系的研究[J].玉米科学,1994,2(3):56-60.
    沈中泉,郭云桃,袁家富.有机肥料对农产品品质的作用及机理[J].植物营养与肥料学报,1995,1(2):54-59.
    史瑞和.植物营养原理.南京:江苏科技出版社,1989.
    舒冬妮,齐鑫山.双氰胺抑制蔬菜积累硝酸盐的试验报告[J].农业环境保护,1992,11(4):176-178.
    宋海星,李生秀.水、氮供应和土壤空间所引起的根系生理特性的变化[J].植物营养与肥料学报,2004,10(1):6-11.
    孙权,丁福荣,李鹏,等.氮肥对大白菜硝酸盐累积的影响及合理施用量研究[J].土壤,2003,35(3):255-258.
    孙兴祥,王健,周毅,沈其荣.不同氮素水平对菠菜生长和品质的影响[J].南京农业大学学报2005,28(3):126-128
    唐玉林.生长素、细胞分裂素和脱落酸对烟草叶块分化根芽的影响:[硕士学位论文].南京:南京农业大学,1993.
    田霄鸿,李生秀.几种蔬菜对硝态氮、铵态氮的相对吸收能力[J].植物营养与肥料学报,2000,(2):194-201.
    田霄鸿,王朝辉,李生秀.不同氮素形态及配比对蔬菜生长和品质的影响[J].西北农业大学学报,1999,(2):6-10.
    汪李平,李式军.不同氮素形态及配比对水培生菜铁营养的影响[J].安徽农业大学学报,1995,22(3):266-271
    汪李平,向长萍,王运华.我国蔬菜硝酸盐污染状况及防治途径研究进展[J].长江蔬菜,2000,(4):1-4,(5):1-4.
    汪李平,向长萍,王运华.武汉市场硝酸盐含量状况及食用卫生评价[J].湖北农业科学,2003,(3):71-72.
    王波,赖涛,孙兴祥,沈其荣.增铵营养对生菜根系形态影响的研究[J].植物营养与肥料学报,2006,12(5):745-749.
    王波,沈其荣,陈爱群,等.不同铵硝比营养液对生菜生长发育影响的研究[J].土壤学报,2007,44(3):
    王朝辉,李生秀,田宵鸿.不同氮肥用量对蔬菜硝态氮累积的影响[J].1998,4(1):22-28.
    王朝辉,李生秀.蔬菜不同器官的硝态氮与水分、全氮、全磷的关系[J].植物营养与肥料学报,1996,2(2):144-152.
    王朝辉,田宵鸿,李生秀.叶类蔬菜的硝态氮积累及其成因研究[J].生态学报,2001,21(7):1136-1141.
    王朝辉,田霄鸿,李生秀,等.两种蔬菜对硝态氮的累积和还原[J].西北农业大学学报,1998,(2):12-16.
    王朝辉,田霄鸿,李生秀,等.土壤水分对蔬菜硝态氮积累的影响[J].西北农业大学学报,1997,25(6):15-20.
    王钫,王卫平,华楚衍,陈建文.杭州市场蔬菜硝酸盐含量分析及质量评价[J].浙江农业学报,2004,16(5):271-273.
    王风婷,艾希珍,刘金亮,徐坤范.钾对日光温室黄瓜糖、维生素C、硝酸盐及其相关酶活性的 影响[J].植物营养与肥料学报,2005,11(5):682-687.
    王国英,刘东臣,赵紫娟,等.不同形态氮素及A B A和6-B A对烟草生长、养分吸收及其在体内分配的影响[J].河北农业大学学报,2002,25(2):21-24,31.
    王建,孙兴祥,沈其荣,等.增铵对不同菠菜生长及品质的影响[J].土壤通报,2006,37(2):326-329.
    王景安,程炳嵩.叶菜类不同生育期体内硝酸盐,亚硝酸盐及维生素C含量的变化[J].河北农业技术师院学报,1989,3(2):33-38.
    王乔春.植物激索与插条不定根的形成(综述)[J].四川农业大学学报,1992,10(1):33-39.
    王庆,王丽.过量氮肥对不同蔬菜中硝酸盐积累的影响及调控措施研究[J].农业环境保护,2000,19(1):46-49.
    王庆美,张立明,王振林.甘薯内源激素变化与块根形成膨大的关系[J].中国农业科学,2005,38(12):2414-2420.
    王少先,章和珍,张保根,等.蔬菜硝酸盐污染及其防治[J].江西农业学报,1998,10(4):86-90.
    王双明.几种化学物质对小白菜硝酸盐积累及某些营养品质的影响[J].绵阳农专学报,1992,9(1):35-39.
    王宪泽,程炳嵩,张国珍.氮素形态与作物生育的关系及其影响因子[J].山东农业大学学报,1990,(1):93-98.
    王宪泽,程炳嵩,张国珍.蔬菜中的硝酸盐及其影响因子[J].植物学通报,1991,8(3):34-37.
    王玉琴,赵毓橘,罗文华.6-BA和KCI对黄化黄瓜离体子叶中叶绿素积累和硝酸还原酶活性诱导的影响[J].植物生理学报,1987,13(1):80-86.
    王月福,于振文,李尚霞,等.土壤肥力和施氮量对小麦根系氮同化及子粒蛋白质含量的影响[J].植物营养与肥料学报,2003,9(1):39-44.
    吴楚,王政权,范志强,孙海龙.不同氮素浓度和比例对水曲柳幼苗叶绿素合成、光合作用以及生物量分配的影响[J].植物生态学报,2003,27(6):771-779.
    吴平,印莉萍,张立平.植物营养分子生理学.北京:科学出版社,2001,65-66.
    武维华主编.植物生理学.北京:科学出版社,2003,265-301
    肖厚军,闫献芳,彭刚.氮肥对菠菜产量、硝酸盐含量的影响[J].贵州农业科学,2001,29(1):22-24.
    肖厚军,阎献芳,彭刚.贵阳市蔬菜硝酸盐含量状况与氮磷钾养分的关系[J].农业环境保护,2001,(6):449-451.
    肖凯,张树华,邹定辉,张荣铣.不同形态氮素营养对小麦光合特性的影响[J].作物学报,2000,26(1):53-58.
    徐卫红,王正银,叶学见.无公害蔬菜施肥研究进展——蔬菜中硝酸盐的研究.中国科协第四届青年学术年会论文集.重庆:西南师范大学出版社,2001,388-390.
    许长蔼,倪晋山.NO_3~-上运和液泡内NO_3~-外流对小麦叶内硝酸还原酶活性的调节[J].植物生理学 报,1990,16(4):340-346.
    许长蔼,倪晋山.小麦叶内硝酸还原酶的代谢库[J].植物生理学报,1990,16(3):277-283.
    许宇飞.沈阳市主要农产品污染调查及防治途径的研究[J].农业环境保护,1996,(1):32-35.
    杨少海,徐培智.降低蔬菜硝酸盐含量的农业措施[J].土壤与环境,1999,8(8):235-237.
    殷允相,杨俊,林孔仪,等.银川地区蔬菜硝酸盐类含量、污染评价及防治途径研究[J].宁夏农林科技,1993,(1):40-43.
    于红梅,龚元石,李子忠,等.不同水氮管理对苋菜和菠菜的产量及硝酸盐含量的影响[J].植物营养与肥料学报,2004,10(3):302-305.
    曾宪锋,邱贺嫒.不同生长发育阶段芥菜基生叶硝酸盐及维生素C含量的研究[J].植物学通报,1994,11(增刊):42-43.
    张春兰,高祖明,张耀栋,等.氮素形态和NO_3~--N与NH_4~+-N配比对菠菜生长和品质的影响[J].南京农业大学学报,1990,13(3):70-74.
    张德富,王书丽,马新明,王志强.不同类型氮素对不同筋力型小麦品种根系的影响[J].河南农业科学,2004,(10):50-53.
    张德颐,汤玉玮,陈薇,等.细胞分裂素对硝酸还原酶活力的促进[J].植物学报,1987,29(6):605-613.
    张福锁,樊小林,李晓林主编.土壤与植物营养研究新动态(第二卷).北京:中国农业大学出版社,1995,42-75.
    张富仓,康绍忠,李志军.氮素形态对白菜硝酸盐累积和养分吸收的影响[J].园艺学报,2003,30(1):93-94.
    张宏纪,马凤鸣,李文华,闫桂萍.不同形态氮素对甜菜谷胺酰氨合成酶的影响[J].黑龙江农业科学,2001,(6):7-10.
    张乃明.施肥对蔬菜中硝酸盐累积量的影响[J].土壤肥料,2001(2):37-38.
    张树清,魏小平.蔬菜作物对硝铵态氮吸收能力比较研究[J].兰州大学学报(自然科学版),2002,38(4):77-84.
    张漱茗,江丽华,闫华,闫晓松.济南市售蔬菜硝酸盐含量及施肥影响[J].土壤肥料,1997,(5):22-24.
    张亚丽,段英华,沈其荣.水稻对硝态氮响应的生理指标筛选[J].土壤学报,2004,41(4):571-576.
    张英鹏,林咸永,章永松,都韶婷.氮素形态对菠菜硝酸盐及草酸含量的影响[J].园艺学报,2005,32(4):648-652.
    张英鹏,徐旭军,林咸永,等.氮素形态对菠菜可食部分硝酸盐和草酸累积的影响[J].植物营养与肥料学报.2006,12(12):227-232.
    张祝青,杨玉华,王亚维,荆州市蔬菜硝酸盐污染现状评价及防治对策[J.湖北农学院学报,2002,22(1):22-24.章家骐.硝酸盐对蔬菜的污染及其控制[J].国外农业环境保护,1987,(3):9-10.
    赵建荣,樊卫国.氮素形态对川梨培养介质pH及根系生长发育的影响[J].山地农业生物学报,2005,24(2):128-130.
    郑光华.蔬菜无土栽培与绿色食品生产[J].中国蔬菜,1996,(4):1-3.
    郑相穆,谷丽萍,周阮宝.钼对降低普通的菜叶片硝态N的作用[J].植物生理学通讯,1995,31(2):95-96.
    周根娣,卢善玲.磷钾肥、光照、贮藏加工对蔬菜硝酸盐含量的影响[J].上海农业学报,1991,7(2):53-56.
    周根娣,卢善玲.上海市主要蔬菜中硝酸盐含量及加工处理后硝酸盐和亚硝酸盐含量[J].环境污染与防治,1989,11(6):395-399.
    周艺敏,任顺荣.氮素化肥对蔬菜硝酸盐积累的影响[J].华北农业学报,1989,4(1):110-115.
    周永祥,袁玲.小白菜叶片硝酸盐与矿质元素含量的研究[J].西南农业大学学报,2000,22(3):253-256,260.
    周幼魁,郭勇,雷一清.兰州市蔬菜施肥问题与硝盐氮污染[J].甘肃农业科技,1997,(6):30-31.
    周泽义.中国蔬菜硝酸盐和亚酸式盐污染机制及控制对策[J].资源生态环境网络研究动态,1999,10(1):13-19.
    朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    朱祝军,蒋有条.不同形态N素对不结球白菜生长和硝酸盐积累影响[J].植物生理学通讯,1994,30(3):198-201.
    朱祝军,钱亚榕,Wolfgang P.氮素形态对番茄根系液泡膜焦磷酸酶活性的影响[J].植物学报,2001,43(11):1146-1149.
    庄舜尧,孙秀廷.氮肥对蔬菜硝酸盐积累的影响[J].土壤学进展,1995,23(3):29-35.
    宗会,温华东,张燕,等.氮肥形态、用量和种植密度对香料烟光合作用的影响[J].烟草科技,2004,(1):33-35
    邹春琴,陈新平,张福锁,毛达如.植物活性铁与铁营养状况的研究[J].植物营养与肥料学报,1998,4(4):399-406.
    邹春琴,王晓风,张福锁.铵态氮抑制向日葵生长的作用机制初步探讨[J].植物营养与肥料学报,2004,10(1):82-85.
    邹燚.生理活性物质控制叶菜硝酸盐积累机理的研究(硕士学位论文).南京:南京农业大学,1997.
    邹瑜主编.植物生理生化实验指导.北京:中国农业出版社,1995,27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700