番茄对有机氮的吸收及土壤可溶性有机氮行为特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可溶性有机氮(SON)是土壤氮素中最活跃的组分之一,移动性强,可随水分运移而发生径流或淋溶损失,污染水体。由于受传统矿质营养理论的影响,关于生态系统N有效性和植物N营养的认识几乎完全建立在无机氮(NH_4~+-N、NO_3~--N)的基础上,而在很大程度上忽视了植物对SON的吸收及其在生态系统中的作用。为探讨植物氨基酸态氮营养机理及SON在农业生态系统中的行为和功能,本文以完全无菌水培、~(13)C-~(15)N双标记有机氮的土壤原位试验探讨不同番茄品种(申粉918、沪樱932)的氨基酸态氮营养效应,研究了NH_4~+-N、NO_3~--N和Gly-N对水培番茄幼苗生长、碳氮积累、根系分泌特性及氮代谢等的影响。运用土壤溶液超速离心技术研究不同土壤SON含量及特性;探讨通气培养条件下SON的动态变化,揭示土壤氮素的矿化特性;采用14C标记氨基酸、多肽的室内培养法系统研究氨基酸、多肽在土壤中的吸附、矿化、吸收动力学等动态生化特性。
     本文主要研究结果如下:
     1甘氨酸态氮对番茄幼苗生长、碳水化合物及碳氮积累的影响
     在NH_4~+-N、NO_3~--N和Gly-N存在的营养介质中,番茄幼苗在处理前期(如处理后8或16d)的株高、生物量、植株全碳积累量、总氮量等各处理差异不显著,而其后则表现为NO_3~--N>Gly-N>NH_4~+-N,处理间差异显著(p<0.05)。与NO_3~--N处理相比,Gly-N、NH_4~+-N处理均显著提高了叶片可溶性糖、叶片和根系游离氨基酸及各器官氮素含量,而降低了叶片淀粉含量和各器官氮素积累量。Gly-N处理显著提高了番茄根系可溶性糖、淀粉和叶绿素含量。番茄基因型差异是否表现与氮素形态有关,以植株根系干重为指标的基因型差异在供应NO_3~--N时不表现;在Gly-N处理下,沪樱932的生长显著优于申粉918。
     2甘氨酸态氮对番茄根系分泌物和木质部及韧皮部汁液组分的影响
     营养液中NH_4~+-N、NO_3~--N和Gly-N显著影响不同番茄品种根系分泌物、木质部和韧皮部汁液各组分含量。NO_3~--N处理的番茄根系分泌物、木质部和韧皮部汁液中的NO_3~--N和P含量最高,供Gly-N、NH_4~+-N其次,对照最低;而供Gly-N、NH_4~+-N时铵态氮、游离氨基酸、可溶性糖含量一般均高于处理NO_3~--N和对照。番茄根际吸收不同氮素对根际pH亦产生不同的影响,吸收NO_3~--N和Gly-N后,根际pH显著升高,而吸收NH~+_4-N后则降低。在供应NO_3~--N、NH_4~+-N和Gly-N及对照时,沪樱932的根系活力均显著大于申粉918(p<0.05)。
     3无菌水培条件下无机氮和氨基酸态氮对番茄幼苗生长和氮代谢的影响
     无菌水培条件下,与无氮处理相比,NH_4~+-N、NO_3~--N和Gly-N处理都显著提高了植株干物质和总吸氮量。Gly-N处理的番茄干物质重和吸氮量显著高于缺氮及NH_4~+-N处理;NH~+_4-N和Gly-N处理显著提高了地上部、根系FAA含量,而NO_3~--N处理对地上部、根系FAA含量无显著影响。可溶性蛋白含量则表现为:Gly-N >NH_4~+-N>NO_3~--N>CK处理。与无氮处理相比,各处理都显著降低了地上部和根部GS活性;而Gly-N处理显著促进了地上部、根系NADH-GDH、GOT和根系GPT活性,NO-3-N处理显著降低了地上部GPT活性。因此,番茄吸收甘氨酸后,能够通过转氨酶的作用,最终合成蛋白质,促进植株生长,氨基酸态氮(Gly-N)也可以成为番茄生长的良好氮源。
     4无菌水培条件下甘氨酸浓度对番茄幼苗生长和氮代谢的影响
     无菌水培条件下,番茄能够吸收各种浓度的Gly-N,且营养液中甘氨酸浓度(0-6.0 mM)与番茄植株干物重、总氮量等呈显著正相关(R~2> 0.905**)。随营养液中甘氨酸浓度的增加,两个番茄品种的地上部和根系FAA、可溶性蛋白、地上部可溶性糖含量增加。与无氮对照处理相比,各处理都显著降低了地上部淀粉含量,营养液中甘氨酸浓度对根系淀粉含量无显著影响。甘氨酸态N浓度对氮代谢关键酶有不同的影响。随营养液中甘氨酸态N浓度的增加,两个番茄品种的地上部、根系NR、NADH-GDH、GPT和GOT活性均提高。被吸收的氨基酸可通过GOT和GPT转氨酶主要在根中进行同化,最终合成蛋白质,促进植株生长。
     5土壤微区培养条件下番茄幼苗对~(13)C,~(15)N-甘氨酸分子的吸收研究
     不同形态的~(15)N注射48h后,相对于对照、~(15)N-NH_4Cl和~(15)N-KNO_3处理来说,供2-[~(13)C], [~(15)N]-glycine时,两个番茄品种的地上部、根系~(13)C、~(15)N原子超均显著提高,且根系~(13)C原子超显著大于地上部。申粉918、沪樱932从土壤中吸收的氮分别有12.5%和21%是以完整的甘氨酸分子直接吸收的,番茄根系吸收甘氨酸态N的能力比土壤微生物弱。甘氨酸态N对沪樱932的氮营养贡献率显著大于申粉918(p<0.05)。
     6不同土壤SON的含量及特性
     供试土壤SON平均含量表现为灰壤土(62 mg kg-1)>腐殖黑钙土(29.1 mg kg-1)>有机土壤(15.8 mg kg-1)>常规土壤(12.9 mg kg-1)>转换期土壤(7.8 mg kg-1)。有机、转换期、常规土壤、灰壤土、腐殖黑钙土SON含量占TSN的比例分别为48.3%、21.9%、30.9%、93.7%、83.4%;而FAA含量分别占TSN的1.4%、2.6%、2.4%、1.1%、2.4%,占SON的2.9%、11.8%、7.8%、1.2%、2.8%。相关分析结果表明,TSN、SON以FAA与全氮、全氮、硝态氮、铵态氮等各养分之间均有极显著的相关性。用盐溶液提取的SON含量大约是水提取的SON或DON的3-6倍。
     7不同土壤中氨基酸、多肽的生物化学动态特性
     氨基酸、多肽在土壤中的吸附量表现为Val-Pro-Pro> Glu> Val> Glu-Phe。而不同土壤对氨基酸、多肽的吸附能力则为有机土壤>转化期土壤>常规土壤。氨基酸、多肽在土壤中的矿化周转速率迅速,Glu、Glu-Phe、Valine、Val-Pro-Pro在供试土壤中的半衰期(D_(50))分别为5.6±1.1、7.7±1.3、14.8±3.6和10.5±2.0 h。培养24h后,大约有近(76±3)%的氨基酸或多肽被微生物细胞利用,而仅(24±2)%的氨基酸或多肽以CO2的形式释放出来。外加Ala-Ala和NH_4NO_3等氮源能显著提高氨基酸、多肽在土壤中的矿化。氨基酸、多肽等SON在土壤中的矿化是一个完全依靠微生物参与的生物降解过程。
     8不同园艺生产系统土壤氮素的矿化特性
     随着通气培养过程的进行,不同园艺生产系统土壤NO_3~--N、SON的含量均明显增加, FAA含量呈先升高后下降的趋势。土壤矿化培养过程中生成一定数量的SON;在整个培养过程中,SON占TSN比例均大幅度下降。评价土壤氮素矿化特性时仅仅测定矿化的无机氮数量,可能会低估土壤氮素矿化潜力和氮素损失的数量和效应。施入土壤的~(14)C-氨基酸、多肽在土壤中的矿化迅速,不同园艺生产系统土壤~(14)C-氨基酸、多肽的矿化速度表现为:有机土壤>转化期土壤>常规土壤。在矿化过程中,影响SON含量的瓶颈不是微生物利用低分子量SON的速率,而是SON从生物体释放进入土壤的速率。
     9温度对土壤氨基酸、多肽的矿化及其吸收动力学的影响
     温度显著影响着氨基酸、多肽在土壤中的矿化及其吸收动力学特性。随着温度的升高,氨基酸和多肽在土壤中的矿化速度加快。在1、15和25°C下,三种供试土壤中Val的平均半衰期分别为28.4、17.9和10.1h;Glu则分别为21.6、10.7和8.1h;Val-Pro-Pro分别为13.1、10.6和8.6h;Glu-Phe分别为33.9、11.1和6.8h。氨基酸、多肽的吸收速率随着施入土壤的氨基酸和多肽浓度的增加而增加。氨基酸、多肽的动力学参数Vmax、Km、Vh值随温度的升高而增大。在0-2.5 mM浓度范围内,氨基酸的吸收动力学曲线遵循经典的米氏动力学曲线,而多肽的则表现为线性模式。三种不同园艺生产系统土壤的氨基酸、多肽的周转速率、吸收动力学参数(Vmax、Km和Vh)均表现为有机土壤>转化期土壤>常规土壤。
     综上所述,营养液中不同氮源(NO_3~--N、NH_4~+-N和Gly-N)对番茄幼苗的生长、根系分泌特性、碳水化合物及氮素积累等有不同的影响。番茄具有直接吸收利用氨基酸态氮的能力,其吸收Gly-N后,能够通过转氨酶的作用,最终合成蛋白质,促进植株生长,但氨基酸进入植物体内后,通过不同部位的不同转氨酶同化的能力可能不同。番茄体内的NADH-GDH活性的变化说明了番茄吸收甘氨酸后能为脱氨基作用提供碳骨架。这些可能是植物氨基酸态氮营养效应机理。SON在不同园艺生产系统土壤中的吸附、矿化及其吸收动力学等生物化学特性不同,但氨基酸、多肽等SON在土壤中的矿化周转速度表现为有机土壤>转化期土壤>常规土壤。氨基酸、多肽在土壤中的矿化周转速率迅速,在氮素矿化过程中,氨基酸态或多肽态SON转变为NH_4~+-N以及NH_4~+-N转变为NO_3~--N不会限制土壤N的矿化速率;影响SON含量的瓶颈不是微生物利用低分子量SON的速率,而是SON从生物体释放进入土壤的速率。本研究的这些发现,扩大和丰富了植物有机营养理论,为补充和完善现有的氮循环模型和理论提供了重要的科学依据。
Soluble organic nitrogen (SON) has been recognized as one of the labile forms of N available to microorganisms and plants, it is prone to losing from ecosystems to deteriorate the water quality. Therefore, SON plays an important role in N cycling in most ecosystems. However, the classical paradigm of the terrestrial N cycle has considered that organic N must be converted into inorganic N (NO_3~--N, NH_4~+-N) by soil microorganisms, prior to becoming available to plant root, therefore, more attention has often been focused on the behaviour of inorganic nitrogen in agricultural soils and overlooked the roles of SON in soil nitrogen cycles; and little information is known about SON absorbed by plants and its significance in some natural ecosystems.
     In this study, wholly sterile hydroponics culture and ~(13)C-~(15)N dual labeled organic nitrogen was use to determine the influences of inorganic and amino acid nitrogen on growth, accumulation of carbon and nitrogen, the characteristic of root exudation, N assimilation and the contribution of organic nitrogen uptake to the nitrogen nutrition in tomato seedling. Chemical extracts and soil solution drain-centrifuge methods to assess SON pools in different soils. The ~(14)C-labeled incubation experiments were carried out to study the behavior and role of SON (such as dynamics of adsorption, mineralization, biodegradation, biology uptake kinetics etc.).
     The main results were indicated as follows:
     1 Effects of amino acid-N on growth, accumulation of carbohydrate, carbon and nitrogen in tomato seedling under hydroponic culture
     Supplied with inorganic nitrogen (NH_4~+-N, NO_3~--N) and amino acid-N (Gly-N), no significant differences in plant height, dry biomass, plant carbon and total N amount appeared in treatments of 8 or 16d, but significant differences were observed in treatments of 24 and 32 d, the order was NO_3~--N> Gly-N>NH_4~+-N. Significant differences were observed between 2 tomato cultivars. Compared with the NO_3~--N treatment, soluble sugar content of leaf, total free amino acid and N content both in root and in shoot were significantly increased treated with NH_4~+-N and Gly-N. However, leaf starch content, N concentration in different organs were decreased significantly, and root soluble sugar, starch and Chlorophyll content were enhanced in Gly-N treatment. Among the N forms applied, and the increasing effects of the NH_4~+-N treatment were larger than that of the Gly-N. The growth of Shenfen918 in NH~+_4-N and Gly-N solution were more inhibited than that of Huying932. The genotypical difference depended on N forms, and such difference could only be found in the NH_4~+-N and Gly-N treatments.
     2 Influence of amino acid N supply on the composition of tomato root exudates, xylem and phloem sap grown in hydroponic culture
     After 8 days of growth with the different N forms, root dry weight followed the series: NO_3~--N > Gly-N > CK > NH_4~+-N while root volume followed the series Gly-N > NO_3~--N > NH_4~+-N > CK in both cultivars. Root enzyme activities was the highest in the NO_3~--N or Gly-N treatment followed by NH_4~+-N treatment with CK showing the lowest activities. The concentration of NO_3~- and phosphate was highest in the NO_3~--N treatment followed by Gly-N and NH_4~+-N with CK showing the lowest concentrations. Ammonium, free amino acid and soluble sugar content of phloem and xylem sap in the Gly-N and NH_4~+-N treatments were higher in both cultivars followed by NO_3~--N and CK treatment. Rhizosphere pH was elevated by the NO_3~--N and Gly-N treatment, but decreased in the NH_4~+-N treatment. Soluble protein content in root exudates followed the series: NO_3~--N> Gly-N > NH_4~+-N > CK; however, different patterns were observed in xylem and phloem sap (Gly-N >NO_3~--N > NH_4~+-N > CK). Root enzyme activities were significantly different (p < 0.05) between the two cultivars. Root enzyme activities varied in the two different tomato cultivars with activities being highest in Huying 932 in all four N treatments.
     3 Influence of inorganic and amino acid nitrogen on the growth and nitrogen metabolism of tomato seedlings under aseptic hydroponic cultivation
     Total N and biomass of the 2 cultivars treated with inorganic and amino acid-N was significantly greater (P< 0.05) than the control treatment. Tomato could grow well in conditions of glycine supply. There had significant differences between two cultivars. After 21 days of sterile incubation, NH_4~+-N and Gly-N treatments increased total free amino acid in roots and leaves sharply, while there’s no significant difference in NO_3~--N treatments. All treatments significantly enhance soluble protein content in shoot and root compared with control treatment. Compared to control treatment; NH_4~+-N, NO_3~--N and Gly-N treatments all significantly decreased GS activity, NO_3~--N treatment significantly decreased shoot GPT activity, while NH_4~+-N and Gly-N treatments had no significant effect on it. While Gly-N treatment significantly increased NADH-GDH, GOT and GPT activity in root compared with NO_3~--N, NH_4~+-N treatment. Tomato could effectively use organic nitrogen (eg. Gly-N) directly. Growth of tomato response to organic nitrogen supply might be related to genotypes. Our results clearly demonstrate the intrinsic capacity for tomato plants to directly use organic nitrogen as a sole source of N.
     4 Influence of glycine-N concentration on the growth and nitrogen metabolism of tomato seedlings under aseptic hydroponic cultivation
     We grew two genotypes of tomato in sterile, hydroponic culture with different N concentration with 0, 1.5, 3.0 and 6.0 mM organic-N in the form of glycine. Our results showed that biomass production, N content, free amino acid and soluble protein content in both shoot and root and soluble sugar content in shoot of both genotypes were increased significantly when Gly-N concentration in the nutrient solution increased. In addition, plant biomass production and N content were positively correlated with the rate of glycine-N supply (R~2 >0.905**), however, the magnitude of the response was genotype dependent. Although addition of Gly-N to the solution, decreased shoot starch content compared to the no nitrogen (CK) treatment. Concentrations in the nutrient unaffected starch content in root. No significant difference in CK, 1.5Gly and 3.0Gly treatments was observed in root soluble sugar content. The concentration of Gly-N supply also significantly affected N assimilatory enzyme activities in roots and shoots. For example, glycine addition increased the activity of NR, NADH-GDH, GOT and GPT activity in roots and shoots compared with the no nitrogen (CK) treatment. Further studies should be carried out to clarify the functional significance of DON in horticultural systems under non-sterile conditions.
     5 Absorption of ~(13)C,~(15)N-glycine by tomato seedlings under soil microcosms culture conditions
     We selected two genotypes of tomato (Shenfen918 and Huying932) by using plants growing in‘rhizotube’(microcosms) with natural field soil. The results showed that significant increases in ~(13)C and ~(15)N in plants (shoots and roots), indicating part of the glycine N was taken up in the form of intact amino acid by two cultivars tomato 48h after injection. Regression analysis of excess ~(13)C against excess ~(15)N showed that about 12.5% and 21% of glycine-N was taken up intact by Shenfen918 and Huying932 respectively. Atom% excess ~(15)N and ~(13)C in the roots was higher than that in any of the shoots. Results also indicated that the poor competitive ability of tomato roots to absorb amino acids from the soil solution. This implies that tomato can take up organic nitrogen in intact form from the soil, despite the rapid turnover of organic N usually found under such conditions, and also uptake capacity varies widely among genotype dependent.
     6 Assessing soluble organic nitrogen pools in soils
     Mean extractable SON (DON) as a proportion of total soluble N was smaller in three horticultural soils (36.3%) than in two grassland (74.5%) and generally followed the series Haplic podzol > Eutric cambisol > Organic soil > Conventional soil > Transitional soil. SON comprised 48.3%、21.9%、30.9%、93.7%、83.4% of the total soluble N ( TSN) in organic, transitional, conventional soil, Haplic podzol and Eutric cambisol, respectively. FAA comprised 1.4%、2.6%、2.4%、1.1%、2.4% of TSN and comprised 2.9%、11.8%、7.8%、1.2%、2.8% of SON in organic, transitional, conventional soil, Haplic podzol and Eutric cambisol, respectively. Correlation analysis showed that TSN, SON and FAA were significantly correlated with total soil N, NO_3~--N, indicating the important role of SON and FAA in the supply of N in these soils. Results also indicated that, the greatest amount of SON was observed when extracted with phosphate buffer, the least with water and the centrifugal-drainage technique, and intermediate with KCl, K2SO4 and CaCl2. We conclude that SON represents a significant N pool in all agro-ecosystems but its amount is less sensitive to agricultural use system than dissolved inorganic nitrogen.
     7 Characterization of amino acid and peptide dynamics in soil
     The amount of amino acids and peptides sorbed was concentration dependent but followed the series Val-Pro-Pro> glutamate> valine> Glu-Phe in both Chinese horticultural and UK grassland soils. The degradation of amino acids and peptides was soil dependent but that mean half-life of amino acids (glutamate, valine) at 18±0.5°C was 10.7±1.4h, whilst of peptides (Glu-Phe, Val-Pro-Pro) was 9.1±0.3h. On average of (24±2)% the amino acid-C was respired as CO_2 whilst (76±3)% was utilized for new cell biomass. In generally, a greater proportion of the glutamate, valine, Glu-Phe and Val-Pro-Pro were used for new biomass production producing yields of 0.73, 0.81, 0.69 and 0.82μmol biomass-Cμmol amino acid-C~(-1) respectively. Peptides and amino acids decomposition were hypothesized to be a purely biological process as CHCl3 fumigation and autoclaving resulted in no observable mineralization. The presences of 10 mM either phenylalanine or Ala-Ala significantly increased either the amino acid and peptides uptake or mineralization rate, while the presences of 10 mM glutamic acid, Pro-Pro-Pro and NH_4NO_3 depressed the utilization of glutamate and Glu-Phe sharply (P<0.05).
     8 Dynamics of nitrogen mineralization in soils from organic, transitional and conventional production systems
     The dynamics of N speciation was significantly affected by mineralization and immobilization. The amount of SON, total free amino acid (TFAA) and NH_4~+-N are kept at very low levels and did not accumulate, whereas NO_3~--N gradually accumulated in these soils. The conversion of insoluble organic N to low molecular weight (LMW) SON and not LMW-SON to NH_4~+-N or NH_4~+-N to NO_3~--N represents a main constraint to N supply. Free amino acids and peptides were rapidly mineralized in soil by the microbial community, and that consequently they do not accumulate in soil. Turnover rates of additional amino acids and peptides were soil dependent, and generally followed the series: organic soil, transitional soil and conventional soil. High molecular weight (HMW) SON turns over very slowly and represents the major SON loss to freshwaters. Further studies investigating organic nitrogen degradation pathway and its bottleneck are warranted.
     9 Temperature dependence of amino acid and peptide kinetics and mineralization in soil
     The degradation of amino acid and peptides was soil dependent but the Val mean half-life at 1, 15, 25°C was 28.4, 17.9 and 10.1h respectively, Glu mean half-life at 1, 15, 25°C was 21.6, 10.7 and 8.1h; Glu-Phe mean half-life at 1, 15, 25°C was 33.9, 11.1 and 6.8h; Val-Pro-Pro mean half-life at 1, 15, 25°C was 13.1, 10.6 and 8.6h. Amino acid and peptide half-life of subsoil (20-60cm) was much greater than that of topsoil (0-20cm), this probably reflects the higher microbial biomass and activity in topsoil (0-20cm). Kinetics of soil microbial uptake of amino acid and peptide showed that: Amino acid and peptide uptake was concentration and temperature dependent, and amino acid conformed to a single Michaelis-Menten equation, however, peptide conformed to linear regression. Kinetic parameters of amino acid and peptide (Vmax, Km and Vh) were increased by the temperature. The turnover rate and the value of Vmax, Km and Vh of amino acid and peptide generally followed the series organic soil> transitional soil> conventional soil.
     From all above, we can draw a conclusion that different N forms (NO_3~--N, NH_4~+-N and Gly-N) in hydroponic culture affected the growth, characteristic of root exudation and the accumulation of carbohydrate and nitrogen in tomato seedling. Tomato (Solanum lycopersicum) can uptake intact amino acid-N. Compared to inorganic nitrogen (NO_3~--N and NH_4~+-N), amino acid-N significantly increased GOT and GPT activity in root, indicating that amino acid was transaminated in root at first, and then transformed into other amino acids, finally synthesized protein. This may be the mechanisms of organic nitrogen uptake by plants. The behaviour of SON (such as adsorption, mineralization, biodegradation, biology uptake kinetics etc.) was different characteristic in different horticultural soils has different, however, the turnover rate of amino acid and peptide in soil was followed the order: organic soil>transitional soil>conventional soil. Amino acids and peptides were rapidly mineralized in soil by the microbial community, and that consequently they do not accumulate in soil. During the N mineralization period, the conversion of insoluble organic N to low molecular weight (LMW) SON and not LMW-SON to NH_4~+-N or NH_4~+-N to NO_3~--N represents a main constraint to N supply. The bottleneck which affected the content of SON was not the absorption rate of LMW-SON by microorganism, but the rate of SON released from soil by organism. The findings of the present study may provide a theoretical base for plant organic nutrition. The widespread importance of organic nitrogen uptake by plants has important ramifications for our understanding of ecological processes. The role of organic nitrogen is critical to our understanding of how ecosystems function and how they will be affected by environmental changes. The N cycle in many ecosystems needs to be revisited with a new perspective.
引文
[1]. Andraski TW, Bundy LG, Brye KR. Crop management and corn nitrogen rate effects on nitrate leaching. J Environ, Qual. 2001, 29: 1095-1103.
    [2]. Archer JR, Goulding KWT, Jarvis SC. Nitrate and farming systems. Aspects Appl Biol. 1992, 30: 1-450.
    [3]. Glass ADM, Shaff JE, Kochian LV. Studies of the uptake of nitrate in barely. Plant Physiol. 1992, 99: 456-463.
    [4]. Virtanen AI, Linkola H. Organic nitrogen compounds as nitrogen nutrition for higher plants. Nature. 1946: 158: 515.
    [5]. Chapin III FS, Moilanen L, Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature. 1993, 361(6408): 150-153.
    [6]. Matsumoto S, Noriharu Ae, Yamagata M. Possible direct uptake of organic nitrogen from soil by chingensai (Brassica campestris L.) and carrot (Daucus carota L.). Soil Biol Biochem. 2000, 32(8-9): 1301-1310.
    [7]. 崔晓阳. 植物对有机氮源的利用及其在自然生态系统中的意义. 生态学报. 2007, 27(8): 3501-3513.
    [8]. Miller AE, Bowman WD, Suding KN. Plant uptake of inorganic and organic nitrogen: neighbor identity matters. Ecology. 2007, 88(7): 1832-1840.
    [9]. Warren CR, Adams PR. Uptake of nitrate, ammonium and glycine by plants of Tasmanian wet eucalypt forests. Tree Physiol. 2007, 27(3): 413-419.
    [10]. Jones D L, Shannon D, Murphy DV et al. Role of dissolved organic nitrogen (DON) in soil N cycling ingrassland soils. Soil Biol Biochem. 2004, 36(5): 749-756.
    [11]. 周建斌, 陈竹君, 郑险峰. 土壤可溶性有机氮及其在氮素供应及转化中的作用. 土壤通报. 2005, 36(2): 244-248.
    [12]. 葛体达, 宋世威, 丁明等. 园艺作物有机生产系统中可溶性有机氮研究进展.见:王秀峰,李宪利 主编[J]. 园艺学进展:第七辑北京,中国农业出版社. 2006: 805-811.
    [13]. Tischner R. Nitrate uptake and reduction in higher and lower plants. Plant, Cell and Environment 2000, 23: 1005-1024.
    [14]. Smit AJ. Nitrogen uptake by Gracilaria gracilis (Rhodophyta): Adaptations to a temporally variable nitrogen environment. Botanica Marina. 2002, 45: 196-209.
    [15]. Nishihara GN, Terada R, Noro T. Effect of temperature and irradiance on the uptake of ammonium and nitrate by Laurencia brongniartii (Rhodophyta, Ceramiales). Journal of Applied Phycology. 2005, 17: 371-377.
    [16]. Kielland K. Amino acid absorption by arctic plants: implication for plant nutrition and nitrogen cycling. Ecology. 1994, 75: 2373-2383.
    [17]. Jonasson S, Michelsen A, Schmidt IK. Coupling of nutrient cycling and carbon dynamics in the arctic ,integration of soil microbial and plant processes. Appl Soil Ecol. 1999, 11: 135-146.
    [18]. Chapin FS III , Moilanen L, Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature. 1993, 361: 150-153.
    [19]. N?sholm T, Ekblad A., Nordin A et al. Boreal forest plants take up organic nitrogen. Nature. 1998, 392: 914-916.
    [20]. Hung AL , Henr Y, Roberyt L et al. Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marsh. Journal of Ecology. 2003, 91: 627-636.
    [21]. Weigelt A., Bol R., Bardgett R. D. Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia. 2005, 142(4): 627-635.
    [22]. 许玉兰, 刘庆城. 用 15N 示踪方法研究氨基酸的肥效作用. 氨基酸与生物资源. 1998, 20(20-23).
    [23]. N?sholm T., Huss-Danell K., H?gberg P. Uptake of glycine by field grown wheat. New Phytologist. 2001, 150(1): 59-63.
    [24]. 莫良玉, 吴良欢, 陶勤南. 高温胁迫下水稻氨基酸态氮与铵态氮营养效应研究. 植物营养与肥料学报. 2002, 2: 157-161.
    [25]. 莫良玉, 吴良欢, 陶勤南. 无菌条件下小麦氨基酸态氮及铵态氮营养效应研究. 应用生态学报. 2003, 14: 184-186.
    [26]. Liang-Huan Wu, Liang-Yu Mo, Zhi-Lian Fan, et al.. Absorption of Glycine by Three Agricultural Species Under Sterile Sand Culture Conditions. Pedosphere 2005, 15(3): 286-292.
    [27]. 吴良欢, 陶勤南. 水稻氨基酸态氮营养效应及其机理研究. 土壤学报. 2000, 37(004): 464-473.
    [28]. Matsumoto S, Ae N, Yamagata M. Possible direct uptake of organic nitrogen from soil by chingensai (Brassica campestris L.) and carrot (Daucus carota L.). Soil Biol Biochem. 2000, 32(8-9): 1301-1310.
    [29]. Anuschka Heeb, Bengt Lundegardh, Tom Erlcsson, al et.. Effect of nitrate-, ammonium-, organic-nitrogen-based fertilizers on growth and yield of tomatoes. J Plant Nutr Soil Sci. 2005, 168: 123-129.
    [30]. N?sholm T, Huss-Danell K, Hogberg P. Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology. 2000, 81(4): 1155-1161.
    [31]. Persson J, N?sholm T. Regulation of amino acid uptake by carbon and nitrogen in Pinus sylvestris. Planta. 2003, 217(2): 309-315.
    [32]. 邝炎华, 刘琼英. 农作物对有机营养吸收利用的研究. 国外科技. 1991, 6: 32-34.
    [33]. 王华静, 吴良欢, 陶勤南. 有机营养肥料研究进展. 生态环境. 2003, 12: 110-114.
    [34]. 姜小文, 张秋明, 王灿辉等. 喷施核苷酸有机营养剂改进柑枯果实品质的效果. 中国南方果树. 2001, 30: 12 -13.
    [35]. 邵吉安, 孙云祥, 石兆魁等. 核苷酸复配剂在农业上的应用. 土壤通报. 1992, 24: 210-212.
    [36]. Mench M, Martin E. Mobilization of cadmium and other metals from two soil by root exudates of Zea mays L.. Plant Soil. 1991, 132: 187 ~ 196.
    [37]. Dakora FD, Phillips DA. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil. 2002, 245: 35-47.
    [38]. Jones DL, Hodge A, Kuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition. New Phytologist. 2004, 163: 459-480.
    [39]. Fischer WN, André B, Rentsch D, et al.. Amino acid transport in plants. Trends in Plant Science. 1998, 3: 188-195.
    [40]. Freixes S, Thibaud MC, Tardieu F et al. Root elongation and branching is related to local hexose concentration in Arabidopsis thaliana seedlings. Plant, Cell & Environment. 2002, 25: 1357-1366.
    [41]. Jones DL, Darrah PR. Amino acid influx at the soil-root interface of Zea mays L. and its imp lications in the rhizosphere. Plant Soil. 1994, 163: 1-12.
    [42]. Jones DL. Darrah P. R. Influx and efflux of amino acids from Zea mays L. roots and their implications for N nutrition and the rhizosphere. Plant Soil. 1993, 155(1): 87-90.
    [43]. Jennifer N, Bennett, Cindy E. Organic and inorganic nitrogen nutrition of western red cedar, western hemlock and salal in mineral N-limited cedar-hemlock forests. Ecosystem Ecology. 2004, 141: 468-476.
    [44]. Midgley DJ, Chambers SM, Cairney JWG. Inorganic and organic substrates as sources of nitrogen and phosphorus for multiple genotypes of two ericoid mycorrhizal fungal taxa from Woollsia pungens and Leucopogon parviflorus (Ericaceae). Australian Journal of Botan. 2004, 52: 63-71.
    [45]. Chalot M, Brun A. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. Fed Eur Microbiol Soc Microbiol Rev. 1998, 22: 21-44.
    [46]. Rousseau JVD, Sylvia DM, Fox AJ. Contribution of ectomycorrhiza to the potential nutrient absorbing surface of pine. New Phytol. 1994, 128: 639-644.
    [47]. Chalot M , Brun A , Botton B, et al.. Kinetics, energetics and specificity of a general amino acid transporter from the ectomycorrhizal fungus Paxillus involutus. Microbiology. 1996, 142: 1749 - 1756.
    [48]. Abuzinadah RA, Read DJ. The role of proteins in the nitrogen nutrition of ectomycorrhizal p lants IV. The utilization of pep tides by birch (Betulapedula L.) infected with differentmycorrhizal fungi. New Phytol. 1989, (112): 55 - 60.
    [49]. Owen AG, Jones DL. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol Biochem. 2001, 33(4-5): 651-657.
    [50]. 陈振德, 黄俊杰, 何金明等. 土施 L-色氨酸对甘蓝产量和养分吸收的影响. 土壤学报. 1997, 34: 200-204.
    [51]. Yamagata M, Ae, N. Direct acquisition of organic nitrogen by crops [J]. Jpn Agric Res Q. 1999, 33: 15-21.
    [52]. Vogelmann TC, bickson RE, Larson PR. Comparative distribution and metabolism of xylem borne amino compounds and sucrose in shoots of populus deltoids. Plant Physiol. 1985, 77: 418-428.
    [53]. 罗安程, 吴平, 吴良欢等. 稻苗对氨基酸吸收特性的研究. 浙江农业学报. 1997, 9: 62-65.
    [54]. Bush DR. Proton-coupled sugar and amino acid transporters in plants. Ann. Rev. Plant Physiology. Plant Mol Biol. 1993, 44: 513-542.
    [55]. Li ZC, Bush DR. Strutural determinats in substrate recognition by proton-amino acid symports inplasma membrane vesicles isolated from sugar beet leaves. Arch Biochem Biophys,. 1992, 294: 519-526.
    [56]. Bick JA, Neelam JL, Williams HLE. Amino acid carriers of Ricinus communis expressed During Seeding development :molecular cloning and expression analysis of two putative amino acid transporters, RcAPPl and RcAAP2. Plant MolBiol. 1998, 36: 377-385.
    [57]. Lipson D., N?sholm T. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems [J]. Oecologia. 2001, 128(3): 305-316.
    [58]. VerNooy CD, Lip W. Amino acid transport in protoplasts isolated from soybean leaves. Plant Physiology. 1986, 81: 8.
    [59]. Hodge A, Stewart J, Robison D, et al.. Competition between roots and soil micro-organisms for nutrients from nitrogen-rich patches of varying complexity. Ecology. 2000, 88: 150-164.
    [60]. Jones DL, Kemmitt SJ, Wright D, et al.. Rapid intrinsic rates of amino acid biodegradation in soils are unaffected by agricultural management strategy. Soil Biol Biochem. 2005, 37(7): 1267-1275.
    [61]. Jones DL, Healey JR, Willett VB, et al.. Dissolved organic nitrogen uptake by plants - an important N uptake pathway?. Soil Biol Biochem. 2005, 37(3): 413-423.
    [62]. Zak DR, Groffman PM, Pregitzer KS, et al.. The vernal dam: plant-microbe competition for nitrogen in northern hardwood forests.. Ecology. 1990, 71: 651-656.
    [63]. Groffman PM, Zak DR, Christensen S, et al.. Early spring nitrogen dynamics in a temperate forest landscape. Ecology. 1993, 74: 1575-1585.
    [64]. Schimel JP , Chapin FSIII. Tundra plant uptake of amino acid and NH4 + nitrogen in situ: plants compete well for amino acid N. Ecology. 1996, 77: 2142-2147.
    [65]. Chen CR, Xu ZH, Zhang SL, et al.. Soluble organic nitrogen pools in forest soils of subtropical Australia. Plant Soil. 2005, 277(1-2): 285-297.
    [66]. Gonet SS, Debska B. Dissolved organic carbon and dissolved nitrogen in soil under different fertilization treatments. Plant, Soil and Environment. 2006, 52(2): 55-63.
    [67]. McDowell WH, Likens GE. Origin,composition,and flux of dissolved organic carbon in the Hubbard brook Valley. EcolMonogr. 1988, 58: 177-195.
    [68]. Zsolnay A. Dissolved humus in soil waters. In:Piccolo A,eds.Humic Substances in Terrestrial Ecosytems. Amsterdam: Elsevier. 1996: 117-223.
    [69]. Casals P, Romanya J, Cortina JF, et al.. Nitrogen supply rate in scots pine (Pinus sylvestris L.) forests of contrasting slope aspect. Plant Soil. 1995: 168-169:167-173.
    [70]. Williams BB, Edwards AC. Processes influencing dissolved organic nitrogen,phosphorus and sulphur in soils. Chem Ecol. 1993, 8: 203-215.
    [71]. Kalbitz K, Solinger S, Park JH, et al.. Controls on the dynamics dissolved organic matter in soils: A review. Soil Science. 2000, 165(4): 277-304.
    [72]. Guggenberger G, Zech W. Composition and dynamics of dissolved organic carbohydrates and lignin degradation products in two coniferous forests. Soil BiolBiochem. 1994, 26: 19-27.
    [73]. Lipson DA, Monson RK. Plant-microbe competition for soil amino acids in the alp ine tundra: effects of freeze-thaw and dry-rewet events. Oecologia. 1998, (113): 406-414.
    [74]. Matsumoto S, Yamagata M. Nitrogen up take response of vegetable crop s to organic materials. Soil Sci Plant Nutr. 1999, 45: 269-278.
    [75]. Yu Z, Zhang Q, Kraus TEC, et al.. Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry. 2002, 61: 173-198.
    [76]. Muphy DV, Maconald AJ, Stockdale EA, et al.. Soluble organic nitrogen in agricultural soil. Biol fertilSoils. 2000, 30: 374-387.
    [77]. Raber BK, Gel-Knabner I, Stein C, et al.. Partitioning of poly-cyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere. 1998, 36: 79-97.
    [78]. 李世清, 李生秀, 杨正亮. 不同生态系统土壤氨基酸氮的组成及含量. 生态学报. 2002, 22(3): 379-386.
    [79]. Jones DL, Kielland K. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biology &Biochemistry. 2000, 34: 209-219.
    [80]. Paul JP, Williams BL. Contribution of a-amino N to extractable organic nitrogen (DON) in three soil types from the Scottish uplands. Soil Biol Biochem. 2005, 37(4): 801-803.
    [81]. Mengel K, Schnerider B, Kosegarten H. Nitrogen compounds extracted by electroultrafiltration (EUF) or CaCl2 solution and their relationships to nitrogen mineralization in soils. Plant Nutr Soil Sci. 1999, 162: 139-148.
    [82]. Raab T K, Lipson D A, Monson P K. Non-mycorrhizal up take of amino acids by roots of the alp ine sedge Kobresia m yosuroides: imp lications for the ap ine nitrogen cycle. Oecologia. 1996, 108: 488-494.
    [83]. TurnbullM H, Schmidt S, Erskine PD, et al.. Root adaptation and nitrogen source acquisition in natural ecosystems. Tree Physiol. 1996, 16: 941-948.
    [84]. Abuarghub SM, Read DJ. The biology ofmycorrhiza in the Ericaceae. The distribution of nitrogen in soil of a typical up land Callunetum with special reference to the ‘free’ amino acids. New Phytol. 1988, 108: 425-431.
    [85]. Kielland K. Landscape patterns of free amino acids in arctic tundra soils. Biogeochemistry. 1995, 31: 85-98.
    [86]. Schmidt S, Stewart GR. Glycine metabolism by p lant roots and its occurrence in Australian p lant communities. Aust J Plant Physiol. 1999, 26: 253-264.
    [87]. Jones DL, Hodge A. Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biol Biochem. 1999, 31(9): 1331-1342.
    [88]. Jones DL, Kielland K. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils [J]. Soil Biol Biochem. 2002, 34: 209-219.
    [89]. Kemmitt SJ, Wright D, Goulding KWT, et al.. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem. 2006, 38(5): 898-911.
    [90]. Benner R, Pakulski JD, McCarthy M, et al.. Chemical characteristics of dissolved organic matter in ocean. Science. 1999, 255: 1561-1564.
    [91]. 刘艳, 周国逸, 刘菊秀. 陆地生态系统可溶性有机氮研究进展. 生态学杂志. 2005, 24(5): 573-577.
    [92]. Tipping E, Woof C, Rigg E, et al.. Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils,investigated by a field manipulation experiment. EnvironInt. 1999, 25: 83~95.
    [93]. Raber BK, Gel-Knabner I, Stein C, et al.. Partitioning of poly-cyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere. 1998, 36: 79-97.
    [94]. Mengel K. Dynamics and availability of major nutrients in soils. Adv Soil Sci. 1985, 2: 65-131.
    [95]. Smith SJ. Soluble organic nitrogen losses associated with recovery of mineralized nitrogen. Soil Sci Am J. 1997, 51: 1191-1194.
    [96]. Shephere M, Bhogal A, Barrett G, et al.. Dissolved organic nitrogen in agricultural soils; effects of sample preparation on measured values. Commun Soil Sci Plant Ana. 2001, 32(1532-1542.
    [97]. 周建斌. 土壤微生物体氮的含量、转化及供氮意义. 西北农林科技大学博士学位论文. 1998.
    [98]. 杨绒, 严德翼, 周建斌等. 黄土区不同类型土壤可溶性有机氮的含量及特性. 生态学报. 2007, 27(4): 1397-1403.
    [99]. Chapman PJ, Williams BL, Hawkins A. Influence of temperature and vegetation cover on soluble inorganic and organic nitrogen in a spodosol. Soil Biology and Biochemistry. 2001, 33 1113-1121.
    [100]. Ghani A, Dexter M, Carran RA, et al.. Dissolved organic nitrogen and carbon in pastoral soils:the New Zealand experience. European Journal of Soil Science. 2007, 10: 1-12.
    [101]. Khalid M, Soleman N, Jones DL. Grassland plants affect dissolved organic carbon and nitrogen dynamics in soil. Soil Biol Biochem. 2007, 39(1): 378-381.
    [102]. Barraclough D, Gibbs P, Macdonald AJ. A new soil nitrogen and carbon cycle [A].In:Proceedings of the 16th World Congress of Soil Science.1998.August:CD-ROM,ISSS-AISS-SICS,Montpellier,France,AFES.20-26, 1998.
    [103]. Barak P, E Molina J A, Hadas A, et al.. Mineralization of amino acids and evidence of direct assimilation of organic nitrogen. Sci Soc Am J 1990, 54: 769-774.
    [104]. Barraclough D. The direct or MIT route for nitrogen immobilization:a 15N mirror images study with leucine and glycine. Soil biol Biochem. 1997, 29: 1101-1108.
    [105]. Jensen LS, MueHer T, Magid J, et a1.. Temporal variation of C and N mineralization microbial biomass and extractable organic pools in soil after oilseed rape straw incorporation in the field. Soil Bio1 Biochem. 1997, 29: 1043-1055.
    [106]. Qualls RG, Haines BL, Swank WT. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology. 1991, 72: 254-266.
    [107]. Yu S, Northup RR, A Dahlgren R. Determination of dissolved organic nitrogen using persulphate oxidation and conductirnetric quantification of nitrate-nitrogen. Commun Soil Sci Plant Anal. 1994, 25: 3161-3169.
    [108]. Wissmar RC. Forest detritus of nitrogen in a mountain lake. Can J For Res. 1991, 21: 990-998.
    [109]. Hawkins JMB, Scholefield D, Jarvis SC. Organic N losses from a poorly drained grassland soil. In: Petchey A M, eds, Proceedings of The Scottish Agricultural College Diffusee Pollution and Agriculture Conference lI. Scotland:Edinburgh University. 1997: 246-248.
    [110]. Currie WS, Aber JD, McDowell WH, et al.. Vertical transport of dissolved organic C and N under long term N amendments in pine and hard wood forests [J]. Biogeochemistry. 1996, 35: 471-505.
    [111]. Stevens PA, Wanop CP. Dissolved organic nitrogen and nitrate in an acid forest soil. Plant Soil. 1987, 102: 137-139.
    [112]. Jones DL, Healey JR, Willett VB, et al.. Dissolved organic nitrogen uptake by plants - an important N uptake pathway?. Soil Biol Biochem. 2005, 37(3): 413-423.
    [113]. Kulikova AL, Turkina MV, Puryasev AP. Cytoskeletal proteins in the phloem tissues and phloem higher plants [J]. Cell Biology International. 2003, (27): 223-224.
    [114]. Julia Kehr, Anja Buhtz , Giavalisco Patrick. Analysis of xylem sap proteins from Brassica napus. BMC Plant Biology. 2005, 5: 5-11.
    [115]. Stark JM, Hart SC. High rates of nitrification and nitrate turn over in undisturbed coniferous forests. Nature 1997, 285: 61-64.
    [116]. Chapin FS III. New cog in the nitrogen cycle. Nature. 1995, 377: 199-200.
    [117]. Eviner VT, Chapin III FS. Nitrogen cycle: Plant microbial interactions. Nature. 1997, 385: 26-27.
    [118]. Van Breemen N. Natural organic tendency. Nature. 2002, 415: 381-382.
    [119]. Raab TK, Lipson DA, Monson RK. Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology. 1999, 980: 2408-2419.
    [120]. Thornton B. Uptake of glycine by non-mycorrhizal Lolium perenne. J Exp Bot. 2001, 52: 1315-1322.
    [121]. Benner R, Pakulski JD, McCarthy M et al. Chemical characteristics of dissolved organic matter inocean. Science,. 1999, 255: 1561-1564.
    [122]. Persson J, N?sholm T. Amino acid uptake: a widespread ability among boreal forest plants. Ecol Lett. 2001, 4: 434-438.
    [123]. Bajwa R, Read DJ. The biology of mycorrhiza in the Ericaceae IX. Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and non-mycorrhizal plants. New Phytol. 1985, 101:: 459-467.
    [124]. Cliquet JB, Murray PJ, Boucaud J. Effect of the arbuscular mycorrhizal fungus Glomus fasciculatum on the uptake of amino nitrogen by Lolium perenne. New Phytol. 1997, 137: 345-349.
    [125]. N?sholm ?hlund. Growth of conifer seedlings on organic and inorganic nitrogen sources. Tree Physiol. 2001, 21: 1319-1326.
    [126]. Miller AE, Bowman WD. Alpine plants show species-level differences in the uptake of organic and inorganic nitrogen. Plant Soil. 2003, 250: 283-292.
    [127]. Weigelt A, King R, Bol R, et al.. Inter-specific variability in organic nitrogen uptake of three temperate grassland species. J Plant Nutr Soil Sci. 2003, 166: 606-611.
    [128]. Streeter TC, Bol R, Bardgett RD. Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled(13C, 15N) glycine to test for direct uptake by dominant grasses. Rapid Communications in Mass Spectrometry. 2000, 14(15): 1351-1355.
    [129]. McKane RB, Johnson LC, Shaver GR, et al.. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature. 2002, 415(6867): 68-71.
    [1]. 赵平, 彭少麟. 植物氮素营养的生理生态学研究. 生态科学. 1998, 17 (2): 37-42.
    [2]. 樊明寿, 孙亚卿, 邵金旺等. 不同形态氮素对燕麦营养生长和磷素利用的影响. 作物学报. 2005, 31 (1): 114-118.
    [3]. 关义新, 林葆, 凌碧莹. 光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响. 作物学报. 2000, 266 (6): 806-812.
    [4]. 韩锦峰, 史宏志, 官春云等. 不同施氮水平和氮素来源烟叶碳氮比及其与碳氮代谢的关系. 中国烟草学报. 1996, 3 (1): 19-25.
    [5]. 许如意, 别之龙, 黄丹枫. 不同氮素形态配比对网纹甜瓜干物质分配和氮代谢的影响. 农业工程学报. 2005, 21 (Supp): 147-150.
    [6]. 曹翠玲, 李生秀. 氮素形态对玉米幼苗碳水化合物及养分累积的影响. 华中农业大学学报. 2003, 22 (5): 457-461.
    [7]. 邱慧珍, 张福锁. 氮素形态对不同磷效率基因型小麦生长和氮素吸收及基因型差异的影响. 土壤通报. 2003, 34 (6): 533-538.
    [8]. Gunes A, Inal A, Aktas M. Reducing nitrate content of NET grown winter onion plants by partial replacement of NO3 with amino acid in nutrient solution. Scientia Horticulturae. 1996, 65: 203-208.
    [9]. 陈贵林, 高绣瑞. 氨基酸和尿素替代硝态氮对水培不结球白菜和生菜硝酸盐含量的影响. 中国农业科学. 2002, 35(2): 187-191.
    [10]. 李合生. 植物生理生化实验原理和技术. 北京:高等教育出版社. 2000: 134-137.
    [11]. 鲍士旦. 土壤农化分析. 北京: 中国农业出版社. 2000.
    [12]. Givan XV. Metabolic detoxification of ammonia in tissues of higher plant [J]. Phytochem, 1979, 18: 375-382.
    [13]. 莫良玉, 吴良欢, 陶勤南. 无菌条件下小麦氨基酸态氮及铵态氮营养效应研究. 应用生态学报. 2003, 14 (2): 184-186.
    [14]. 莫良玉, 吴良欢. 高温胁迫下水稻氨基酸态氮与铵态氮营养效应研究. 植物营养与肥料学报. 2002, 12 (2): 157-161.
    [15]. Jones DL, Healey JR. Willett V. B. et al. Dissolved organic nitrogen uptake by plants - an important N uptake pathway?. Soil Biology & Biochemistry. 2005, 37(3): 413-423.
    [16]. Kielland K. Amino Acid Absorption by Arctic Plants: Implications for Plant Nutrition and Nitrogen Cycling. Ecology. 1994, 75: 2373-2383.
    [17]. N?sholm T, Ekblad A, Nordin A, et al.. Boreal forest plants take up organic nitrogen. Nature. 1998, 392: 914-916.
    [18]. N?sholm T, Huss-Danell K, Hogberg P. Uptake of Organic Nitrogen in the Field by Four Agriculturally Important Plant Species. Ecology. 2000, 81: 1155-1161.
    [19]. Streeter TC, Bol R, Bardgett RD. Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled (C-13, N-15) glycine to test for direct uptake by dominant grasses. Rapid Communications in Mass Spectrometry. 2000, 14: 1351-1355.
    [20]. 武雪萍, 刘国顺, 朱凯等. 外源氨基酸对烟叶氨基酸含量的影响. 中国农业科学. 2004, 37 (3): 357-361.
    [21]. Smith V R. Effect of nutrients on CO2 assimilation by mosses on a sub-Antarctic island. New Phytol. 1993, 123: 693-697.
    [22]. Cruz C, Lips SH, Martins-Loucao MA. The effect of nitrogen on photosynthesis of carbon at high CO2 concentrations. Physiol Plant. 1993, 89: 552-556.
    [23]. Chandler JW, Dale JE. Photosynthesis and Nutrient Supply in Needles of Sitka Spruce [Picea sitchensis (Bong.) Carr.]. New Phytologist. 1993, 125: 101-111.
    [1]. Jones DL, Healey JR, Willett VB, et al.. Dissolved organic nitrogen uptake by plants - an important N uptake? Soil Biology & Biochemistry. 2005, 37: 413-423.
    [2]. Streeter TC, Bol R, Bardgett RD. Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled (C-13, N-15) glycine to test for direct uptake by dominant grasses. Rapid Communications in Mass Spectrometry. 2000, 14: 1351-1355.
    [3]. Xu XL, Hua OY, Cao GM, et al.. Uptake of organic nitrogen by eight dominant plant species in Kobresia meadows. Nutrient Cycling in Agroecosystems. 2004, 69: 5-10.
    [4]. 赵平, 彭少麟. 植物氮素营养的生理生态学研究. 生态科学. 1998, 17(2): 37-42.
    [5]. 苏帆, 王毅, 瞿兴等. 菜籽饼肥与化肥配合施用对烤烟伤流液组分的影响. 华中农业大学学报 2006, 25 (5): 245-253.
    [6]. Eric Paterson, Allan Sim. Rhizodeposition and C-partitioning of Lolium perenne in axenic culture affected by nitrogen supply and defoliation. Plant and Soil. 1999, 216: 155-164.
    [7]. Jones DL, Darrah PR. Amino acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere. Plant and Soil. 1994, 163: 1-12.
    [8]. Liang J, Zhang J. Collection of xylem sap at flow rate similar to in vivo transpiration flux. Plant and Cell Physiology. 1997, 38(12): 1375-1381.
    [9]. Kehr J, Buhtz A, Giavalisco P. Analysis of xylem sap proteins from Brassica napus. Bmc Plant Biology. 2005, 5.
    [10]. Groleau-Renaud V, Plantureux S, Guckert A. Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic conditions. Plant and Soil. 1998, 201(2): 231-239.
    [11]. Szmigielska AM, Van Rees KCJ, Cieslinski G, et al.. Determination of low molecular weight dicarboxylic acids in root exudates by gas chromatography. Journal of Agricultural and Food Chemistry. 1995, 43(4): 956-959.
    [12]. 郜红建, 常江, 张自立等. 镧对水稻根分泌物中氨基酸和有机酸含量的影响. 安徽农业大学学报.2004, 31(1): 58-61.
    [13]. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976, 72: 248-254.
    [14]. 鲍士旦. 土壤农化分析. 北京: 中国农业出版社. 2000.
    [15]. 李合生. 植物生理生化实验原理和技术. 北京:高等教育出版社. 2000.
    [16]. Eastin EF. Total nitrogen determination for plant material containing nitrate. Analytical Biochemistry. 1978, 85: 591-594.
    [17]. 张福锁. 植物营养生态生理学和遗传学. 北京: 中国利学技术出版社. 1993.
    [18]. Owen AG, Jones DL. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology & Biochemistry. 2001, 33(4-5): 651-657.
    [19]. Kuzyakov Y, Raskatov A, Kaupenjohann M. Turnover and distribution of root exudates of Zea mays. Plant and Soil. 2003, 254(2): 317-327.
    [20]. Paterson E, Sim A. Rhizodeposition and C-partitioning of Lolium perenne in axenic culture affected by nitrogen supply and defoliation. Plant and Soil. 1999, 216(1-2): 155-164.
    [21]. Shepherd T, Davies HV. Effect of exogenous amino acids, glucose and citric acid on the patterns of short-term accumulation and loss of amino acids in the root-zone of sand-cultured forage rape (Brassica napus L.). Plant and Soil. 1994, 158(1): 111-118.
    [22]. Buhtz A, Kolasa A, Arlt K, et al.. Xylem sap protein composition is conserved among different plant species. Planta. 2004, 219(4): 610-618.
    [23]. Mitchell DE, Gadus MV, Madore MA. Patterns of assimilate production and translocation in muskmelon (Cucumis melo L.): I. Diurnal patterns. Plant Physiology. 1992, 99(3): 959-965.
    [1]. Ahn O, Petrell RJ, Harrison PJ. Ammonium and nitrate uptake by Laminaria saccharina and Nereocystis luetkeana originating from a salmon sea cage farm. Journal of Applied Phycology. 1998, 10: 333-340
    [2]. Nishihara GN, Terada R, Noro T. Effect of temperature and irradiance on the uptake of ammonium and nitrate by Laurencia brongniartii (Rhodophyta, Ceramiales). Journal of Applied Phycology. 2005, 17: 371-377.
    [3]. Smit AJ. Nitrogen uptake by Gracilaria gracilis (Rhodophyta): Adaptations to a temporally variable nitrogen environment. Botanica Marina 2002, 45: 196-209.
    [4]. Jones DL, Healey JR, Willett VB, et al.. Dissolved organic nitrogen uptake by plants - an important N uptake pathway? Soil Biol Biochem. 2005, 37(3): 413-423.
    [5]. Liang-Huan WU, Liang-Yu MO, Zhi-Lian Fan, et al.. Absorption of Glycine by Three Agricultural Species Under Sterile Sand Culture Conditions. Pedosphere 2005, 15: 286-292.
    [6]. Owen AG, Jones DL. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol Biochem. 2001, 33: 651-657.
    [7]. 许玉兰,刘庆城. 用 15N 失踪方法研究氨基酸的肥效作用. 氨基酸与生物资源. 1998, 20 (2): 20-23.
    [8]. 张福锁. 植物营养生态生理学和遗传学. 北京, 中国科学技术出版社. 1993.
    [9]. 鲍士旦. 土壤农化分析. 北京: 中国农业出版社. 2000.
    [10]. 李合生. 植物生理生化实验原理和技术. 北京:高等教育出版社. 2000: 134-137.
    [11]. Zhang C, Peng S, Peng X, et al.. Response of glutamine synthetase isoforms to nitrogen sources in rice (Oryza sativa L.) roots. Plant Science. 1997, 125: 163-170.
    [12]. Masclaux C, Valadier MH. Brugiere N, et al.. Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta. 2000, 211: 510-518.
    [13]. 吴良欢, 蒋式洪, 陶勤南. 植物转氨酶(GOT 和 GPT)活度比色测定方法及其应用. 土壤通报. 1998, 29 (3): 136-138.
    [14]. 莫良玉, 吴良欢, 陶勤南. 无菌条件下小麦氨基酸态氮及铵态氮营养效应研究. 应用生态学报. 2003, 14 (2): 184-186.
    [15]. 曹翠玲, 李生秀. 氮素形态对玉米幼苗碳水化合物及养分累积的影响. 华中农业大学学报. 2003, 22 (5): 457-461.
    [16]. Miflin BJ, Lea PJ. Ammonia assimilation [A]. The Biochemistry of Plants. Vol.5. Amino acids and their derivatives. New York: Academic Press. 1980: 169-202.
    [1]. Gonod LV, Jones D L, Chenu C. Sorption regulates the fate of the amino acids lysine and leucine in soil aggregates. Eur J Soil Sci. 2006, 57: 320-329.
    [2]. Jones DL., Shannon D, Murphy DV, et al.. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biol Biochem. 2004, 36: 749-756.
    [3]. 曹翠玲, 李生秀. 氮素形态对玉米幼苗碳水化合物及养分累积的影响. 华中农业大学学报. 2003, 22 (5): 457-461.
    [4]. 莫良玉, 吴良欢, 陶勤南. 无菌条件下小麦氨基酸态氮及铵态氮营养效应研究. 应用生态学报. 2003, 14 (2): 184-186.
    [5]. 吴良欢, 陶勤南. 水稻氨基酸态氮营养效应及其机理研究. 土壤学报. 2000, 37 (4): 464-473.
    [6]. Chapin FS III , Moilanen L, Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature. 1993, 361: 150-153.
    [7]. Liang-Huan W, Liang-Yu M, Zhi-Lian F, et al.. Absorption of glycine by three agricultural species under sterile sand culture conditions. Pedosphere 2005, 15: 286-292.
    [8]. Matsumoto S., Ae N., Yamagata M. Possible direct uptake of organic nitrogen from soil by chingensai (Brassica campestris L.) and carrot (Daucus carota L.). Soil Biol Biochem. 2000, 32: 1301-1310.
    [9]. Yamagata M, Ae N. Direct acquisition of organic nitrogen by crops. Jpn Agric Res Q. 1999, 33: 15-21.
    [10]. 李合生. 植物生理生化实验原理和技术. 北京:高等教育出版社. 2000: 134-137.
    [11]. Hageman RH, Hucklesby DP. Nitrate reduction from higher plants. Methods Enzymol. 1971, 23: 491-503.
    [12]. Liu W, Li SJ, Chen DK. Use of amino acid nitrogen for growth by pakchoi. Acta Horticulturae. 2003, 627: 131-134.
    [13]. 王华静. 矿质氮、有机氮营养对小白菜生长和品质的影响及机理研究(博士学位论文). 浙江杭州. 2006: 浙江大学.
    [14]. 宋娜, 郭世伟, 沈其荣. 不同氮素形态及水分胁迫对水稻苗期水分吸收、光合作用及生长的影响. 植物学通报. 2007, 24 (4): 477-483.
    [1]. Kielland K. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology. 1994, 75: 2373-2383.
    [2]. N?sholm T, Huss-Danell K, Hogberg P. Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology. 2000, 81: 1155-1161.
    [3]. Raab TK, Lipson DA, Monson RM. Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology 1999, 80: 2408-2419.
    [4]. Lipson DA, Raab TK, Schmidt SK, et al.. An empirical model of amino acid transformations in an alpine soil. Soil Biology & Biochemistry. 2001, 33: 189-198.
    [5]. 吴良欢, 陶勤南. 水稻氨基酸态氮营养效应及其机理研究. 土壤学报. 2000, 37(4): 464-473.
    [6]. 莫良玉, 吴良欢, 陶勤南. 高温胁迫下水稻氨基酸态氮与铵态氮营养效应研究. 植物营养与肥料学报. 2002, 8 (2): 157-161.
    [7]. Owen AG, Jones DL. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology & Biochemistry. 2001, 33: 651-657.
    [8]. Okamoto M, Okada K. Differential responses of growth and nitrogen uptake to organic nitrogen in four gramineous crops. Journal of Experimental Botany. 2004, 55: 1577-1585.
    [9]. Kuzyakov Y, Jones DL. Glucose uptake by maize roots and its transformation in the rhizosphere. Soil Biology & Biochemistry. 2006, 38: 851-860.
    [10]. Thornton B. Uptake of glycine by non-mycorrhizal Lolium perenne. Journal of Experimental Botany. 2001, 52: 1315-1322.
    [11]. Cliquet JB, Murray PJ, Boucaud J. Effect of the arbuscular mycorrhizal fungus glomus fasciculatum on the uptake of amino nitrogen by Loliumperenne. New Phytol. 1997, 137: 345-349.
    [12]. N?sholm T, Huss-Danell K, H?gberg P. Uptake of glycine by field grown wheat. New Phytologist. 2001, 150: 59-63.
    [13]. Weigelt A, Bol R, Bardgett RD. Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia. 2005, 142: 627-635.
    [14]. Jones DL, Healey JR, Willett VB, et al.. Dissolved organic nitrogen uptake by plants-an important N uptake pathway? Soil Biology & Biochemistry. 2005b, 37: 413-423.
    [15]. Lipson D, N?sholm T. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia. 2001, 128: 305-316.
    [16]. Memeth K, Bertels H, Vogel M, al et.. Organic nitrogen compounds extracted from marable and forest soils by eletro-ultrafitration and recovery rates of amino acids. Soil and Biology Fertilizer. 1998, 1998: 271-275.
    [17]. Chapin FS III , Moilanen L, Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature. 1993, 361: 150-153.
    [18]. N?sholm T, Ekblad A, Nordin A, et al.. Boreal forest plants take up organic nitrogen. Nature. 1998, 392: 914-916.
    [19]. N?sholm T, Persson J. Plant acquisition of organic nitrogen in boreal forests. Physiologia Plantarum.2001, 111): 419-426.
    [20]. 莫良玉. 高等植物氨基酸态氮营养效应研究 (博士学位论文). 浙江杭州. 2001, 浙江大学.
    [21]. Warren CR. Potential organic and inorganic N uptake by six Eucalyptus species. Functional Plant Biology. 2006, 33: 653-660.
    [22]. Warren C. R., Adams P. R. Uptake of nitrate, ammonium and glycine by plants of Tasmanian wet eucalypt forests. Tree Physiol. 2007, 27: 413-419.
    [23]. Hodge A, Robinson D, Fitter A. Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science. 2000, 5: 304-308.
    [24]. Henry HAL, Jefferies RL. Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marsh. Journal of Ecology. 2003, 91: 627-636.
    [25]. Groffman PM, Zak DR, Christensen S, et al.. Early spring nitrogen dynamics in a temperate forest landscape. Ecology. 1993, 74: 1575-1585.
    [26]. Schimel JP, Chapin FS. Tundra plant uptake of amino acid and NH4+ nitrogen in situ: plants compete well for amino acid N. Ecology. 1996, 77: 2142-2147.
    [27]. Hodge A, Robinson D, Fitter A. Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci. 2000, 5: 304-308.
    [28]. Raab TK, Lipson DA, Monson PK. Non-mycorrhizal up take of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle. Oecologia. 1996, 108: 488-494.
    [29]. Schmidt S, Stewart GR. Glycine metabolism by plant roots and its occurrence in Australian plant communities. Australian Journal of Plant Physiology. 1999, 26: 253-264.
    [30]. Kielland K. Landscape patterns of free amino acids in arctic tundra soils. Biogeochemistry. 1995, 31: 85-98.
    [1]. Jones DL, Healey JR, Willett VB, et al.. Dissolved organic nitrogen uptake by plants-an important N uptake pathway? Soil Biology & Biochemistry. 2005, 37: 413-423.
    [2]. Zhong ZK, Makeschin F. Soluble organic nitrogen in temperate forest soils. Soil Biology & Biochemistry. 2003, 35: 333-338.
    [3]. Chen CR, Xu ZH, Zhang SL, et al.. Soluble organic nitrogen pools in forest soils of subtropical Australia. Plant and Soil. 2005, 277: 285-297.
    [4]. Jones DL, Shannon D, Murphy DV, et al.. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biology & Biochemistry. 2004, 36: 749-756.
    [5]. Murphy DV, Macdonald AJ, Stockdale EA, et al.. Soluble organic nitrogen in agricultural soils. Biology and Fertility of Soils. 2000, 30: 374-387.
    [6]. Schulten HR, Schnitzer M. The chemistry of soil organic nitrogen: a review. Biol Fertil Soils. 1998, 26: 1-15.
    [7]. Yu Z, Zhang Q, Kraus TEC, et al.. Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry. 2002, 61: 173-198.
    [8]. 李世清, 李生秀, 杨正亮. 不同生态系统土壤氨基酸氮的组成及含量. 生态学报. 2002, 22(3): 379-386.
    [9]. Kielland K. Amino acid absorption by arctic plants: implication for plant nutrition and nitrogen cycling. Ecology. 1994, 75: 2373-2383.
    [10]. 宋建国, 林杉, 吴文良等. 土壤易矿化有机态氮和微生物态氮作为土壤氮素生物有效性指标的评价. 生态学报. 2001, 21(002): 290-294.
    [11]. Qualls RG, Haines BL, Swank WT. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology. 1991, 72: 254-266.
    [12]. Yu S, Northup RR, Dahlgren R. Determination of dissolved organic nitrogen using persulphate oxidation and conductirnetric quantification of nitrate-nitrogen. Communication of Soil Science and Plant Ananalyze. 1994, 25: 3161-3169.
    [13]. Wissmar R C. Forest detritus of nitrogen in a mountain lake. Can J For Res. 1991, 21: 990-998.
    [14]. Hawkins JMB, Scholefield D, Jarvis SC. Organic N losses from a poorly drained grassland soil. In: Proceedings of The Scottish Agricultural College Diffusee Pollution and Agriculture Conference Ⅱ. Scotland:Edinburgh University. 1997: 246-248.
    [15]. Currie WS, Aber JD, McDowell WH, et al.. Vertical transport of dissolved organic C and N under long term N amendments in pine and hard wood forests. Biogeochemistry. 1996, 35: 471-505.
    [16]. Khalid M, Soleman N, Jones DL. Grassland plants affect dissolved organic carbon and nitrogen dynamics in soil. Soil Biology & Biochemistry. 2007, 39(1): 378-381.
    [17]. Ghani A, Dexter M, Carran RA, et al.. Dissolved organic nitrogen and carbon in pastoral soils: the New Zealand experience. European Journal of Soil Science. 2007, 10: 1-12.
    [18]. 中华人民共和国国家标准. 有机产品. GB/T 19630-2005. 2005.
    [19]. Mulvaney RL. Nitrogen-Inorganic forms. In:Sparks, D.L. (Ed.), Methods of Soil Analysis. Part 3. SSSABook Series 5. Soil Science Society of America and American Society of Agronomy. 1996, Madison, WI,USA: 1123-1184.
    [20]. Chen CR, Xu ZH, Keay P, et al.. Total soluble nitrogen in forest soils as determined by persulfate oxidation and by high temperature catalytic oxidation. Australian Journal of Soil Research. 2005, 43: 515-523.
    [21]. Christou M, Avramides EJ, Jones DL. Dissolved organic nitrogen dynamics in a Mediterranean vineyard soil. Soil Biology & Biochemistry. 2006, 38: 2265-2277.
    [22]. Jone DL, Owen AG, Farrar JF. Simple method to enable the high resolution determination of total free amino acid in soil solution and soil extracts. Soil biology and biochemistty. 2002, 34: 1893-1902.
    [23]. Sugimura Y, Suzuki Y. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic caron in seawater by direct injection of a liquid sample. Marine Chemistry. 1988, 24: 105-131.
    [24]. 杨绒, 严德翼, 周建斌等. 黄土区不同类型土壤可溶性有机氮的含量及特性. 生态学报. 2007, 27(4): 1397-1403.
    [25]. Andraski TW, Bundy LG, Brye KR. Crop management and corn nitrogen rate effects on nitrate leaching. J Environ, Qual. 2001, 29: 1095-1103.
    [26]. Kielland K. Landscape patterns of free amino acids in arctic tundra soils. Biogeochemistry. 1995, 31: 85-98.
    [27]. 崔晓阳. 植物对有机氮源的利用及其在自然生态系统中的意义. 生态学报. 2007, 27(8): 3501-3513.
    [28]. Wolt JD. Soil Solution Chemistry. Application to eenvironmental science and agriculture. 1994, Wiley, New York:4-22.
    [29]. Paul JP, Williams BL. Contribution of a-amino N to extractable organic nitrogen (DON) in three soil types from the Scottish uplands. Soil Biology & Biochemistry. 2005, 37: 801-803.
    [30]. Willett VB, Green JJ, Macdonald AJ, et al.. Impact of land use on soluble organic nitrogen in soil. Water, Air, and Soil Pollution. 2004, 4: 53-60.
    [31]. 葛体达, 宋世威, 丁明等. 园艺作物有机生产系统中可溶性有机氮研究进展. 见:王秀峰,李宪利主编. 园艺学进展:第七辑北京,中国农业出版社. 2006: 805-811.
    [1]. Barraclough D. The direct MIT route for nitrogen immobilization: a 15N mirror image study with leucine and glycine. Soil Biology & Biochemistry. 1997, 29: 101-108.
    [2]. Jones DL. Amino acid biodegradation and its potential effects on organic nitrogen capture by plants. Soil Biology & Biochemistry. 1999, 31: 613-622.
    [3]. 吕殿青, 张树兰, 杨学云. 外加碳, 氮对土壤氮矿化, 固定与激发效应的影响. 植物营养与肥料学报. 2007, 13(2): 223-229.
    [4]. Jones DL, Healey JR, Willett VB, et al.. Dissolved organic nitrogen uptake by plants - an important N uptake pathway? Soil Biology & Biochemistry. 2005, 37(3): 413-423.
    [5]. Lipson DA, Monson RK. Plant-microbe competition for soil amino acids in the alp ine tundra: effects of freeze-thaw and dry-rewet events. Oecologia. 1998, 113: 406-414.
    [6]. Jones DL, Darrah PR. Amino-acid influx at the soil-root interface of Zea mays L. its implications in the rhizosphere. Plant and Soil 1994, 163: 1-12.
    [7]. 崔晓阳. 植物对有机氮源的利用及其在自然生态系统中的意义. 生态学报. 2007, 27(8): 3501-3513.
    [8]. Kielland K. Amino acid absorption by Arctic plants: Implications for plant nutrition and nitrogen cycling. Ecology. 1994, 75: 2373-2383.
    [9]. Lipson D, N?sholm T. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia. 2001, 128: 305-316.
    [10]. Hodge A, Robinson D, FitterA. Are microorganismsmore effective than p lants at competing for nitrogen? Trends in Plant Science. 2000, 5: 304-308.
    [11]. Jones DL, Shannon D, Murphy DV, et al.. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biology & Biochemistry. 2004, 36: 749-756.
    [12]. Jones DL, Kemmitt SJ, Wright D, et al.. Rapid intrinsic rates of amino acid biodegradation in soils are unaffected by agricultural management strategy. Soil Biology & Biochemistry. 2005, 37: 1267-1275.
    [13]. Hung AL, Henr Y, Roberyt L, et al.. Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marsh. Journal of Ecology. 2003, 91: 627-636.
    [14]. Jones DL, Kielland K. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biology & Biochemistry. 2002, 34: 209-219.
    [15]. Jones DL, Farrar JF, Newsham KK. Rapid amino acid cycling in arctic and antarctic soils[J]. Water, Air, and Soil Pollution. 2004, 4: 169-175.
    [16]. Jones DL, Hodge A. Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biology & Biochemistry. 1999, 31: 1331-1342.
    [17]. Christou M, Avramides EJ, Jones DL. Dissolved organic nitrogen dynamics in a Mediterranean vineyard soil. Soil Biology & Biochemistry. 2006, 38: 2265-2277.
    [18]. Kalbitz K, Solinger S, Park JH, et al.. Controls on the dynamics of dissolved organic matter in soil:a review. Soil Science. 2000, 165: 277-304.
    [19]. Gonod LV, Jones DL, Chenu C. Sorption regulates the fate of the amino acids lysine and leucine in soil aggregates. European Journal of Soil Science. 2006, 57: 320-329.
    [20]. Zak DR, Groffman PM, Pregitzer KS, et al.. The vernal dam: plant-microbe competition for nitrogen in northern hardwood forests. Ecology. 1990, 71: 651-656.
    [21]. Groffman PM, Zak DR, Christensen S, et al.. Early spring nitrogen dynamics in a temperate forest landscape. Ecology. 1993, 74: 1575-1585.
    [22]. Schimel JP, Chapin FSIII. Tundra plant uptake of amino acid and NH4+ nitrogen in situ: plants compete well for amino acid N. Ecology. 1996, 77: 2142-2147.
    [23]. 吕殿青, 张树兰, 杨学云. 外加碳、氮对黄绵土有机质矿化与激发效应的影响. 植物营养与肥料学报. 2007, 13(3): 423 - 429.
    [24]. Bonde TA, Johan S, Thomas R. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long term field experiments. Soil Biology & Biochemistry. 1988, 20: 447-452.
    [25]. 宋建国, 林杉, 吴文良等. 土壤易矿化有机态氮和微生物态氮作为土壤氮素生物有效性指标的评价. 生态学报. 2001, 21 (2): 290-294.
    [1]. Kalbitz K, Solinger S, Park JH, et al.. Controls on the dynamics dissolved organic matter in soils: A review. Soil Science. 2000, 165: 277-304.
    [2]. Jones DL, Healey JR, Willett VB, et al.. Dissolved organic nitrogen uptake by plants - an important N uptake pathway? Soil Biology & Biochemistry. 2005, 37: 413-423.
    [3]. Qualls RG, Haines BL, Swank WT. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology. 1991, 72: 254-266.
    [4]. 杨绒, 严德翼, 周建斌等. 黄土区不同类型土壤可溶性有机氮的含量及特性. 生态学报. 2007, 27(4): 1397-1403.
    [5]. Hagedorn F, Kaiser K,Feyen H, et al.. Effect of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil. Environmental Quality. 2000, 29: 288-297.
    [6]. Jones DL, Shannon D, Murphy DV, et al.. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biology & Biochemistry. 2004, 36: 749-756.
    [7]. 巨晓棠 边秀举, 刘学军等. 旱地土壤氮素矿化参数与氮素形态的关系. 植物营养与肥料学报. 2000, 6: 251-259.
    [8]. Zhong ZK, Makeschin F. Soluble organic nitrogen in temperate forest soils. Soil Biology & Biochemistry. 2003, 35: 333-338.
    [9]. Chen CR, Xu ZH, Zhang SL, et al.. Soluble organic nitrogen pools in forest soils of subtropical Australia. Plant and Soil. 2005, 277: 285-297.
    [10]. Bradford Marion M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976, 72: 248-254.
    [11]. Jones DL. Amino acid biodegradation and its potential effects on organic nitrogen capture by plants. Soil Biology & Biochemistry. 1999, 31: 613-622.
    [12]. Christou M, Avramides EJ, Jones DL. Dissolved organic nitrogen dynamics in a Mediterranean vineyard soil. Soil Biology & Biochemistry. 2006, 38: 2265-2277.
    [13]. Schmidt Inger K, Jonasson Sven, Michelsen Anders. Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Applied Soil Ecology. 1999, 11: 147-160.
    [14]. Chantigny MH. Dissolved and water-extractable organic matter in soils:a review on the influence of land use and management practices. Geoderma. 2003, 113: 357-380.
    [15]. 卢萍 单玉华, 杨林章等. 秸秆还田对稻田土壤溶液中水溶性有机质的影响. 土壤学报. 2006, 43: 736-740.
    [16]. Bonkowski M, Griffiths B, Scrimgeour C. Substrate heterogeneity and microfauna in soil organic hotspots as determinants of nitrogen capture and growth of ryegrass. Applied Soil Ecology. 2000, 14: 37-53.
    [17]. Neff JC, Chapin FS, Vitousek PM. Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems. Frontiers in Ecology and the Environment. 2003, 1: 205-211.
    [18]. Jones DL, Shannon D, Junvee-Fortune T, et al.. Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biology & Biochemistry. 2005, 37: 179-181.
    [19]. Yu Z, Zhang Q, Kraus TEC, et al.. Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry. 2002, 61: 173-198.
    [1]. Yu Z, Zhang Q, Kraus TEC, et al.. Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry. 2002, 61: 173-198.
    [2]. Stevenson FJ. Organic forms of soil nitrogen. In: Stevenson nitrogen in agricultural soils. ASA, CSSA, SSSA, Madison, Wis.. 1982: 67-122.
    [3]. Jones DL, Hodge A. Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biology & Biochemistry. 1999, 31: 1331-1342.
    [4]. Jones DL, Kemmitt SJ, Wright D, et al.. Rapid intrinsic rates of amino acid biodegradation in soils are unaffected by agricultural management strategy. Soil Biology & Biochemistry. 2005, 37: 1267-1275.
    [5]. Jones DL. Amino acid biodegradation and its potential effects on organic nitrogen capture by plants. Soil Biology & Biochemistry. 1999, 31: 613-622.
    [6]. Vinolas LC, Healey JR, Jones DL. Kinetics of soil microbial uptake of free amino acids. Biology and Fertility of Soils. 2001, 33: 67-74.
    [7]. Jones DL, Healey JR. Willett VB, et al.. Dissolved organic nitrogen uptake by plants - an important N uptake pathway? Soil Biology & Biochemistry. 2005, 37: 413-423.
    [8]. 崔晓阳. 植物对有机氮源的利用及其在自然生态系统中的意义. 生态学报. 2007, 27(8): 3501-3513.
    [9]. Kielland K. Landscape patterns of free amino acids in arctic tundra soils. Biogeochemistry. 1995, 31: 85-98.
    [10]. Paul JP, Williams BL. Contribution of a-amino N to extractable organic nitrogen (DON) in three soil types from the Scottish uplands. Soil Biology & Biochemistry. 2005, 37: 801-803.
    [11]. Mengel K, Schnerider BH, Kosegarten. Nitrogen compounds extracted by electroultrafiltration(EUF) or CaCl2 solution and their relationships to nitrogen mineralization in soils. Plant Nutr Soil Sci. 1999, 162: 139-148.
    [12]. Davey L, John F, Kevin k. Rapid amino acid cycling in arctic and antarctic soils. Water, Air, and Soil Pollution:. 2004, 4: 169-175.
    [13]. Van Schōll L, Van Dam AM, Leffelaar PA. Mineralization of nitrogen from an incorporated catch crop at low temperatures: experiment and simulation. Plant and Soil. 1997, 188: 211-219.
    [14]. Owen AG, Jones DL. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology & Biochemistry. 2001, 33: 651-657.
    [15]. Kaye JP, Hart SC. Competition for nitrogen between plants and soil microorganisms. Trends in Ecology and Evolution. 1997, 12: 139-143.
    [16]. Streeter TC, Bol R, Bardgett RD. Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled(13C, 15N) glycine to test for direct uptake by dominant grasses. Rapid Communications in Mass Spectrometry. 2000, 14: 1351-1355.
    [17]. N?sholm T., Huss-Danell K., Hogberg P. Uptake of organic nitrogen in the field by four agriculturally important plant species[J]. Ecology. 2000, 81(4): 1155-1161.
    [18]. Lipson DA, Raab TK, Schmidt SK, et al.. An empirical model of amino acid transformations in an alpine soil. Soil Biology & Biochemistry. 2001, 33: 189-198.
    [19]. 崔晓阳. 东北森林氮素营养的生态学. 哈尔滨. 1998, 东北林业大学出版社.
    [20]. Zhou CP, Ou YH, Pei Z Y, et al.. Net soil nitrogen mineralization in Chinese forest ecosystems. Acta Phytoecologica Sinica. 2003, 27(2): 170-176.
    [21]. IFOAM (International Federation of Organic Agriculture Movements). 2007. What is organic agriculture? http://www.ifoam.org/sub/faq.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700