几种水生植物根际微生物的数量动态及其协同去污能力的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展和人民生活水平的提高,我国的水资源越来越紧张,水污染问题也越来越严重,其中因氮磷过剩引发的水体富营养化是最为普遍的水污染问题之一,也是国内外水环境领域的重要难题。近年来,随着对污水净化植物的研究逐渐深入,植物修复作为改善水质的一种高效低耗的方法日益受到重视,已逐渐成为环境领域的研究热点之一。本文以两种常见水生净化植物为研究对象,主要从水生植物氮吸收生理机制和根际微生物数量与植物间的关系等两个方面开展研究,以期为构建植物、微生物耦合降解系统,强化水生植物的净水功能提供理论依据。
     本研究选择宁波市卧彩江、日湖两个不同营养类型水体,通过跟踪调查两个水体内粉绿狐尾藻(Myriophyllum aquaticum)、喜旱莲子草(Alternanthera philoxeroides)两种水生植物根际微生物的数量动态,并结合主要水化学指标的监测,研究不同富营养类型水体植物根际微生物的群落特征及其变化;通过高浓度氮、有机物吸收实验,研究粉绿狐尾藻、凤眼莲(Eichhornia crassipes)在抑菌和非抑菌两种处理中对N(NO_3~--N、NH_4~+-N)、COD的去除效果,并通过跟踪监测植物根际细菌、放线菌及真菌的数量动态,探讨微生物数量与污染物去除间的相关性,评价水生植物及根际微生物在不同富营养水平下的协同去污能力。主要结果如下:
     1采用改进常规耗竭法,研究了粉绿狐尾藻、凤眼莲在抑菌和非抑菌两种处理中对NO_3~--N、NH_4~+-N吸收的动力学特征。结果表明:两种植物对NO_3~--N、NH_4~+-N的最大吸收速率(Imax)和亲和力(1/ Km)有显著差异,凤眼莲对NO_3~--N、NH_4~+-N有较大的吸收速率,说明凤眼莲更适宜用于污染水体养分的吸收;在抑菌条件下,狐尾藻对NO_3~--N、NH_4~+-N的最大吸收速率增加15.34%、36.50%,Km分别减小21.54%、增加34.74%;凤眼莲对NH_4~+-N最大吸收速率增加86.46%,而对NO_3~--N最大吸收速率减小47.37%;两种植物对NH_4~+-N的亲和力减小,对NO_3~--N的亲和力增加,表明微生物可以通过改变植物根际环境影响了植物对NO_3~--N、NH_4~+-N的吸收速率和亲和力。
     2在宁波市内河选取两个不同营养类型水体-日湖、卧彩江,于2008年8月-11月,利用微生物快速鉴定(MIDI Sherlock MIS)系统和其他传统方法,跟踪监测了两个水体内两种常见水生净化植物粉绿狐尾藻、喜旱莲子草根际微生物的种类和数量变化,分析了水体主要理化指标、水体微生物、植物根际微生物之间的相关关系。结果表明:水生植物根际效应显著;植物种类和水体富营养化程度均对植物根际微生物影响显著,日湖中,狐尾藻根际微生物数量要显著高于喜旱莲子草,在卧彩江中,两种植物根际细菌数量无显著差异,放线菌、真菌数量差异显著;植物根际微生物数量与环境因子间具有一定的相关性,日湖中,TN与植物根际微生物数量存在正相关,卧彩江中TN与植物根际微生物数量相关性呈负相关;两个水体中,水中微生物数量与植物根际微生物数量均存在正相关;TP、COD与植物根际微生物数量均存在负相关;水温、Chla与植物根际微生物数量相关性不显著。植物根际微生物群落结构存在季节变化,根际微生物多样性受到水体富营养化程度、气候、植物种类等多重因素的影响,夏季,日湖、卧彩江中粉绿狐尾藻根际微生物多样性指数分别为1.52、1.10,秋季则分别为1.01、2.17;喜旱莲子草根际微生物多样性指数在日湖、卧彩江中夏季为1.43、1.48,秋季为1.07、1.66。植物根际优势菌种以假单胞菌(Pseudomonas)、微球菌(Micrococcus)、黄杆菌(Chryseobacterium)、不动杆菌(Acinetobacter)等主要的有机物降解微生物为主,环境因素的多变和植物根系的不同也导致了葡萄球菌(Staphylococcus),食酸菌(Acidovorax)、节杆菌(Arthrobacter)等特有菌种出现。
     3以凤眼莲为研究对象,在相同光照和温度条件下,研究了不同N、COD水平及抑菌和常规两种处理对硝氮、氨氮、有机物去除效果的影响,并分析了根际细菌、放线菌和真菌的数量动态,探讨了凤眼莲及其根际微生物对污染物的协同去污效果。结果表明:凤眼莲对NH_4~+-N的去除效率要低于对NO_3~--N的去除效率,凤眼莲对NO_3~--N的去除没有受到抑菌处理的显著影响,而抑菌处理对凤眼莲去除NH_4~+-N有显著影响,说明凤眼莲根际微生物在NH_4~+-N的去除过程中发挥了重要作用;抑菌处理能显著降低凤眼莲对COD的去除效果,在COD浓度为60mg/L、120mg/L尤为显著;在中、低N环境条件下,微生物数量与NH_4~+-N去除速率有显著正相关,而与NO_3~--N去除速率呈负相关,说明在中、低N环境中根际微生物活动对NH_4~+-N的去除有一定的影响;微生物活动对COD的去除起重要作用,并且在不同COD浓度条件下,发挥主要作用的微生物类群有所差异。
     4以粉绿狐尾藻为研究对象,在相同光照和温度条件下,研究了不同N、COD水平及抑菌和常规两种处理对NO_3~--N、NH_4~+-N、COD去除效果的影响,并分析了植物根际细菌、放线菌和真菌的数量动态,探讨了粉绿狐尾藻及其根际微生物对污染物的协同去污效果。结果表明:在中、低N浓度下,抑菌和非抑菌组狐尾藻对NO_3~--N、NH_4~+-N的去除没有显著差异;高N浓度下,抑菌和非抑菌狐尾藻对NO_3~--N的去除率分别为31.30%、37.57%,有显著差异,对NH_4~+-N的去除率仍无显著差异;在COD浓度为60mg/L时,抑菌和非抑菌组无显著差异,水溶液COD浓度为120mg/L、180mg/L时,非抑菌组狐尾藻对有机物的降解速率要显著高于抑菌处理组;无论是抑菌组还是非抑菌组,植物根际的微生物数量与NO_3~--N去除速率无显著相关,抑菌组中,植物根际细菌数量与NH_4~+-N、COD去除速率显著相关,说明在狐尾藻根际细菌参与了NH_4~+-N、COD的去除,而NO_3~--N的去除与微生物活动无密切联系。
Due to rapid industrial development and growth of population, water resources are becoming scarce, and water contamination is appearing to be a serious problem, and eutrophication has been a serious phenomenon, become the most difficulty in environmental remediation for water pollution. With the increase of attention to the environmental ecology, using the phytoremediation methods to rehabilitate polluted groundwater (including river, lake and reservoirs) has become more and more popular. Our research focused on the use of plants such as macrophytes that can absorb nitrogen, to assess their ability to purify nitrogen polluted water, and quantitative dynamics and synergistic pollutant removal action of microorganisms in the rhizosphere macrophytes. The main purpose was to understand abilities of different macrophytes species rehabilitate eutrophicated water.
     The research assessed the function of rhizosphere microorganisms by experiment of nitrogen uptake kinetics of macrophytes. We studied the community structure and quantitative dynamics of two plants in Rihu Laker and Wocaijiang River in Ningbo in different seasons. By the field investigation, we accumulated the basic data community structure and synergistic pollutant removal action of microorganisms in the rhizosphere of several macrophytes. The research focused on E.crassipes and M.aquaticum to assess there ability to purify nitrogen, organic compounds polluted water, and quantitative dynamics and synergistic pollutant removal action of microorganisms in the rhizosphere of macrophytes under nutrient solution of antimicrobial treatment and normal treatment. Our main research work and conclusions follows:
     1. The nutrient uptake kinetics of M.aquaticum and E. crassipes were investigated using the modified depletion method under nutrient solution of antimicrobial treatment and normal treatment. The maximum uptake rate (Imax) and Michaelis–Menten constant (Km) were estimated by iterative curve fitting. The Imax and Km for the plants was significantly different between two plants. The Imax for NO_3~--N、NH_4~+-N in E.crassipes is higher than that in M.aquaticum, illuminated that M.aquaticum was proper for treatment of the seriously polluted water. Imax for NO_3~--N、NH_4~+-N in M.aquaticum increased by 15.34%、36.50% under antimicrobial treatment. Km for NO_3~--N decreased by 21.54%, and Km for NH_4~+-N increased by 34.74%. Imax for NH_4~+-N in E.crassipes increased 86.46%, and that for NO_3~--N decreased 47.37%. Km for NH_4~+-N in two macrophytes both decreased, and that for NO_3~--N both increased. The results showed that rhizosphere microorganisms could effect the NO_3~--N、NH_4~+-N in E.crassipes and M.aquaticum by change t rhizosphere factors.
     2. In this experiment, we measured the numbers of rhizosphere microorganisms in Myriophyllum aquaticum and Alternanthera philoxeroides in Rihu Laker and Wocaijiang River in Ningbo, and their correlation with environmental factors. The population diversity of microorganisms was studied by Sherlock Microbial Identification System (Sherlock MIS). The results indicate: Plants rhizosphere effects was significant. In Rihu laker, the microbial number in the rhizosphere of Myriophyllum aquaticum was significantly higher than that in the rhizosphere of Alternanthera philoxeroides. There was no significant difference between the numbers of bacteria in the rhizosphere of two plants. The numbers of rhizosphere actinomyces and fungi were significant different between plants. There correlation between the numbers of rhizosphere microorganisms and environmental factors. The correlation restricted by the environmental factors. There was a positive correlation between the numbers of rhizosphere microbes and TN in Rihu Laker. The numbers of rhizosphere microbes and TN had no correlation in c. The numbers of rhizosphere microbes had positive correlation with microorganisms in water, and had negative correlation with TP and COD, and had no correlation with water tempterature and Chla in both Rihu Laker and Wocaijiang River. Community Structure of rhizosphere microbes of macrophytes changed with season. Diversity of rhizosphere microorganisms restricted by eutrophication degree, climate and species of macrophyte and so on. In summer, the diversity index of rhizosphere microbes in M. aquaticum was 1.52 and 1.10 in Rihu Laker and Wocaijiang River. And the index changed to be 1.01 and 2.17 in autumn. The diversity index in A. philoxeroides was 1.43 and 1.48 in summer, and changed to be 1.06 and 1.66 in autumn. The predominant microbes in the rhizosphere of macrophytes Pseudomonas, Micrococcus, Chryseobacterium, Acinetobacter. There were some special microorganisms(e.g., Staphylococcus, Acidovora, Arthrobacter) were found because of the difference of environmental factors.
     3. The research focused on E.crassipes to assess it’s ability to purify nitrogen, organic compounds polluted water, and quantitative dynamics and synergistic pollutant removal action of microorganisms in the rhizosphere of E.crassipes under nutrient solution of antimicrobial treatment and normal treatment. The results showed that, at the same condition, the removal efficiency of NH_4~+-N is lower that of NO_3~--N. Antimicrobial treatment had no significant effect on the removal of NO_3~--N. A significant effect was found on the removal of NH_4~+-N between antimicrobial treatment and normal treatment. It showed that rhizosphere microbes played an important role in removal of NH_4~+-N. The removal efficiency of COD under normal treatment was significant higher than that under antimicrobial treatment, especially when the concentration of COD in the initial solution was 60mg/L, 120mg/L. At low concentration , there was a positive correlation between variation rate of rhizosphere microorganisms and removal efficiency of NH_4~+-N, and a negative correlation was found between variation rate of rhizosphere microorganisms and removal efficiency of NO_3~--N. The results showed that rhizosphere microorganisms was important for the removal of NH_4~+-N. It’s also found that rhizosphere microorganisms played on important role in the removal of organic compounds. Differernt kinds of microorganisms played a role in the removal of organic compounds at different concentration of COD.
     4. The research focused on M.aquaticum o assess it’s ability to purify nitrogen, organic compounds polluted water, and quantitative dynamics and synergistic pollutant removal action of microorganisms in the rhizosphere of M.aquaticum under nutrient solution of antimicrobial treatment and normal treatment. The results showed that, the removal efficiency of NO_3~--N had no significant different between antimicrobial treatment and normal treatment at low concentration of nitrogen. The same result was found in the removal efficiency of NH_4~+-N. The removal efficiency of NO_3~--N under antimicrobial treatment and normal treatment was respectively 31.30%, 37.57% at high concentration of nitrogen. It was significant different between two treatment. There was no significant difference in the removal efficiency of NH_4~+-N between two treatment at high concentration of nitrogen. When the concentration of COD in the initial solution was 120mg/L, 180mg/L, the removal efficiency of organic compounds under normal treatment was significant higher than that under antimicrobial treatment. No significant difference was found when the concentration of COD in the initial solution was 60mg/L. A negative correlation was found between variation rate of rhizosphere microorganisms and removal efficiency of NO_3~--N. There were significant correlation between variation rate of bacteria and removal efficiency of COD and NH_4~+-N under antimicrobial treatment. It showed that the bacteria in the rhizosphere of M.aquaticum played a role in the removal of COD and NH_4~+-N. There was no close connection between the removal of NO_3~--N and microbial activity in the rhizosphere M.aquaticum.
引文
Abou-Shanab R A, Angle J S, Delorme T A, et al. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale[J]. New phytologist, 2003, 158(1): 219-224.
    Andersont A, Krugerel, Coat J R, et al. Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant [J].Chemosphere, 1994, 28: 1551-1557.
    Anna M, Thorsten H, Neeru N, et al. Rhizosphere microflora of plants used for the phytoremediation of bitumen-contaminated soil[J]. Microbiological Research, 2003, 158(2): 151-161.
    Baines S B, Pace M L. The production of dissolved organic matter by phytoplankton and its importance to bacteria patterns across marine and freshwater systems[J]. Limnology and Oceanography, 1991, 36: 1078-1090.
    Bachnad P M, Horne A J.Denitrification in construted free-water surface wetlands:1. Very high nitrate removal rates in a macrocosm study[J]. Ecological Engineering, 2000, 14: 9-15.
    Baker L A. Design considerations and applications for wetland treatment of high-nitrate waters[J]. Water Science and Technology, 1998, 38(1): 389-395.
    Belimov A A, Kunakova A M, Safronova V I, et al. Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium.[J] Microbiology (Moscow), 2004, 73(1): 99-106.
    Bernard R G. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment [J]. Biotechnology Advances, 2003, 21: 383–393.
    Breen P F. A mass balance method for assessing the potential of artificial wetlands for wastewater treatment[J]. Water Research, 1990, 24(6): 689–697.
    Brix H, Dyhr-Jensen K, Lorenzen B. Root-zone acidity and nitrogen source affects Typha latifolia L growth and uptake kinetics of ammonium and nitrate[J]. Journal of Experimental Botany, 2002, 53: 2441–2450.
    Brown M E. Seed and root bacterization[J]. Annual Review of Phytopathology 1974, 12:181– 97. Chen W, Chen Z, He Q, et al. Root growth of wetland plants with different root types[J]. Acta Ecologica Sinica, 2007, 27(2): 450-458.
    Cheng H S, Mohd K Y, Brian S, et al. Nutrient removal in a pilot and full scale constructed wetland, Putrajaya city, Malaysia[J]. Journal of Environmental Management, 2008, 88(2): 307-317.
    Chong S, Garelick H, Revitt D M, et al. The microbiology associated with glycol removal in constructed wetlands[J]. Water Science and Technology, 1999, 40(3): 99-107.
    Ciceka N, Lamberta S, Venema H D, et al. Nutrient removal and bio-energy production from Netley-Libau Marsh at Lake Winnipeg through annual biomass harvesting[J]. Biomass &Bioenergy, 2006, 30: 529-536.
    Collins B S, Sharitz R R, Coughlin D P. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands[J]. Bioresource Technology, 2005, 96: 937-948.
    Cristina S C, Calheiros, Antonio O S, et al. Castro Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater[J]. Water Research, 2007, 41: 1790– 1798.
    Darrah P R. Model of the rhizosphere[J]. Plant and Soil, 1991, 138: 147-158.
    Davison J. Plant beneficial bacteria[J]. Bio/technology, 1988, 6: 282–286.
    Delgado M, Guardiola E, Bigeriego M. Organic and inorganic nutrients removal from pig slurry by water hyacinth[J]. Journal of Environmental Science and Health, Part A, 1995, 30: 1423-1434.
    Diederik P L R, Peter A V, Niels D P. Constructed wetlands in Flanders: a performance analysis[J]. Ecological Engineering, 2004, 23(3): 151-163.
    Drizo A, Frost C A, Grace J. et al. Physico-chemical screening of phosphateremoving substrates for use in constructed wetland systems[J]. Water Research, 1999, 33(17): 3595-3602.
    Elsgaard L, Petersen S O, Debosz K. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil.1. Short-term effects on soil microbiology[J]. Environmental toxicology and chemistry, 2001, 20(8): 1656-1663.
    Fang Y Y, Babourina O, Rengel Z, et al. Ammonium and nitrate uptake by the floating plant Landoltia punctata[J]. Annals of Botany, 2007, 99: 365–370.
    Filip Z. International approach to assessing soil quality by ecologically-related biological parameters[J]. Agriculture Ecosystems and Environment, 2002, 88(2): 689-712.
    Forde B G., Clarkson D T, Nitrate and ammonium nutrition of plants: physiological and molecular perspectives[J]. Advances in Botanical Research, 1999, 30: 1-90.
    Gadd G M. Heavy metal accumulation by bacteria and other microorganisms[J]. Experientia, 1990, 46(8): 834-840.
    Garnett T P, Smethurst P J. Ammonium and nitrate uptake by Eucalyptusnitens: effect of pH and temperature[J]. Plant and Soil, 1999, 214: 133-140.
    Glick B R. Phytoremediation: synergistic use of plants and bacteria to clean up the environment[J]. Biotechnology Advances, 2003, 21(5): 383-393.
    Glick, B R, Karaturovic D M , Newell P C. A novel procedure for rapid isolation of plant growth promoting pseudomonads[J]. Canadian Journal of Microbiology, 1995, 41(6): 533-536.
    Glick B R, Patten C L, Holguin G, et al. Biochemical and genetic mechanisms used by plant growthpromoting bacteria[M]. London: Imperial College Press, 1999.
    Gersberg R M, Elkins B V, Lyon S R, et al. Role of aquatic plants in wastewater treatment byartificial wetlands[J]. Water Research, 1986, 20(3): 363–367.
    Hadad H R, Maine M A, Bonetto C A. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment[J]. Chemosphere, 2006, 23: 1744–1753.
    Hans W P, Julianne D, Pia H, et al. Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies[J]. Microbiology Ecology, 2003, 46(3): 233-246.
    Hedge R S, Fletcher J S. Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology[J]. Chemosphere, 1996, 32:2471–2479.
    Herndl G J, Gmueller-Niklas, Jerick. Major role of ultraviolet-B in controlling bacterioplankton growth in the surfacelayer of the ocean[J]. Nature, 1993, 361: 717-719.
    Inderjttl A W. Root exudates: an overview[J]. Ecological Studies, 2003, 168: 235- 256.
    Jan V. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380: 48–65.
    Jing Y D, He Z L, Yang X E. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils[J]. Journal of Zhejiang University Science, 2007, 8(3): 192-207.
    Julio A. C,álvaro A, Marcos P. Eutrophication downstream from small reservoirs in mountain rivers of Central Spain[J]. Water Research, 2005, 39(14): 3376-3384.
    Karjalainen H, Stefansdottir G, Tuominen L, et al. Do submersed plant s enhance microbial activity in sediment[J]. Aquatic Botany, 2001, 69: 1-13.
    Katleen V G, Tom V, Nele V. Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure[J]. FEMS Microbiology Ecology, 2005, 53: 205-220.
    Keith R E, Hana C, Katerina Z, et al. Plant growth and microbial processes in a constructed wetland planted with Phalaris arundinacea[J]. Ecological Engineering, 2006, 27: 153-165.
    Kern J, Idler C. Treatment of domestic and agricultural wastewater by reed bed systems[J]. Ecological Engineering, 1999, 12: 13-25.
    Kim S Y, Geary P M. The impact of biomass harvesting on phosphorus uptake by wetland plants[J]. Water Science and Technology, 2001, 44: 61-67.
    Kloepper J W, Lifshitz R, Zablotowicz R M. Free-living bacterial inocula for enhancing crop productivity[J]. Trends in Biotechnology, 1989, 7: 39– 43.
    Kobdyashi H, Rlttrmann B E. Microbial removal of hazardous organic compounds[J]. Enviroment Science, 1982, 16: 170-183.
    Koottatep T, Polpraserl C. Role of plant uptake on nitrogen removal in constructed wetlands located in tropics[J]. Water Science and Technology, 1997, 36(12): 1-8.
    Lambert B, Joos H. Fundamental aspects of rhizobacterial plant growth promotion research[J].Trends in Biotechnology, 1989, 7: 215–219.
    Lantzke L R, Mitchell D S, Heritage A D, et al. A model of factors controlling orthophosphate removal in planted vertical flow wetlands[J]. Ecological Engineering, 1999,12: 93 - 105.
    Li W, Friedrich R. In situ removal of dissolved phosphorus in irrigation drainage water by planted floats: preliminary results from growth chamber experiment[J]. Agriculture, Ecosystems& Environment, 2002, 90(1): 9-15.
    Liang W, Wu Z B, Cheng S P, et al. Roles of substrate microorganisms and urease activities in wastewater purification in a constructed wetland system[J]. Ecological Engineering, 2003.21: 191-195.
    Lin Y F, Jing S R, Lee D Y. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture[J]. Environmental Pollution, 2003, 123: 107–113.
    Lichtfouse E, Berthier G, Houo S, et al. Stable carbon isotope evidence for the microbial origin of C14~C18 n-alkanoic acids in soils. Organic Geochemistry, 1995, 23 (9) : 849-852.
    Liu Z Y, Shi W M. Study methods of Rhizosphere[J]. Science and Technique Press. 1996: 308-327.
    Maceka T, Mackováb M, Káb J. Exploitation of plants for the removal of organics in environmental remediation[J]. Biotechnology Advances, 2000, 18: 23–34.
    Machate T, Noll H, Behrens H, et al. Degradation of phenanthrene and hydraulic characteristics in a constructed wetland [J]. Water Research, 1997, 31(3): 554-560.
    
    Maine M A, Sune N, Hadad H, et al. Nutrient and metal removal in a constructed wetland for wastewater treatment froma metallurgic industry[J]. Ecological Engineer, 2006, 26: 341- 347.
    Morgan J, Benging, White. Biological costs and benefits to plant-microbe interactions in the rhizosphere[J]. Journal of Experimental Botany, 2005, 56: 417.
    Munzarova E, Lorenzen B, Brix H, et al. The effects of NH4+and NO3- on growth, resource allocation and nitrogen uptake kinetics of Phragmites australis and Glyceria maxima[J]. Aquatic Botany, 2005, 8: 326–342.
    Muuramoto S, Oki Y. Removal of some heavy metals from polluted water by water hyacinth (Eichornia crassipes) [J]. Bulletin of Environmental Contamination and Toxicology, 1983, 30: 170-177.
    Nairn R W, Mitsch W J. Phosphorus removal in created wetland ponds receiving river overflow[J]. Ecological Engineering, 2000, 14: 107-126.
    Nathalie V, Fabien M, Huguette S, et al. Treatment of domestic wastewater by an hydroponic NFT system[J]. Chemosphere, 2003, 50: 121–129.
    Neralla S, Richard W, Weaver, et al. Improvement of domestic wastewater quality by subsurface flow constructed wetlands[J]. Bioresource Technology, 2000, 75: 19-25.
    Okurut T O, Rijs G B J, Van Bruggen, et al. Design and performance of experimental constructedwetlands in Uganda, Planted with Cyperus and Pheagnites mauritianus[J]. Water Science and Technology, 1999, 40(3): 265-271
    OttováV, BalcarováJ, Vymazal J. Microbial characteristics of constructed wetlands[J]. Water Science and Technology, 1997, 35(5): 117-123.
    Patten C L, Glick B R. Bacterial biosynthesis of indole-3-acetic acid[J]. Canadian Journal of Microbiology, 1996, 42: 207– 220.
    Phillip A M B, Horne A J. Denitrification in constructed free-water surface wetlands: Effects of vegetation and temperature[J]. Ecological Engineering, 2000, 14: 17-32.
    Reeta D, Sooknah, Ann C. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater[J]. Ecological Engineering, 2004, 22: 27–42.
    Sanchez-Monedero M A, Roig A, Paredes C, et al. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures[J]. Bioresource Technol, 2001, 78: 301–308
    Shackle J, Freeman C, Reynolds B. Carbon supply and the regulation of enzyme activity in constructed wetlands[J]. Soil Biology and Biochemistry, 2000, 32: 1935-1940.
    Sherwood C, Reed Ronald W, Crities E, Joe Middle-brooks. Natural systems for waste management and treatment[M]. New York: Mcgraw-Hill. Inc. 1995.
    Sherlock Microbial Identification System, Version 415, MIS Operating Mannual. Newark, DE: MIDI , Inc, 2002.
    Shimp J F, Tracy J C, Davis L C, et al. Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials[J]. Environment Science Technology, 1993, 23: 41–77.
    Skinner E, Wright N, Porter-Goff E. Mercury uptake and accumulation by four species of aquatic plants[J]. Environmental Pollution, 2007, 145: 234- 237.
    Smart R M, Barko J W. Laboratory culture of subermesed fresherwater macrophyte on natural sediments[J]. Aquatic Botany, 1983, 21(5): 251-263.
    Solano M L, Soriano P, Ciria M P. Constructed wetlands as a sustainable solution for wastewater treatment in small villages[J]. Biosystems Engineering, 2004, 87(1): 109-118.
    Stottmeister U, Wie?ner A, Kuschk P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances, 2003, 22: 93–117.
    Tanner C C. Plants for constructed wetland treatment systems-a comparison of the growth and nutrient uptake of eight emergent species[J]. Ecological Engineering, 1996, 7: 59-83.
    Vymazal J. Removal of BOD in constructed wetlands with horizontal sub-surface flow:CZECH experience[J]. Water Science and Technology, 1999, 40(3): 133-138.
    Wasaki J, Rothe A, Kania A. Root exudation, Phosphorus acquisition and microbial diversity in the rhizosphere of white lup ine as affected by phosphorus supply and atmospheric carbon dioxide concentration[J]. Journal of Environmental Quality, 2005, 34 (6) : 2157-2167.
    Wang N, Mitsch W J. A detailed ecosystem model of phosphorus dynamics in created riparian wetlands[J]. Ecological Modelling, 2000, 126(223): 101-130.
    Whiting S N, Souza M P, Terry N. Phizosphere Bacteria Mobilize Zn for Hyperaccumulation by Thlaspi caerulescens[J]. Environmental Science & Technology, 2001, 35: 3144-3150.
    Yang L, Chang H T, Huang M N. Nutrient removal in gravel- and soil-based wetland microcosms with and without vegetation[J]. Ecological Engineering, 2001, 18(1): 91-105.
    Yannarell A C, KentA D. Lauster G L, et al. Temporal patterns in bacterial communities in three temperate lakes of different trophic status[J]. Microbial Ecology, 2004, 46: 391-405.
    Zhang Z H, Rengel Z, Meney K. Kinetics of ammonium, nitrate and phosphorus uptake by Canna indica and Schoenoplectus validus[J]. Aquatic Botany, 2009, 91(2): 71-74.
    曹向东,王宝贞.强化塘-人工湿地复合生态塘系统中氮和磷的去除规律[J].环境科学研究, 2000, 13(2): 15-19.
    常会庆,李娜,徐晓峰.三种水生植物对不同形态氮素吸收动力学研究[J].生态环境, 2008, 17(2): 511-514
    常会庆,杨肖娥,方云英等.伊乐藻和固定化细菌共同作用对富营养化水体中养分的影响[J].水土保持学报, 2005, 19(3): 114-117.
    陈博谦,尹澄清.污水净化湿地模拟系统中细菌和藻类的生态分布研究[J].生态学报, 1998, 18(6): 634-639.
    丁浩.梦清园芦苇湿地根际微生物特性初步研究[D].上海:华东师范大学, 2007.
    范秀荣,李广武,沈萍.微生物学实验[M].高等教育出版社,1980.
    冯胜,秦伯强,高光.细菌群落结构对水体富营养化的响应[J].环境科学学报, 2007, 27(11): 1823-1829.
    冯培勇,陈兆平,靖元孝.人工湿地及其去污机理研究进展[J].生态科学, 2002, 21(3): 264-268.
    付融冰,杨海真,顾国维等.人工湿地基质微生物状况与净化效果相关分析[J]. 环境科学研究, 2005, 18(6): 44-49.
    高艳玲,马达.污水生物处理新技术[M].北京:中国建材工业出版社, 2006, 26-30.
    葛滢,常杰,王晓月等.两种程度富营养化水中不同植物生理生态特性与净化能力的关系[J].生态学报, 2000, 20(6): 1050-1055.
    郭天财,宋晓,马冬云等.氮素营养水平对小麦根际微生物及土壤酶活性的影响[J].水土保持学报, 2006, 20(3): 129-132.
    胡元森,吴坤,刘娜等.黄瓜不同生育期根际微生物区系变化研究[J].中国农业科学, 2004, 37(10): 1521-1526.
    黄德锋,李田,陆斌.复合垂直流人工湿地污染物去除及微生物群落结构的PCR-DGGE分析[J].环境科学研究, 2007, 20(6): 137-141.
    焦晓光,梁文举,陈利军等.脲酶/硝化抑制剂对土壤有效态氮、微生物量氮和小麦氮吸收的影响[J].应用生态学报, 2004, 15(10): 1903-1906.
    金相灿.中国湖泊环境[M].北京:海洋出版社, 1995.
    金相灿,郭俊秀,许秋瑾等.不同质量浓度氨氮对轮叶黑藻和穗花狐尾藻抗氧化酶系统的影响[J].生态环境, 2008, 17(1): 1-5.
    李辉,徐新阳,李培军等.人工湿地中氨化细菌去除有机氮的效果[J].环境工程学报, 2008, 2(8): 1044-1047.
    李科得,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科学, 1995, 15(2): 140-144.
    李潞滨,刘敏,杨淑贞等.毛竹根际可培养微生物种群多样性分析[J].微生物学报, 2008, 48(6): 772-779.
    李卫国,龚红梅,常天俊.富营养化条件下凤眼莲(Eichhornia crassipes)对不同氮素形态的生理响应[J].农业环境科学学报, 2008, 27(4): 1545-1549.
    梁宇,郭良栋,马克平.菌根真菌在生态系统中的作用[J].植物生态学报, 2002, 26(6): 739-745.
    梁威,吴振斌,詹发萃等.人工湿地植物根区微生物与净化效果的季节变化[J]. 湖泊科学, 2004, 16(4): 312-317.
    梁威,吴振斌,周巧红等.构建湿地基质微生物与净化效果及相关分析[J].中国环境科学, 2002, 22(3): 282-285.
    廖新俤,骆世明.香根草和风车草人工湿地对猪场废水氮磷处理效果的研究[J]. 应用生态学报, 2002, 13(6): 719-722.
    林茗儀.活性污泥脫硝基因及脫硝菌多样性之研究[M].台湾私立中原大學土木工程學系, 2005.
    刘锋,黎明,李洪林等.不同营养条件下竹叶眼子菜NH4+-N吸收动力学的初步研究[J].武汉植物学研究, 2009, 27 (1) : 98-101.
    刘燕,王圣瑞,金相灿等.水体营养水平对3种沉水植物生长及抗氧化酶活性的影响[J].生态环境学报, 2009, 18(1): 57-63.
    马剑敏,严国安,罗岳平等.武汉东湖受控生态系统中水生植被恢复结构优化及水质动态[J].湖泊科学, 1997, 9(4): 359-363.
    沈根祥,姚芳,胡宏等.浮萍吸收不同形态氮的动力学特性研究[J].土壤通报,2006, 27(3): 505-508.
    沈耀良,王宝贞.人工湿地系统的除污机理[J].江苏环境科技, 1997, 3: 1-6.
    宋祥甫,邹国燕,吴伟明等.浮床水稻对富营养化水体中氮、磷的去除效果及规律研究[J].环境科学学报, 1998, 18(5): 489-494.
    孙敏,郭文善,朱新开等.不同氮效率小麦品种苗期根系的NO3-、NH4+吸收动力学特征[J].麦类作物学报, 2006, 26(5): 84-87.
    孙宜敏.浮萍对污染水体中氮磷吸收富集作用研究[M]:学位论文.华东师范大学资源与环境科学学院.2004.
    童昌华,杨肖娥,濮培民.富营养化水体的水生植物净化试验[J].应用生态学报, 2004, 15(8): 1447-1450.
    万志刚,顾福根,孙丙耀等. 6种水生维管束植物对氮和磷的耐受性分析[J].淡水渔业, 2006, 36(4): 37-40.
    王波,赖涛,沈其荣.不同铵硝配比营养液对典型生菜硝酸盐吸收动力学的影响[J].植物营养与肥料学报, 2007, 13(6): 1098-1104.
    王建龙,吴立波,齐星.用氧吸收速率(OUR)表征活性污泥硝化活性的研究[J]. 环境科学学报, 1999, 19(3): 225-229.
    王晓丹,翟振华,赵爽等.北京翠湖表流和潜流湿地对细菌多样性的影响[J].环境科学, 2009, 30(1): 280-288.
    魏复盛等.水和废水监测分析方法[M].中国环境科学出版社, 2002.
    魏丽萍,梁美生.我国湖泊富营养化问题概述[J].化工文摘, 2008, 6: 38-40.
    闻岳,周琪,蒋玲燕等.水平潜流人工湿地对污水中有机物的降解特性[J].中国环境科学, 2007, 27(4): 508-512.
    吴愉萍,徐建明,汪海珍等. Sherlock MIS系统应用于土壤细菌鉴定的研究[J].土壤学报, 2006, 43(4): 642-647.
    吴振斌,梁威,成水平.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析[J].环境科学学报, 2001, 21(5): 622-624.
    夏会龙,吴良欢,陶勤南.凤眼莲植物修复水溶液中甲基对硫磷的效果与机理研究[J].环境科学学报, 2002, 22(3): 329-332.
    项学敏,宋春霞,李彦生等.湿地植物芦苇和香蒲根际微生物特性研究[J].环境保护科学, 2004, 24: 35-38.
    熊明彪,何建平,宋光煜.根分泌物对根际微生物生态分布的影响[J].土壤通报,2002, 33(2): 145-148.
    许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社, 1986.
    徐丽花,周琪.暴雨径流人工湿地处理系统设计的几个问题[J].给水排水, 2001, 27(8): 32-35.
    严国安,任南,李益健.环境因素对凤眼莲生长及净化作用的影响[J].环境科学与技术, 1994, 64(1): 2-5.
    杨龙元,梁海棠,胡维平等.太湖北部滨岸区水生植被自然修复观测研究[J].湖泊科学, 2002, 14(1): 60-66.
    杨琼芳. FAMS对水体的净化率研究[J].云南环境科学, 2002, 21, (4): 49-52.
    杨玉盛,何宗明.格氏拷天然林与人工林根际土壤微生物及其生化特性的研究[J].生态学报, 1998, 18(2): 198-202.
    袁东海,任全进,高士祥等.几种湿地植物净化生活污水COD、总氮效果比较[J]. 应用生态学报, 2004, 15(12): 2337-2341.
    詹发萃,邓家齐,夏宜琤等.凤眼莲根区异养细菌的群落特征与异养活性的研究[J].水生生物学报, 1993, 17(2): 150-156.
    湛方栋,陆引罡,关国经等.烤烟根际微生物群落结构及其动态变化的研究[J]. 土壤学报, 2005, 42(3): 488-494.
    张鸿,陈光荣,吴振斌等.两种人工湿地中氮、磷净化率与细菌分布关系的初步研究[J].华中师范大学学报(自然科学版), 1999, 33 (4): 575-578.
    张甲耀,夏盛林,邱克明等.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究[J].环境科学学报, 1999, 19(3): 323-327.
    张军,周琪,何蓉.表面流人工湿地中氮磷的去除机理[J].生态环境, 2004, 13 (1) : 98-101.
    张磊,阮建云.茶树氟吸收动力学参数测定方法的研究[J].茶叶科学, 2008, 28(3): 195-200.
    张士萍,张文佺,李艳丽等.崇明东滩湿地土壤生物活性差异性及环境效应分析[J].农业环境科学学报, 2009, 28(1): 112-118.
    张秀敏,陈娟,杨树华.滇池水生植被恢复规划研究[J].云南环境科学, 1998, 17 (3): 38-40.
    张亚丽,董园园,沈其荣等.不同水稻品种对铵态氮和硝态氮吸收特性的研究[J]. 土壤学报, 2004, 41 (6): 918-923.
    张志勇,王刚卫,田晓丽.棉花钾吸收动力学的初步研究和应用[J].棉花科学, 2005, 17(3): 165-170.
    赵大君,郑师章.凤眼莲根分泌物氨基酸对根际肠杆菌F2属细菌降酚的影响[J].应用生态学报, 1996, 7(4): 435-438.
    赵越,马凤鸣,张多英.甜菜对不同氮素吸收动力学的研究[J].东北农业大学学报, 2006, 37(3): 294-298.
    郑师章,乐毅全等.凤眼莲及其根际微生物共同代谢和协同降酚机理的研究[J]. 应用生态学报, 1994, 5(4): 403-408.
    周厚高,黄子锋,王凤兰.水体植物景观[M].贵阳:贵州科技出版社, 2006, 31.
    周晓红,王国祥,杨飞等.空心菜对不同形态氮吸收动力学特性研究[J].水土保持研究, 2008, 15(5): 84-87.
    周小平,王建国,薛利红等.浮床植物系统对富营养化水体中氮、磷净化特征的初步研究[J].应用生态学报, 2005, 16(11): 2199-2203.
    周泽江,杨景辉.水葫芦在污水生态处理系统中的作用及其利用途径I:水葫芦的生物特征及环境因子对其生长的影响[J].生态学杂志, 1984, 5: 36-40.
    诸惠昌,胡纪萃.新型废水处理工艺-人工湿地的设计方法[J].环境科学, 1992, 14(2): 39-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700