巴西香蕉幼苗铵硝响应特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤中供植物吸收利用的氮素主要形态为铵态氮和硝态氮,两种形态的氮源对植株的生理代谢的影响不同。海南岛是我国香蕉重要种植区,不仅氮肥利用率偏低而且香蕉的品质也较低。研究香蕉对铵硝的响应特征旨在了解不同铵硝配比对苗期香蕉生理代谢进程的影响,以期探明适宜巴西香蕉幼苗期生长和吸收的最佳铵硝配比,对进一步了解香蕉氮代谢特点和氮营养特征,进而指导田间合理施肥有着重要的现实意义。
     为此,本研究以巴西香蕉幼苗(四叶一心)为试验材料,采用营养液培养法研究等氮条件下5种不同铵硝比(NH4+-N/NO3--N:0:100、10:90、25:75、50:50和75:25)对巴西香蕉幼苗生理特性的影响;用改进耗竭法研究等氮条件(100%NO3--N、10%NH4+-N+90%NO3--N、75%NH4+-N+25%NO3--N)、增铵条件(100%NO3--N、10%NH4+-N+100%NO3--N、25%NH4+-N+100%NO3--N)、增硝条件(10%NH4+-N+90%NO3--N、10%NH4+-N+100%NO3--N)香蕉幼苗根系吸收硝态氮的动力学特征。研究的主要结果如下:
     (1)钱硝配比影响香蕉幼苗生长,并以铵硝配比10:90最适合香蕉的生长。等氮条件下增铵可以提高根系的生长,不同的铵硝配比对地上部分的生长表现不同。香蕉幼苗中氮的含量、累积量以及铵、硝的含量与铵硝配比有关,在全硝的基础上增加铵的比例可以提高氮在地上部分的含量和累积量,促进氮的吸收和利用。铵硝配比影响香蕉叶绿素含量、光合速率以及硝酸还原酶活性,不过光合速率与叶绿素含量没有明显的正相关关系,香蕉体内硝酸盐含量在一定范围内与硝酸还原酶活性正相关。
     (2)不同铵硝配比条件下香蕉苗期对硝态氮的吸收符合Miehaelis—emen酶动力学模型。数据处理方式中,以Lineweaver-Burke (LB)法得到的数据准确性最高,Vmax用根干重[umol/(g· h), DW]或根鲜重[umol/(g· h)为量纲时得到的动力学参数值均较为合理。
     (3)香蕉幼苗对N03-的吸收速率随营养液中NO3-浓度的增加而增加,增加幅度随营养液中N03-浓度的增加而减少。NH4+-N存在对香蕉幼苗吸收NO3-有明显抑制作用,加铵不仅显著影响香蕉幼苗硝态氮吸收动力学参数Vmax,对Km的影响也达显著水平。在霍格兰营养液的基础上直接添加10%NH4+-N比将10%NO3--N用NH4+-N替换更能降低香蕉对硝态氮的吸收速率,不过这种处理对对Km的影响不显著。因此,在霍格兰营养液100%硝态氮的基础上,增铵降低了香蕉对硝态氮的吸收速率,增10%NH4+-N降低香蕉对硝态氮的亲和力,增25%NH4+-N对香蕉对硝态氮的亲和力的影响则相反;在本试验条件下,香蕉硝氮吸收系统属于低亲和硝态氮吸收系统。
Ammonium and nitrate are the major nitrogen form in soil, and these two kinds of nitrogen source give different effects to plant in physiological level. In Hainan province, as our country important banana planting region, banan has lower yield and quality. This article purpose is to find out the best ratios of NH4+-N/NO3--N for banana seedlings growth and uptakes, and that effects for banana physiology. Thus, nitrogen metabolization and nutrition were illuminated and there was farther realistic significance in guiding field reasonable fertilization.
     The experiments were carried out by hydroponic culture and modified depletion method, with Brazil banana as the experiment material. These segments were divided into two parts.
     Project one:effects of NH4+-N/NO3--N ratios on physiological and biochemical characteristics in growth of Brazil banana, banana seedlings were hydroponically grown in nutrient solution, NH4+-N/NO3--N:0:100、10:90、25:75、50:50and75:25, under the equal concentration of nitrogen conditions.
     Project two:characteristics of nitrate nitrogen uptake, banana seedlings were hydroponically grown under the equal concentration of nitrogen conditions (100%NO3--N、10%NH4+-N+90%NO3--N、75%NH4+-N+25%NO3--N), under the enhanced ammonium nitrogen conditions(100%NO3--N、10%NH4+-N+100%NO3--N,25%NH4+-N+100%NO3--N) and under the enhanced nitrate nitrogen conditions (10%NH4+-N+90%NO3--N、10%NH4+-N+100%NO3--N).The results were showed as follows:
     (1) Growth of banana seedling was influenced by NH4+-N/NO3--N ratios. When the two ions co-existed, the most suitable ratio was NH4+-N/NO3--N for10:90.Under the equal concentration of nitrogen conditions,increasing the concentration of ammonium nitrogen could promote root growth,while aboveground part growth was different.N content, N accumulation, ammonium and nitrate content were related to NH4+-N/NO3--N ratios.Based on100%NO3--N, N content and N accumulation of aboveground part increased pronouncedly with increasing NH4+-N in nutrient solutions, and the nitrogen uptake and utilization could be increased.Chlorophyll contentsnet, photosynthetic rate and the nitrate reductase activity were influenced by NH4+-N/NO3--N ratios.But there was no significant correlation between photosynthetic rate and leaf chlorophyll content. In a certain range, nitrate content was positive correlation with the nitrate reductase activity.
     (2) Nitrate absorption of banana seedlings corresponded with the enzymolysis kinetic equation model of Miehaelis—emen. The results indicated that among the different data processing methods, the LB method was the best. When Vmax was expressed as umol/(g h),DW and umol/(g· h),FW, It was more reasonable of the kinetic parameters.
     (3) NO3-N uptake rate increased with nitrate content in nutrient solution, but the increase rate decreased. NH4+-N in nutrient solution had significant effects on the rate of NO3--N uptake. Both Vmax and Km were significantly influenced by increasing the concentration of ammonium nitrogen.Based on100%NO3---N,10%NH4+-N added directly was more efficient to reduce the rate of NO3--N uptake than10%NH4+-N replacing.But it had no significant directly influence to Km.Therefore, based on100%NO3--N,the rate of NO3--N uptake was reduced by increasing the concentration of ammonium nitrogen;affinity of banana to NO3--N was decreased by increasing10%NH4+-N;but the affinity under increasing25%NH4+-N was opposite.Under the condition of this experiment,system of NO3--N absorption belonged to low-affinity transport system.
引文
[1]Lenka V,Edita M,Olga Vetal.Growth and biomass allocation of sweet flag (Acorus calamusL.)under different nutrient conditions[J].Hydrobiologia,2004,518:9-22.
    [2]Dong C X,Shen Q R,Wang GTomato growth and organic acid changes in esponse to partial replacement of NO-3-N by NH+4-N[J].Pedosphere,2004,14:159-164.
    [3]Loulakakis K A,Roubelakis-Angelakis K A.Nitrogen assimilation in grapevine [A].Roubelakis-Angelakis K A (ed).Molecular biology and biotechnology of the grapevi ne[M].Netherlands:Kluwer Academ 2ic Publishers,2001,159-185.
    [4]张春兰,高祖明,张耀栋,等.氮素形态和N03--N与NH4+-N配比对菠菜生长和品质的影响.南京农业大学学报,1990,13(3):70-74.
    [5]陈巍,罗金葵,姜慧梅,等.不同形态氮素比例对不同小白菜品种生物量和硝酸盐含量的影响.土壤学报,2004,41(3):420-425.
    [6]董园园,董彩霞,卢颖琳,等.NH4+-N部分代替NO3--N对番茄生育中后期氮代谢相关酶活性的影响.土壤学报,2006,43(2):261-266.
    [7]刘东军,张宏纪,祁倩倩,等.不同形态氮素对春小麦苗期生理特性及氮代谢酶的影响.作物杂志,2011,1:20-24.
    [8]戴延波,曹卫星,孙传范.不同小麦品种苗期对混合形态氮素营养的反映.南京农业大学学报,2000,23(1):14-18.
    [9]肖凯,张树华,邹定辉,等.不同形态氮素对小麦光合特性的影响.作物学报,2000,26(1):53-58.
    [10]张亚丽,沈其荣,段英华.不同氮素营养对水稻的生理效应.南京农业大学学报,2004,27(2):130-135.
    [11]张亚丽,段英华,沈其荣.水稻对硝态氮响应的生理指标筛选.土壤学报,2004,41(4):571-576.
    [12]谈建康,张亚丽,沈其荣,等.不同形态氮素对水稻苗期水分利用效率及其生物效应的影响[J].南京农业大学学报,2002,25(3):56-62.
    [13]王娜,陈国祥,邵志广,等.不同形态氮素配比对水稻光和特性的影响.江苏农业学报,2002,18(1):18-22.
    [14]张新要,刘卫群,易建华.红壤、水稻土上不同氮素形态配比对烤烟碳氮代谢关键酶活性的影响.云南农业大学学报,2005,20(2):25-23.
    [15]罗金奎,陈巍,沈其荣.不同小白菜器官对氮素形态响应的生理差异.南京农业大学学报,2004,27(3):50-53.
    [16]张英鹏,徐旭军,林贤勇,等.氮素形态对菠菜可食部分硝酸盐和草酸积累的影响.植物营养与肥料学报,2006,12(2):227-232.
    [17]Steingrover E,Woldeudorp J,Sijtsma L.Nitrate accumulation and its relation to leaf elongation in spinach leaves. Journal of Experimental Botany,1986,37(181):1093-1102.
    [18]Theodore K Ranb,Norman Terry.Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L.Plant Physiol,1994,105:1159-1166.
    [19]师进霖,姜跃丽,宋云华.氮素形态对黄瓜幼苗生长及氮代谢酶活性影响.中国农学通报,2009,25(22):225-227.
    [20]师进霖,姜跃丽,陈恩波.氮素形态对黄瓜幼苗光合特性及碳水化合物代谢的影响.江西农业学报,2009,21(10):57-58.
    [21]曹翠玲,李生秀,苗芳.氮素对植物某些生理生化过程影响的研究进展.西北农业大学学报,1999,27(4):96-102.
    [22]王波,沈其荣,赖涛,等.不同铵硝比对营养液对生菜生长发育影响的研究.土壤学报,2007,44(3):561-565.
    [23]卢凤刚,郭丽娟,陈贵林,等.不同氮素形态配比对韭菜产量和品质的影响.河北农业大学学报,2006,29(1):27-30.
    [24]杨阳,郑秋玲,裴成国,等.不同铵硝比对霞多丽葡萄幼苗生长和氮素营养的影响.植物营养与肥料学报,2010,16(2):370-375.
    [25]陈磊,朱月林,杨立飞,等.氮素不同形态配比对菜用大豆生长、种子抗氧化酶活性及活性氧代谢的影响.植物营养与肥料学报,2010,16(3):768-772.
    [26]陈煜,朱保葛,张敬.不同氮源对大豆硝酸还原酶和谷氨酰胺合成酶活性及蛋白质含量的影响.大豆科学,2004,23(2):143-146.
    [27]李先信,黄国林,陈宏英,等.不同形态氮素及配比对脐橙生长和叶片矿质元素含量的影响.湖南农业大学学报,2007,33(5),622-625.
    [28]樊卫国,刘进平,向灵,等.不同形态氮素对刺梨生长发育的影响.园艺学报,1998,25(1):27-32.
    [29]晏枫霞,王康才,罗庆云,等.氮素形态对菘蓝氮代谢、光合作用及生长的影响.中国中药杂志,2009,34(16):2038-2041.
    [30]雷泽湘,艾天成,李方敏,等.草莓叶片叶绿素含量、含氮量与SPAD值间的关系.湖北农学院学报,2001,21(2):138-140.
    [31]张长伟,高世铭,王亚宏,等.不同形态氮素比对马铃薯氮素分布、光和参数及产量的影响.甘肃农业大学学报,2009,44(6):39-43.
    [32]蔡克强,黄维南.杨梅硝酸还原酶活力研究.核农学报,1990,(2):99-104.
    [33]田霄鸿,李生秀,王朝辉,等.莴笋对不同形态氮素的反应[J].应用生态学报.2003,14(3):377-381.
    [34]高青海,魏珉,杨风娟,等.黄瓜幼苗干物质积累、膨压及速率对铵态氮和硝态氮的响应[J].植物营养与肥料学报,2008,14(1):120-125.
    [35]李学俊,文建雷,韩书成,等.氮素形态对玉米幼苗生物机制及生物量的影响[J].西北农林科技大学学报:自然科学版,2008,36(3):192-196.
    [36]孙传范,戴延波,曹卫星.不同施氮水平下增铵营养对小麦生长和氮素利用的影响.植物营养与肥料学报,2003,9(1):33-38.
    [37]司江英,汪晓丽,陈冬梅,等.不同pH和氮素形态对作物幼苗生长的影响.扬州大学学报,2007,28(3):68-71.
    [38]Yah F,Feuerle R,Sehaffer S.Adaptation of active proton pumping and plasmalemnla ATPase activity of corn roots to low root medium pH[J].Plant Physiology,1998,117:311-319.
    [39]Epstein E,Hagen C E.A Kinetic study of the absorption of alkalizations by barely roots[J].PlantPhysiol,1952,27:457-474.
    [40]Classen N,Barber S A.A method for characterizing the relation between nutrient concentration and flux into roots of intact plants [J]. Plant Physiol,1974,54:564-568.
    [41]Baligar V C,Barber S A.Genotypic differences of corn for ion uptake[J].Agron. J, 1979,71:870-8731.
    [42]黄建国,杨邦侵,袁玲.小麦不同品种吸收钾离子的动力学研究[J].植物营养与肥料学报,1995,1(1):38-43.
    [43]Haynes R J.Mineral nitrogen in plant-soil system[M].Orlando,,Florida:Academic Press,1986,303-358.
    [44]王波,赖涛,沈其荣.不同铵硝配比营养液对典型生菜硝酸盐吸收动力学的影响[J].植物营养与肥料学报,2007,13(6):1098-1104.
    [45]魏红旭,徐程杨,马履一,等.长白落叶松幼苗对铵态氮和硝态氮吸收的动力学特征[J].植物营养与肥料学报,2010,16(2):407-412.
    [46]翟明普,蒋三乃.小钻杨和刺槐根系养分吸收的动力学研究[J].北京林业大学学报,2006,28(2):29-33.
    [47]杨洪强,张连忠,戚金亮,等.苹果砖木根系钙素吸收动力学研究[J].园艺学报,2003,30(3):253-257.
    [48]杨肖娥,孙羲.不同水稻品种NH4+和N03-吸收的动力学[J].土壤通报,1991,22(5):222-224.
    [49]田霄鸿,李生秀,王清君.几种作物N03-吸收动力学参数测定方法初探[J].土壤通报,2001,32(1):16—19.
    [50]孙敏,郭文善,朱新开,等.不同氮效率小麦品种苗期根系的N03-、NH4+吸收动力学特征[J].麦类作物学报,2006,26(5):84-87.
    [51]汪晓丽,陶玥玥,盛海军,等.硝态氮供应对小麦根系形态发育和氮吸收动力学的影响[J].麦类作物学报,2010,30(1):129-134.
    [52]孙小茗,封克,汪晓丽.K+高亲和转运系统吸收动力学特征及其受NH4+影响的研究[J].植物营养与肥料学报,2007,13(2):208-212.
    [53]高祖明,张春兰,倪金应,等.黄瓜等九种蔬菜与N03--N亲和力的研究[J].南京农业大学学报,1990,13(1):75-79.
    [54]张亚丽,董园园,沈其荣,等.不同水稻品种对铵态氮和硝态氮吸收特性的研究.土壤学报,2004,41(6):918-923.
    [55]任军,徐程杨,林玉梅,等.水曲柳幼苗根系吸收不同形态氮的动力学特征.植物生理学通报,2008,44(5):919-922.
    [56]赵越,马凤鸣,张多英.甜菜对不同氮素吸收动力学的研究[J].东北农业大学学报,2006,37(3):294-298.
    [57]Kirk GJ D.Plant-mediated processes to acquire nutrients:Nitrogen uptake by rice plants[J]. Plant Soil,2001,232:129-134.
    [58]Kronzucker HJ,Siddiqi M Y,Class A DM et al.Nutrient ammonium synergism in rice:A sub cellular flux analysis[J].Plant Plysiol.1999,119:1041-1045.
    [59]Youngdahl L J,Pacheco R.Street J et al.The kinetics of ammonium and nitrate uptake and by young rice plants[J].Plant Soil,1982,69:225-232.
    [60]Baligar V C,Barber S A.Genotypic differences of corn for ion uptake[J].Agron. J, 1979,71:870-8731.
    [6]Marschner H. Mineral Nutrition of Higher Plants.2nd Ed. London; Academic Press, 1997.
    [62]Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants.Trends in Plant Science,1998,3:389-395.
    [63]汪晓丽,封克,盛海君,等.不同水稻基因型苗期NO3-吸收动力学特征及其受吸收液中NH4+的影响.中国农业科学,2003,36(]1):1306-1311.
    [64]杜旭华,彭芳仁.无机氮素形态对茶树氮素吸收动力学特征及个体生长的影响.作物学报,2010,36(2):327-334.
    [65]Mengel K,Viro M,Heral GEffect of potassium on uptake and incorporation of ammonium-nitrogen by rice plants.Plant Soil,1976,43:479-486.
    [66]Hebcr J.Kirk M.R,Cvmnlder H.Schafer G.Uptake and reduction of glycerate by isolated chlorloplasts.Planta,1974,120:32-36.
    [67]Mengel K,Robiu P,salsac L.Nitrate reductase activity in shorts and roots of maize seedlings as affected by the form of nitrogen and PH of the nutrition solution Hant physidogyl.983,71:618-622.
    [68]RaabK T,Terry N.Nitrogen source regulation of growth and photosynthesis in Beta vulgaris.Plant Physiol,1994,105:1159-1166.
    [69]谭万能,李秧秧.不同氮素形态对向日葵生长和光合功能的影响.西北植物学报,2005,25(6):1191-1194.
    [70]郑桂英.浅析香蕉的营养特性及施肥技术.福建农业科学.2005(1):46-47.
    [71]杜瑛,王蕊.植物硝态氮营养.阴山学刊,2007:21(4),66-71.
    [72]宋海星,申斯乐,等.硝态氮与铵态氮对大豆幼苗生长及氮素积累的影响。大豆科学,1998,16(2):178-180.
    [73]GashawL,Mugwira LM.Ammonium N and nitrate N effects on the growth of and mineral composition of triticale, wheat and rye[J]. Agron. J.,1981,73:47-51.
    [74]朱祝军,寿森炎,Joska Gerendas,等.氮素形态和光照强度对菜豆生长和抗氧化酶活性的影响[J].浙江大学学报,1998,24(1):51-56.
    [75]张英鹏,林咸永,章永松,等.不同氮素形态对菠菜生长及体内抗氧化酶活性的影响[J].浙江大学学报,2006,32(2):139-144.
    [76]余勤,邝炎华根系养分吸收动力学研究及应用.华南农业大学学报,1996,18(1):105-110.
    [77]华海霞,梁永超,娄运生,等.水稻硅吸收动力学参数固定方法的研究[J].植物营养和肥料学报,2006,12(3):358-362.
    [78]周晓红,王国祥,杨飞,等.空心菜对不同形态氮吸收动力学特性研究[J].水土保持研究,2008,15(5):84-87.
    [79]蒋廷惠,郑绍建,石锦芹,等.植物吸收养分动力学研究中的几个问题[J].植物营养与肥料学报,1995,1(2):11-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700