香根草修复富营养化水体及去除重金属铜污染的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验研究了香根草对不同程度富营养化水体的修复效果,香根草对不同浓度重金属Cu的吸收效果以及聚天冬氨酸(PASP)对香根草去除氮、磷及重金属Cu效果的影响。
     香根草对含高浓度氮、磷的水体有很好的适应能力,在不同程度富营养化水体中均表现出较好的生长态势,植株鲜重的增长率、组织内的氮磷含量与水体的富营养化程度呈正相关。对氮、磷去除机理的研究发现:NH4+-N去除的主要途径不是植物吸收,而是以水体中微生物的硝化作用为主;香根草的存在为亚硝化细菌、硝化细菌提供了附着基质和栖息场所,为N02--N的去除提供了有利的条件;N03--N的去除主要依靠香根草的同化吸收;总磷(TP)的去除主要是植物吸收、微生物转化以及磷的吸附沉降共同作用的结果。
     香根草对NH4+-N的最大吸收速率(Vmax)和亲和力(1/Km)均大于对N03--N的最大吸收速率(Vmax)和亲和力(1/Km),具有优先吸收NH4+-N的趋势。
     PASP能够促进香根草的生长,加强植物的光合作用;PASP浓度为10 mg·L-1时,对去除总氮(TN)的促进作用较为明显;不同浓度的PASP对去除TP的促进作用都较为明显。
     香根草对重金属Cu2+有一定的耐性。随着Cu2+浓度的增加,香根草体内叶绿素含量减少且丙二醛含量均高于对照组,说明香根草受到了一定的毒害。香根草叶、根组织内的Cu含量与溶液中Cu2+浓度正相关,且根部是主要的富集器官。香根草对Cu2+的吸收过程为快速吸附—释放—缓慢代谢吸收。在低Cu2+浓度下,PASP可以促进香根草的生长,并能在一定程度上缓解Cu2+对香根草组织的伤害。添加PASP后,香根草根内的Cu含量有所增加,但叶中Cu含量没有明显变化。
The study investigated the remediation effect of eutrophic water by Vetiveria zizanioides under different nutritional environment, the absorption effect of heavy metal copper by Vetiveria zizanioides under different Cu2+concentrations, and the effect of polyaspartic acid (PASP) on the removal of N、P and the absorption of heavy metal copper.
     Vetiveria zizanioides had a good ability to adapt to high concentration of N, P. Vetiveria zizanioides grew well in different eutrophic waters. There was a positive correlation between fresh weight growth rate of plant, the content of N、P within the tissue of Vetiveria zizanioides and water eutrophication level. On the basis of mechanism study on nitrogen and phosphorus removal, it was found the NH4+-N was removed mainly by nitrification of microbe in waters, not by the adsorption of plant; Vetiveria zizanioides provided a good living environment for the nitrifying bacteria, and thus it provided favorable conditions for the removal of NO2--N. NO3--N was removed mainly by the assimilation of Vetiveria zizanioides, and TP was removed mainly by the interaction of Vetiveria zizanioides absorption, microbial transformation and phosphorus sorption and settlement.
     NH4+-N would be absorpted by Vetiveria zizanioides at first priority, because the maximum absorption rate (Vmax) and affinity (1/Km) of NH4+-N were higher than those of NO3---N.
     PASP could promote the growth of Vetiveria zizanioides and enhance photosynthesis of plants. The removal of TN was enhanced remarkably at 10 mg·L-1 of PASP. The removal of TP was considerably enhanced by PASP under different concentrations.
     Vetiveria zizanioides had better tolerance to heavy metal copper. With the increase of Cu2+concentration, the content of chlorophyll within the tissue of Vetiveria zizanioides decreased, and the content of malonic dialdehyde was higher than that of control group, indicating that Vetiveria zizanioides had been poisoned to some extent. The content of copper in leaves and roots of Vetiveria zizanioides had a positive correlation with the concentration of Cu2+in solution, and copper mainly concentrated in the roots of Vetiveria zizanioides. The Cu2+absorption of Vetiveria zizanioides was the process of fast sorption-release-slow metabolism absorption. PASP could promote the growth of Vetiveria zizanioides at low Cu2+ concentration, and alleviate the damage of Cu2+to the Vetiveria zizanioides tissue to some extent. After adding PASP, the copper content of the Vetiveria zizanioides roots increased a little, but the copper content of the Vetiveria zizanioides leaves had no significant change.
引文
[1]甘萍.浅析我国水资源污染状况及处理技术[J].江西化工,2006(4):82-83.
    [2]中国环保部.中国环境状况公报(2009),2010.
    [3]廖国礼,吴超.尾矿区重金属污染浓度预测模型及其应用[J].中南大学学报,2004,35(6):1009-1013.
    [4]刘茂生,宋继军.有害元素铅与人体健康[J].微量元素与健康研究,2004,21(4):62-63.
    [5]廖自基.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学出版社,1989.
    [6]廖国礼,吴超.资源开发环境重金属污染与控制[M].长沙:中南大学出版社,2006.
    [7]何晓丽,何云芳.植物修复技术在水体污染治理中的应用[J].浙江林业科技,2007,27(6):61-65.
    [8]黄亚,傅以钢,赵建夫.富营养化水体水生植物修复机理的研究进展[J].农业环境科学学报,2005,24(增刊):379-383.
    [9]姚超英.重金属废水的植物修复技术[J].中国科技信息,2006(16):39-40.
    [10]胡绵好.水生经济植物浮床技术改善富营养化水体水质的研究[D].上海:上海交通大学,2008.
    [11]谢雄飞,肖锦.水体富营养化问题评述[J].四川环境,2000,19(2):22-25.
    [12]周怀东,彭文启.水污染与水环境修复[M].北京:化学工业出版社,2005.
    [13]张莉.湖泊富营养化及控制对策研究[J].环境与可持续发展,2008(6):62-64.
    [14]韩志国,郑解生.淡水水体中的蓝藻毒素研究进展(综述)[J].暨南大学学报:自然科学与医学版,2001,22(3):129-135.
    [15]高爱环,李红缨,郭海福.水体富营养化的成因,危害及防治措施[J].肇庆学院学报,2005,26(5):4144.
    [16]姜建国,吴生桂.东湖原生动物群落结构变化与水质差异的相关研究[J].生态学杂志,2000,19(5):40-44.
    [17]韩德举,吴生桂,邹清等.陆水水库的浮游生物及营养类型[J].湖泊科学,1996,8(4):351-358.
    [18]殷琨.水体富营养化的影响及其防治技术[J].中国资源综合利用,2006,24(5):19-22.
    [19]陈水勇,吕一锋.水体富营养化的形成,危害和防治[J].环境科学与技术,1999(2):11-15.
    [20]宁寻安,陈文松,李萍等.污染底泥修复治理技术研究进展[J].环境科学与技术,2006,29(9):100-102.
    [21]孙刚,盛连喜.中国湖泊渔业与富营养化的关系[J].东北师大学报:自然科学版, 1999(1):74-78.
    [22]Shapiro J, Lamarra V, Lynch M. Biomanipulation:An Ecosystem Approach to Lake Restoration[J].1975:85-96.
    [23]Glindemann D, Stottmeister U, Bergmann A. Free Phosphine from the Anaerobic Biosphere[J]. Environmental Science and Pollution Research,1996,3(1):17-19.
    [24]Nagadomi H, Kitamura T, Watanabe M, et al. Simultaneous Removal of Chemical Oxygen Demand (COD), Phosphate, Nitrate and H2S in the Synthetic Sewage Wastewater Using Porous Ceramic Immobilized Photosynthetic Bacteria[J]. Biotechnology Letters,2000, 22(17):1369-1374.
    [25]王平,吴晓芙,李科林等.应用有效微生物群(EM)处理富营养化源水试验研究[J].环境科学研究,2004,17(3):39-43.
    [26]Bachard P, Home A. Denitrification in Constructed Free-Water Surface Wetlands:∏. Effects of Vegetation and Temperature[J]. Ecological engineering,2000(14):17-32.
    [27]重金属污染现状[J].金属世界,2010(3),25-26.
    [28]孙滔.重金属污染之痛[J].科学新闻,2009(20):20-21.
    [29]成新.太湖流域重金属污染亟待重视[J].水资源保护,2002(4):39-41.
    [30]廖国礼,吴超,谢正文.铅锌矿山环境土壤重金属污染评价研究[J].湖南科技大学学报:自然科学版,2004,19(4):78-82.
    [31]王海东,方凤满,谢宏芳.中国水体重金属污染研究现状与展望[J].广东微量元素科学,2010(1):14-18.
    [32]Oertel N. Plants and Animals as Biomonitors of Heavy Metal Level in the Aquatic Ecosystem of the River Danube[J]. Toxicology Letters,1995,78(1001):9-9.
    [33]田俊杰.Cd污染水体的植物修复及毒效应研究[D].吉林:吉林农业大学,2007.
    [34]De La Torre F, Ferrari L, Salibian A. Freshwater Pollution Biomarker:Response of Brain Acetylcholinesterase Activity in Two Fish Species[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2002,131(3):271-280.
    [35]周新文,朱国念,孙锦荷等.Cu, Zn, Pb, Cd对鲫鱼(Carassius Auratus)组织DNA毒性的研究[J].核农学报,2001,15(3).
    [36]梁君荣,王军.四种重金属对中国鲎(Tachypleus Tridentatus)胚胎发育的影响[J].生态学报,2001,21(6):1009-1012.
    [37]Lam K, Ko P, Wong J, et al. Metal Toxicity and Metallothionein Gene Expression Studies in Common Carp and Tilapia[J]. Marine Environmental Research,1998,46(1-5):563-566.
    [38]杨霄霖,郑舜琼.环境铅污染对妇女生育功能危害的调查[J].环境与健康杂志,1998,15(4):154-156.
    [39]秦俊法,李增禧.镉的人体健康效应[J].广东微量元素科学,2004,11(6):1-10.
    [40]葛俊森,梁渠.水中重金属危害现状及处理方法[J].广州化工,2007,35(5):69-70.
    [41]张淑琴,童仕唐.活性炭对重金属离子铅镉铜的吸附研究[J].环境科学与管理,2008,33(4):91-94.
    [42]Kocaoba S, Akcin G. Removal of Chromium (Ⅲ) and Cadmium (Ⅱ) from Aqueous Solutions[J]. Desalination,2005,180(1-3):151-156.
    [43]黄海涛,梁延鹏,魏彩春等.水体重金属污染现状及其治理技术[J].广西轻工业,2009,25(5):99-100.
    [44]王绍文,姜风有.重金属废水治理技术:[M].北京:冶金工业出版社,1993.
    [45]李纯茂,俞宁.膜分离技术在重金属废水处理中的应用研究[J].三峡环境与生态,2009,2(1):46-49.
    [46]Mehiguene K, Taha S, Gondrexon N, et al. Copper Transfer Modeling through a Nanofiltration Membrane in the Case of Ternary Aqueous Solution[J]. Desalination,2000, 127(2):135-143.
    [47]陈红盛,叶裕才,白庆中等.聚合物辅助陶瓷膜处理重金属废水[J].膜科学与技术,2005,25(6):45-50.
    [48]Bilge A, Sevil V. Kinetics and Equilibrium Studies for the Removal of Nickel and Zinc from Aqueous Solutions by Ion Exchange Resins[J]. Journal of hazardous materials,2009, 167(1-3):482-488.
    [49]Kapoor A, Viraraghavan T, Cullimore D. Removal of Heavy Metals Using the Fungus Aspergillus Niger[J]. Bioresource Technology,1999,70(1):95-104.
    [50]张坤,罗书.水体重金属污染治理技术研究进展[J].中国环境管理干部学院学报,2010,20(3):62-64.
    [51]Xie Y, Wen M, Yu D, et al. Growth and Resource Allocation of Water Hyacinth as Affected by Gradually Increasing Nutrient Concentrations [J]. Aquatic Botany,2004,79(3): 257-266.
    [52]Gerke S, Baker L, Xu Y. Nitrogen Transformations in a Wetland Receiving Lagoon Effluent:Sequential Model and Implications for Water Reuse[J]. Water research,2001,35(16): 3857-3866.
    [53]Tanner C. Plants for Constructed Wetland Treatment Systems--a Comparison of the Growth and Nutrient Uptake of Eight Emergent Species[J]. Ecological engineering,1996, 7(1):59-83.
    [54]张鸿,吴振斌.两种人工湿地中氮磷净化率与细菌分布关系的初步研究[J].华中师范大学学报:自然科学版,1999,33(4):575-578.
    [55]Glick B. Phytoremediation:Synergistic Use of Plants and Bacteria to Clean up the Environment[J]. Biotechnology Advances,2003,21(5):383-393.
    [56]孙宇.洋河水库水环境的水生植物修复研究[D].武汉:华中农业大学,2006.
    [57]于世龙,韩玉林,付佳佳等.富营养化水体植物修复研究进展[J].安徽农业科学,2008,36(31):13811-13813.
    [58]孙文浩,俞子文.凤眼莲无菌苗培养及其克藻效应[J].植物生理学报,1990,16(3):301-305.
    [59]吴振斌,邱东茹,贺锋等.水生植物对富营养水体水质净化作用研究[J].武汉植物学研究,2001,19(4):299-303.
    [60]刘淑媛,任久长,由文辉.利用人工基质无土栽培经济植物净化富营养化水体的研究[J].北京大学学报(自然科学版),1999,35(4):518-522.
    [61]王超,张文明,王沛芳等.黄花水龙对富营养化水体中氮磷去除效果的研究[J].环境科学,2007,28(5):975-981.
    [62]李欲如,操家顺.冬季低温条件下浮床植物对富营养化水体的净化效果[J].环境污染与防治,2005,27(7):505-508.
    [63]Sooknah R, Wilkie A. Nutrient Removal by Floating Aquatic Macrophytes Cultured in Anaerobically Digested Flushed Dairy Manure Wastewater[J]. Ecological engineering,2004, 22(1):27-42.
    [64]祝宇慧,赵国智,李灵香玉等.湿地植物对模拟污水的净化能力研究[J].农业环境科学学报,2009,28(1):166-172.
    [65]范修远,陈玉成.重金属污染水域的植物修复[J].山区开发,2003,4:41-43.
    [66]Cunningham S, Berti W, Huang J. Phytoremediation of Contaminated Soils[J]. Trends in Biotechnology,1995,13(9):393-397.
    [67]何池全,李蕾,顾超.重金属污染土壤的湿地生物修复技术[J].生态学杂志,2003,22(5):78-81.
    [68]陈金霞,张小莉.生物修复技术在污染治理中的应用[J].上海化工,2000,25(9):4-7.
    [69]陈明利,张艳丽,吴晓芙等.人工湿地植物处理含重金属生活废水的实验研究[J].环境科学与技术,2008,31(12):164-168.
    [70]Daniela B, Anna A, Paul D. Assessment of macro and micro-element accumulation capability of two aquatic plants[J]. Environmental Pollution,2004,130(2):149-156.
    [71]黄永杰,刘登义,王友保等.八种水生植物对重金属富集能力的比较研究[J].生态学杂志,2006,25(5):541-545.
    [72]王光华,陈海生,刘进宝.生态沟渠中盘培牧草去除养猪场废水中重金属Cu, Zn和Cd效果的研究[J].江西农业学报,2010,22(6):141-142.
    [73]Cardwell A J, Hawker D W, Greenway M.Metal accumulation in aquatic macrophytes from southeast Queensland, Australia[J]. Chemosphere,2002,48 (7):653-663.
    [74]Tarun K M, Peter A, Andrea L C. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis[J]. Environmental Pollution,2002,120(2):307-311.
    [75]刘新科,程丽琼,彭星元.香根草生态工程技术研究综述[J].林业建设,2006(1):34-38.
    [76]夏汉平,柯宏华,邓钊平等.人工湿地处理炼油废水的生态效益研究[J].生态学报,2003,23(7):1344-1355.
    [77]司友斌,包军杰,曹德菊等.香根草对富营养化水体净化效果研究[J].应用生态学报,2003,14(2):277-279.
    [78]刘云国,宋筱琛,王欣等.香根草对重金属镉的积累及耐性研究[J].湖南大学学报:自然科学版,2010(1):75-79.
    [79]努扎艾提·艾比布,刘云国,曾光明等.香根草对镉毒害的生理耐性和积累特性[J]. 环境科学学报,2009,29(9):1958-1963.
    [80]钟珍梅,王义祥,杨冬雪等.4种植物对铅,镉和砷污染土壤的修复作用研究[J].农业环境科学学报,2010,29(B03):123-126.
    [81]吴治将,彭莺,龙建佑.聚天冬氨酸阻垢性能的实验研究[J].顺德职业技术学院学报,2009,7(3):10-13.
    [82]霍宇凝,刘珊.聚天冬氨酸对碳酸钙阻垢性能的研究[J].水处理技术,2001,27(1):26-28.
    [83]Sanders L J. Treatment of tree seedings to enhance survival rate[P]. United States:US 5935909,1999,8.
    [84]中国国家环保总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [85]周真明,叶青,沈春花等.3种浮床植物系统对富营养化水体净化效果研究[J].环境工程学报,2010,4(1):91-95.
    [86]张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2002.
    [87]曾爱平,刘洪见,徐晓薇等.2种挺水植物治理生活污水的研究[J].浙江农业科学,2009(4):806-808.
    [88]高廷耀,顾国维.水污染控制工程(下)[M].北京:高等教育出版社,1999.
    [89]Epstein E, Hagen C. A Kinetic Study of the Absorption of Alkali Cations by Barley Roots[J]. Plant Physiology,1952,27(3):457.
    [90]张亚丽,董园园,沈其荣等.不同水稻品种对铵态氮和硝态氮吸收特性的研究[J].土壤学报,2004,41(6):918-923.
    [91]赵越,马凤鸣,张多英.甜菜对不同氮素吸收动力学的研究[J].东北农业大学学报,2006,37(3):294-298.
    [92]孙敏,郭文善,朱新开等.不同氮效率小麦品种苗期根系的N03-,NH4+吸收动力学特征[J].麦类作物学报,2006,26(5):84-87.
    [93]周晓红,王国祥,杨飞等.空心菜对不同形态氮吸收动力学特性研究[J].水土保持研究,2008,15(5):84-87.
    [94]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004。
    [95]梅庆慧.环保型聚合物PASP在农业上的应用研究(D).上海:华东理工大学,2005.
    [96]李明.镉,铜,锌对四种水生植物的毒性效应[D].吉林:东北师范大学,2007.
    [97]夏卓英,张明强,王良峰.不同浓度Pb(Ⅱ)对稀脉萍和紫萍的毒性效应[J].环境科学与技术,2009,32(6):123-129.
    [98]邱昌恩,毕永红,胡征宇.Zn2+胁迫对绿球藻生长,生理特性及细胞结构的影响[J].水生生物学报,2007,31(4):503-508.
    [99]刘文莉,金则新,柯世省.铜对夏腊梅种子萌发及抗氧化酶活性的影响[J].环境化学,2008,27(1):44-48.
    [100]李子芳,刘惠芬,熊肖霞等.镉胁迫对小麦种子萌发幼苗生长及生理生化特性的 影响[J].农业环境科学学报,2005,24(1):17-17.
    [101]张开明,黄苏珍,原海燕等.铜污染的植物毒害,抗性机理及其植物修复[J].江苏环境科技,2005,18(1):4-6.
    [102]Nishizono H, Ichikawa H, Suziki S, et al. The Role of the Root Cell Wall in the Heavy Metal Tolerance Ofathyrium Yokoscense[J]. Plant and soil,1987,101(1):15-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700