造波理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在船舶与海洋工程领域内,数值模拟与模型试验是解决物体在波浪中运动及波浪与结构物相互作用问题的主要技术手段。造波是数值波浪水池计算过程以及物理水池试验过程中的一项重要技术。有效的数值造波方法不但能够提高数值波浪水池的计算效率,同时也是开发物理造波机功能的有力工具。造波机是大型水池的重要设备,其系统集成与运动控制技术是实现水池造波的基础。除造波技术外,如何消除从模型及消波装置上反射回来的波浪,避免它们撞击造波板形成二次反射波从而提高数值计算及模型试验的精度,是数值水池与物理水池都必须面对的问题。本文针对数值造波方法、多向造波机的系统集成与运动控制、水池造波的实现以及主动吸收造波技术进行了研究,主要内容包括:
     (1)基于CFD技术建立了粘性数值造波模型,采用速度边界造波方法对三维水池中二阶Stokes波的生成进行了模拟,采用质量源造波方法对孤立波的生成进行了模拟;应用混合欧拉拉格朗日自由面条件建立了基于高阶边界元法的势流数值造波模型,结合波谱相位聚焦的原理,应用该模型对摇板式造波机生成聚焦波进行了仿物理造波模拟。
     (2)通过对进口伺服产品进行技术解读,基于Sercos总线协议建立了多向造波机的控制系统,编写了伺服驱动器中的位置控制程序、伺服控制器中的插补程序及上位机中的造波软件,实现了多向造波机的运动控制,通过正向规则波造波过程中多点同步测试,对多板同步控制进行了验证。
     (3)基于不规则波的线性叠加法,讨论了海洋工程模型试验中先进的白噪声不规则波的生成方法,并在水池中进行了白噪声不规则波模拟试验;讨论了单边摇板式多向造波机生成斜向波与三维波的方法,并基于多向造波机的差动控制在水池中进行了模拟试验,编写了频谱分析及方向谱分析程序,通过频谱分析与迭代修正在水池中生成了较好品质的斜向规则波、斜向不规则波及三维波。
     (4)基于势流理论与线性叠加原理,对主动吸收造波原理进行了推导,通过理论推导将目前两种主流的主动吸收造波技术统一在一个理论框架内;从控制系统的角度诠释了主动吸收造波技术,从而将智能控制的思想引入主动吸收造波问题,提出一种新颖的主动吸收造波策略。
     (5)从数值仿真与物理水槽试验两个方面对本文提出的主动吸收造波方法进行了验证。在数值水池中,分别对前人方法与本文方法进行了主动吸收造波对比研究;在物理水槽方面,建立了摇板式主动吸收造波原理样机,针对主动吸收造波机运动的特点,编写伺服电机实时插补位置控制程序,实现了造波机目标行程的在线修改,并基于入、反射波浪分离的时域算法,对主动吸收造波的吸波效果进行了分析与评价。
In the field of naval architecture and ocean engineering, numerical simulation and modeltest are two main approaches to investigate the wave-structure interaction problems. Wavegenerating is the key aspect of the numerical wave tank technique and also the correspondingphysical basin. Effective numerical wave generating method could improve the efficiency ofthe numerical wave tank, which in turn is beneficial for researching the wave generatingprocess in the real physical world as well. Wave-maker is one of the fundamental equipmentsfor ocean basin, and the system integration and control strategy are the indispensable basis forgenerating high quality waves. Besides wave generating, active absorbing the wave reflectedby the model and beach also matters a lot for both the numerical and physical tank. Otherwise,this part of the wave would again be pushed away by the wave-maker towards to the model,which is also referred as second reflection. Obviously, this additional reflection will inevitablycorrupt the accuracy of the test. This thesis concerns on the following issues: numerical wavegenerating; the system integration and motion control of multi-directional wave maker; activewave absorption. The detailed illustration is as follows:
     (1) Viscous numerical wave tank was established based on CFD theory, by which3Dsecond order stokes wave and solitary wave were simulated using velocity boundarytechnique and mass source techniques respectively. Highly non-linear boundaryelement method coupled with Mixed-Euler-Lagrange method were employed todevelop the numerical wave tank. Based on this model and using the phase focusingtheory, the focus wave phenomenon was simulated through flap-type wave maker.
     (2) Based on the analysis of the imported control server, the control system of themulti-directional wave maker was set up by Sercos bus. Moreover, the position controland interpolation programs were developed as well. Through all these fundamentalwork, the accurate motion control was realized. The Synchronous Control ofmulti-wave-maker was achieved by synchronal testing of the regular wave during thewave making process.
     (3) According to linear superposition theory, the advanced white noise irregular wavegenerating technique was investigated and conducted in the wave basin. The generation of oblique wave and short crest wave by unilateral rock-flap multi-directionalwave-maker were investigated and the physical test was also conducted in the wavebasin by differentiating control of wave-maker. Frequency and directional spectrumanalysis programs were developed. Through spectral analysis and iteration amendment,high quality oblique regular, oblique irregular and shor crest wave were obtained in thebasin.
     (4) Through potential and linear superposition theories, the principle of active waveabsorption was investigated. The two mainstream theoretical models were integrated ina single framework. The active wave absorption technique was re-interpreted throughthe angle of modern control theory. As a consequence, the intelligent control wasintroduced and a new control strategy was proposed as well.
     (5) The new active wave absorption theory was verified by both numerical and physicalsimulations. Specifically, in the numerical wave flume, the proposed method andprevious one were comparatively studied; For physical situation, the flap-typeprototype was established. According to the distinguished features of active waveabsorption wave-maker, the real time position compensation control system wasdeveloped and online modification of trace of the rocker was realized, and theperformance was assessed by the reflection separation algorithm.
引文
[1]沈泓萃. ITTC及船舶水动力学研究方向与重点分析.2008年船舶水动力学学术会议暨中国船舶学术界进入ITTC30周年纪念会论文集.383-385页
    [2] Tanizawa.K.. The state of the art on numerical wave tank. Proceeding of4th OsakaColloquium on Seakeeping Performance of Ships. Osaka,Japan,2000:95-114p
    [3] Skourup. J, Sch ffer.H. A.. Wave Generation and Active Absorption in a NumericalWave Flume. Proceedings of the Seventh (1997) International Offshore and PolarEngineering Conference,Honolulu, USA,1997:85-91p
    [4] Sch ffer. H. A.,Fuchs. J. U., Hyllested. P., Mathlesen. N., Wollesen. B.. Anabsorbing multidirectional wavemaker for coastal applications. In Coastal Engineering2000.ASCE.981-993p
    [5] Sch ffer. H. A.. Active Wave Absorption in Flumes and3D Basins. Proceedings ofWaves2001. San Francisco,California,USA,2001:1-9p
    [6]兰波,缪泉明,姚木林,胡定健,向旭.波浪水池消波装置选型的试验研究.第十三届中国海洋(岸)工程学术讨论会论文集.234-237页
    [7] Francis. H., Harlow. J., Eddie. W.. Numerical calculation of time-dependent viscousincompressible flow of fluid with free surface. Physics of Fluids.1965(8):2182-2189p
    [8] Hirt. C.W.,Nichols. B.D.. Volume of fluid (VOF) method for the dynamics of freeboundaries. Journal of Computational Physics.1981(39):201-225p
    [9] Miyata. H., Kajitani. H., Zhu. M., Kawano. T.. Numerical study of somewave-breaking problems by a finite difference method. The Japan Society of NavalArchitects and Ocean Engineers.1987(207):11–23p
    [10] Park. J. C.,Kim. M. H.,Miyata. H.. Fully non-linear free-surface simulations bya3D viscous numerical wave tank. International Journal for Numerical Methods inFluids.1999(29):685–703p
    [11] Park. J. C., Kim. M. H., Miyata. H.,Chun. H.H.. Fully nonlinear numericalwave tank (NWT) simulations and wave run-up prediction around3-D structures. OceanEngineering.2003(30):1969–1996p
    [12] Park. J.C., Y. Unob, T. Satob, Miyata. H.,Chun. H.H.. Numericalreproduction of fully nonlinear multi-directional waves by a viscous3D numerical wave tank.Ocean Engineering.2004(31):1549–1565p
    [13] Kim.M. H., Niedzwecki. J. M., Roesset. J. M., Park. J. C., Hong.S. Y.,Tavassoli. A.. Fully Nonlinear Multidirectional Waves by a3-D Viscous Numerical WaveTank. Transactions of the ASME,2001(123):124-133p
    [14] Shen.Y.M., C. O. Ng,Zheng. Y. H..Simulation of wave propagation over asubmerged bar using the VOF method with a two-equation k εturbulence modeling.Ocean Engineering.2004(31):87–95p
    [15] Troch. P,,Rouck. J. D.. An active wave generating–absorbing boundary condition forVOF type numerical model. Coastal Engineering.1999(38):223–247p
    [16]严汝建,庞永杰,李宏伟,孙哲.深水池造波系统数值造波仿真研究.哈尔滨工程大学学报.2010,32(1):32-41页
    [17]郭晓宇.数值波浪水槽及其应用研究.上海交通大学博士学位论文.2011
    [18]齐鹏,王永学.三维数值波浪水池技术与应用.大连理工大学学报.2003,43(6):825-830页
    [19]吴乘胜,朱德祥,顾民.数值波浪水池及顶浪中船舶水动力计算.船舶力学.2008,12(2):169-179页
    [20]冯光,吴乘胜,郑文涛,顾民,朱德祥.数值水池短峰不规则波模拟研究.船舶力学.2010,14(4):347-354页
    [21]刘应中,刘和东,缪国平,张怀新.波浪的NS方程数值模拟.上海交通大学学报.1998,32(11):1-7页
    [22] Li. B., Fleming.C. A.. Three-dimensional model of Navier-Stokes equations forwater waves. Journal of waterway, port, coastal, and ocean engineering,2001127(1):16-25p
    [23] Lin. P..A multiple-layer σ-coordinate model for simulation of wave–structureinteraction. Computers&Fluids.2006(35):147–167p
    [24] Longuet-Higgins. M. S., Cokelet. E. D.. The Deformation of Steep Surface Waveson Water. I. A Numerical Method of Computation. Proceedings of the Royal Society ofLondon. Series A, Mathematical and Physical Sciences.1976,(350):1-26p
    [25] Dold. J.W., Peregrine. D.H..An efficient boundary integral method for steepunsteady water waves.In Numerical Methods for Fluid Dynamics II, Morton KW, BainesMJ (eds). Clarendon Press: Oxford,1986:671–679p
    [26] Nakayama.T..Boundary element analysis of nonlinear water wave problems.International Journal for Numerical Methods in Engineering1983(19):953–970p
    [27] Maiti.S., Sen.D.. Computation of solitary waves during propagation and runup on aslope. Ocean Engineering.1999(26):1063–1083p
    [28] Contento. G.. Numerical wave tank computations of nonlinear motions oftwo-dimensional arbitrarily shaped free floating bodies. OceanEngineering.2000(27):531–556p
    [29] Boo. S. Y.. Linear and nonlinear irregular waves and forces in a numerical wave tank.Ocean engineering.2002,29(5):475-493p
    [30] Sung. H. G., Choi.H.S.. Implicit formulation with the boundary element method fornonlinear radiation of water waves. Engineering Analysis with BoundaryElements.2010(34):511–529p
    [31] Ohyama.T., Nadaoka.K.. Development of a numerical wave tank for analysis ofnonlinear and irregular wave fields. Fluid Dynamics Research.1991(8):231–251p
    [32] Lee.C.C., Liu.Y.H., Kim. C.H.. Simulation of nonlinear waves and forces due totransient and steady motion of a submerged sphere. International Journal of Offshore andPolar Engineering.1994,4(3):174–182p
    [33] Yang. C., Ertekin.R.C.. Numerical simulation of nonlinear wave diffraction by avertical cylinder.Journal of Offshore Mechanics and Arctic Engineering1992.1992(114):36–44p
    [34] Cheung. K.F., Isaacson. M, Lee. J. W.. Wave diffraction around athree-dimensional body in a current.Journal of Offshore Mechanics and ArcticEngineering.1996,118(4):247–252p
    [35] Lalli. F., Di Mascio. A., Landrini.M.. Nonlinear diffraction effects around asurface-piercing structure. International Journal of Offshore and Polar Engineering.1996,6(2):104–111p
    [36] Ryu. S., Kim. M., Lynett.P.. Fully nonlinear wave-current interactions andkinematics by a BEM-based numerical wave tank. Computational Mechanics.2003(32):336–346p
    [37] Fochesato.C., Dias. F., Grilli. S.T.. Wave energy focusing in a three-dimensionalnumerical wave tank. Proceedings of the Fifteenth(2005) International Offshore and PolarEngineering Conference. Seoul, Korea.2005(3):24–31p
    [38] Hamano. K., Murashige. S., Hayami. K.. Boundary element simulation of largeamplitude standing waves in vessels. Engineering Analysis with Boundary Elements.2003,27(6):565–574p
    [39] Johannessen.T., Swan.C.. On the nonlinear dynamics of wave groups produced bythe focusing of surface-water waves, Proceedings of the Royal Society of London, Series A(Mathematical and Physical Sciences).2003(459):1021–1052p
    [40] Hague. C.H., Swan. C..A multiple flux boundary element method applied to thedescription of surface water waves. Journal of Computational Physics.2009,(228):5111–5128p
    [41]贺五洲,戴遗山.线元上分布奇点的诱导速度势和诱导速度.哈尔滨船舶工程学院学报,1991,12(2):139-147
    [42] Grilli.S. T., Skourup.J, Svendsen.I.A.. An efficient boundary element method fornonlinear water waves. Engineering Analysis with Boundary Elements.1989,6(2):97-107p
    [43] Grilli.S. T., Subramanya. R.. Numerical Modeling of Wave Breaking Induced byFixed or Moving Boundaries. Computational Mechanics1996(17):374-391p
    [44] Grilli.S. T., Svendsen.I.A..Corner problems and global accuracy in the boundaryelement solution of nonlinear wave flows. Engineering Analysis with BoundaryElements.1990,7(4):178-195p
    [45] Grilli.S. T., Guyenne. P., Dias. F.. A fully non-linear model for three-dimensionaloverturning waves over an arbitrary bottom. Int. J. Numer. Meth. Fluids.2001,(35):829–867p
    [46] Fochesato. C., Dias. F.. A fast method for nonlinear three-dimensional free-surfacewaves. Proceedings of the Royal Society A: Mathematical, Physical and EngineeringScience.2006,462(2073):2715-2735p
    [47] Wu. G. X., Eatock Taylor. R.. Finite element analysis of two-dimensional non-lineartransient water waves. Applied Ocean Research.1994,16(6):363-372p
    [48] Wu. G. X., Eatock Taylor. R.. Time stepping solutions of the two-dimensionalnonlinear wave radiation problem. Ocean Engineering.1995,22(8):785-798p
    [49] Wu. G. X., Ma. Q. W., Eatock Taylor. R.. Numerical simulation of sloshingwaves in a3D tank based on a finite element method. Applied Ocean Research.1998,20(6):337-355p
    [50] Wang.C. Z., Wu. G. X., Khoo. B. C.. Fully nonlinear simulation of resonantmotion of liquid confined between floating structures. Computers&Fluids.2011,44(1):89-101p
    [51] Wang.C. Z., Wu. G. X., Drake. K. R.. Interactions between nonlinear waterwaves and non-wall-sided3D structures. Ocean engineering.2007,34(8):1182-1196p
    [52] Turnbull. M. S., Borthwick. A.G.L., Eatock Taylor. R.. Wave–structureinteraction using coupled structured–unstructured finite element meshes. Applied Oceanresearch.2003,25(2):63-77p
    [53] Bingham. H. B., Zhang. H..On the accuracy of finite-difference solutions fornonlinear water waves. Journal of Engineering Mathematics.2007,58(1-4):211-228p
    [54] Dommermuth. D. G., Yue. D. K. P.. High-order spectral method for the study ofnonlinear gravity waves. Journal of Fluid Mechanics,1987,184(1):267-288p
    [55] Agnon. Y., Bingham. H. B.. A non-periodic spectral method with application tononlinear water waves. European Journal of Mechanics-B/Fluids.1999,18(3):527-534p
    [56] Bonnefoy. F., Touzé. D. L., Ferrant. P.. A fully-spectral3D time-domain model forsecond-order simulation of wavetank experiments. Part B: Validation, calibration versusexperiments and sample applications. Applied Ocean Research.2006,28(2):121-132p
    [57] Brorsen.M., Larsen.J.. Source Generation of nonlinear gravity waves with boundaryintegral equation method. Coastal Engineering.1987,(11):93-113p
    [58] Ohyama. T.. Fluid Dynamics Research. Development of a numerical wave tank foranalysis of nonlinear and Irregular wave field. Fluid Dynamics Research.1991,8(5):231-251p
    [59] Wei.G., Kirby. J. T.,Sinha. A.. Generation of waves in Boussinesq models inusing a source function method.Coastal Engineering.1999,36:271-299p
    [60] Lee. C., Cho. Y. S., Yum. K.. Internal generation of waves for extended Boussinesqequations. Coastal engineering.2001,42(2):155-162p
    [61] Kim. G., Lee. C., Suh. K.D.. Generation of random waves in time-dependentextended mild-slope equations using a source function method. Ocean engineering.2006,33(14):2047-2066p
    [62] Lin. P, Liu. P. L. F.. Internal wave-maker for Navier-Stokes equations models.Journal of waterway, port, coastal, and ocean engineering.1999,125(4):207-215p
    [63] Choi. J., Yoon. S. B.. Numerical simulations using momentum source wave-makerapplied to RANS equation model. Coastal Engineering.2009,56(10):1043-1060p
    [64] Madsen. P. A., Bingham. H. B., Liu. H.. A new Boussinesq method for fullynonlinear waves from shallow to deep water. Journal of Fluid Mechanics.2002,462(3):1-30p
    [65]周勤俊,王本龙,兰雅梅,刘桦.海堤越浪的数值模拟.力学季刊.2005,26(4):629-633页
    [66]李凌,林兆伟,尤云祥,缪国平.基于动量源方法的黏性流数值波浪水槽.水动力学研究与进展A辑.2007,22(1):76-82页
    [67] Orlanski. I.. A simple boundary condition for unbounded hyperbolic flows. Journal ofcomputational physics.1976,21(3):251-269p
    [68] Baker. G. R., Meiron. D. I., Orszag. S.. Generalized vortex methods forfree-surface flow problems. Journal of Fluid Mechanics.1982,(123):477-501p
    [69]大山巧,灘岗和夫.数值波浪水槽开边界处理数值消波..第37回海岸工学论文集.东京,日本土木学会,1990:16-20页
    [70] Clément.A..Coupling of Two Absorbing Boundary Conditions for2D Time-DomainSimulations of Free Surface Gravity Waves. Journal of Computational Physics.1996,(126):139-151p
    [71] Lambert N.G.., Romijnders. The development of a new segmented deepwater wavegenerator. Ocean Wave Measurement and Analysis (2001):1209-1217p
    [72] Buchner, J.E.W. Wichers, J. J. de Wilde. Features of the state-of-the-art deepwateroffshore basin. Offshore Technology Conference, Houston, Texas,1999:1-11p
    [73] Minoura. M, Takahashi. R, Okuyama. E, Naito. S.. Generation of Extreme WaveComposed of Ring Waves in a Circular Basin. Proceedings of the Ninteenth (2009)International Offshore and Polar Engineering Conference,Osaka,2009:389-396p
    [74] Minoura. M, Muto. T, Okuyama. E, Naito. S..Generation of Arbitrary Wave Fieldin Arbitrary Configured Wave Basin Composed by Element Absorbing Wave-makers.Proceedings of the Twentieth (2010) International Offshore and Polar EngineeringConference,Beijing,2010:553-560p
    [75]李俊,陈刚,杨建民,彭涛.海洋工程试验中多单元造波机波浪模拟方法.上海交通大学学报.2011,29(3):37-42页
    [76]李木国,柳淑学,张群,郭美谊,王静.蛇形多向不规则波造波机波浪产生方法及特性.大连理工大学学报.2003,43(3):354-355页
    [77]杨志国.基于Windows的摇板式造波机波浪模拟技术研究.哈尔滨工程大学学报.2004,25(5):611-612页
    [78] Nohara. B.T, Yamamoto. I, Matsuura. M. The organized motion control ofmulti-directional wave maker.1996IEEE Proceedings,4th International Workshop on.1996:470-475p
    [79]李木国,徐福荣.基于SynqNet的多向不规则波造波机控制系统.测控技术.2007,26(10):37-39页
    [80] Milgram. J.S.. Active water-wave absorbers. J. Fluid Mech.1970,43(4):845–859p
    [81] Salter. S.H.. Absorbing wavemakers and wide tanks. Proc. Directional Wave SpectraApplications.Berkeley Calif,1981:185–202p
    [82] Salter. S.H.. Physical modelling of directional seas. Proc. Symp. Description andModelling of Directional Seas,Copenhagen,Denmark,1984:31p
    [83] Bullock. G.. N.,Murton. G..J.. Performance of a wedge-type absorbing wavemaker.Journal of Waterway, Port. Coastal and Ocean Engineering. ASCE.1989,115(1):1–17p
    [84] Hirakuchi. H, Kajima. R, Kawaguchi. T.. Application of a piston-type absorbingwavemaker to irregular wave experiments. Coastal Engeering in Japan.1990,33(1):11–24p
    [85]柳淑学,吴斌,李木国,王静.无反射不规则波造波机系统的研究.水动力学研究与进展A辑.2003,18(5):534-539页
    [86]商雪,李树森,朱国良,张紫华.吸收式造波机控制系统的研究与设计.港工技术.2009,46(3):8-10页
    [87] Christensen.M., Frigaard.P.. Design of absorbing wavemaker based on digital filters.Proc., Waves—Phys. and Numer. Modelling. Vancouver,1994:100–109p
    [88] Sch ffer.H. A., Stolborg. T., Hyllested. P.. Simultaneous generation and activeabsorption of waves in flumes. Proc., Waves—Phys. Numer. Modelling, Dept. of Civ.Engrg.,University of British Columbia, Vancouver,1994:90–99p
    [89] Van Dongeren. A.R., Klopman.G., Reniers.A., Petit. H.. High-QualityLaboratory Wave Generation for Flumes and Basins. Ocean Wave Measurement and Analysis(2001):1190-1199p
    [90]顾民,胡启庸,孙强,魏纳新.具有ARC功能的摇板式造波机的应用研究.船舶力学.2005,9(4):46-52页
    [91] Yoshikawa,T., Chin. I.. Coastal hydraulics testing facilities with a three-dimensionalnon-reflecting wave generator. Proc.,23rd IAHR Congress, Ottawa,1989(C):443–449p
    [92] Hirakuchi. H, Kajima. R, Shimizu. T, Ikeno. M.. Characteristis of absorbingdirectional wavemaker. Proc.,23rd Int. Conf. on Coast. Engrg., ASCE, New York,1992:281–294p
    [93] Christensen. M.. Generation and active absorption of two and three-dimensional linearwater waves in physical models. Hydr. and Coast. Engrg. Lab, Dept. of Civ. Engrg.,Aalborg University, Denmark.1995:Series Paper11
    [94] Ito. K, Katsui. H, Mochizuki. M, Isobe. M.. Non-reflected multidirectionalwavemaker theory and experiments of verification. Proc., Wave Generation’95, Yokohama,Japan,1995:106–125p
    [95] Klopman. G., Reniers. A., Wouters. J.,de Haan, T.. Active multidirectional waveabsorption.25th Int. Conf. on Coastal Engrg.,Orlando, Fla.,1996:798–799p
    [96] Sch ffer. H. A., Skourup. J.. Active absorption of multidirectional waves. CoastalEngineering Proceedings.1996,1.24:55-66p
    [97] Naito. S.. Wave Generation and Absorption-Theory and Application. Proceedings ofthe Sixteenth(2006) International Offshore and Polar Engineering Conference,San FranciscoCalifornia,USA,2006:1-9p
    [98] Sch ffer. H. A., Jakobsen. K.P.. Non-linear wave generation and active absorptionin wave flumes. Proc. Long Waves Symposium2003in parallel with XXX IAHR Congress,Thessaloniki, Greece,2003:68-77p
    [99]封星,吴宛青,杨建立,吴文峰.基于两种源造波的线性及非线性波数值研究.大连海事学报.2012,38(2):25-28页
    [100]段文洋.船舶大幅运动非线性水动力研究.哈尔滨工程大学博士学位论文.1995,79-80页
    [101] Sun. Z., Pang. Y., Li. H.. Two Dimensional Fully Nonlinear Numerical WaveTank Based on the BEM. Journal of Marine Science and Application.2012,(11):437-446p
    [102] CROW. J. A.. Quadrature of integrands with a logarithmic singularity. Mathematicsof Computation.1993,60(201):297-301p
    [103]李宏伟,庞永杰,秦再白,孙哲.白噪声不规则波与聚焦波的水池模拟.华中科技大学学报(自然科学版).2013,41(1):88-92页
    [104] Wei. G., Chen. Z.Y., Li. C.G.. Investigation on full distribution CNC systembased on SERCOS bus. Journal of systems engineering and electronics,2008,19(1):52-57p
    [105] Hibbard. S..The SERCOS interface standard. Gear Technology,1996,13(1):29–32p
    [106] O' Dwyer. A.. PI and PID controller tuning rules for time delay processes: asummary. Part2: PID controller tuning rules. Proceedings of the Irish Signals and SystemsConference. National University of Ireland, Galway,1999,339-346p
    [107] Payette. K.. Synchronized motion control with the virtual shaft control algorithm andacceleration feedback. Proceedings of the American Control Conference. California,1999,(3):2102-2106p
    [108] Payette. K.. The virtual shaft control algorithm for synchronized motion control.Proceedings of the American Control Conference.1998,(5):3008-3012p
    [109] Koren. Y., Lin. R. S.. Five-axis surface interpolators. CIRP Annals-ManufacturingTechnology.1995,44(1):379-382p
    [110] Bahr. B., Xiao. X., Krishnan. K.. A real-time scheme of cubic parametric curveinterpolations for CNC systems. Computers in Industry.2001,45(3):309-317p
    [111]王太勇,赵巍,李宏伟,孙兴伟,王国锋.快速最小偏差插补算法.组合机床与自动化加工技术.2003,(6):38-40页
    [112]谢明江,肖本贤.非圆二次曲线通用插补算法.制造技术与机床,1996,(10):18-20页
    [113]李志勇,赵万生,张勇.用Huffman树实现的多坐标联动插补算法.中国机械工程.2003,14(13):1097-1099p
    [114] Dragomatz. D., Mann. S.. A classified bibliography of literature on NC millingpath generation. Computer-Aided Design.1997,29(3):239-247p
    [115] Liu. X., Ahmad. F., Yamazaki. K., Mori. M.. Adaptive interpolation scheme forNURBS curves with the integration of machining dynamics.Machine Tools&Manufacture,2005.45(4/5):433-444p
    [116]汪德才,李从心.基于PC的离线插补高速加工数控系统.液压与机床.2002,(2):52-54页
    [117]彭瑜,何衍庆.IEC6111-3编程语言及应用基础.北京:机械工业出版社,2009,6-8页
    [118] Sannasiraj. S. A., Sundar. V., Sundaravadivelu. R.. The hydrodynamic behaviourof long floating structures in directional seas. Applied Ocean Research.1995,17(4):233-243p
    [119] Sannasiraj. S. A., Sundaravadivelu. R., Sundar. V.. Diffraction–radiation ofmultiple floating structures in directional waves. Ocean Engineering.2001,28(2):201-234p
    [120] Kurian. V. J., Ng. C. Y., Liew. M. S.. Experimental investigation on dynamicresponses of spar platforms subjected to multi-directional waves. In Business Engineering andIndustrial Applications Colloquium (BEIAC),2012IEEE:410-414p
    [121]郑文涛,缪泉明,周德才,匡晓峰.三维波对船舶运动响应影响研究.船舶力学.2009,13(2):184-188页
    [122]俞聿修,柳淑学.多向随机波的实验室模拟.海洋工程.1993,11(1):40-49页
    [123]俞聿修.随机波浪及其工程应用.大连:大连理工大学出版社,2003,257页
    [124] Hashimoto. N.,Kobune. K.,Kameyama. Y.. Estimation of Directional Spectrumusing the Bayesian Approach,and its Application to Field Data Analysis. Report of the Portand Harbour Research Institute. Nagase, Yokosuka, Japan,1987,26(5):57-100p
    [125] Hashimoto. N., Kobune. K.. Directional spectrum estimation from a Bayesianapproach. Coastal Engineering Proceedings.1988,1(21):62-76p
    [126] Takayama. T., Hiraishi. T.. Fundamental Characteristics of Oblique RegularWaves and Directional Random Waves Generated by a Serpent-type Wave Generator. Reportof the Port and Harbour ResearchInstitute. Nagase, Yokosuka, Japan,1987,26(5):114-118p
    [127]柳淑学.多向不规则波有效区域的扩展法.海洋工程.1996,14(2):40-50页
    [128] Sch ffer. H. A., Klopman. G... Review of multidirectional active wave absorptionmethods. Journal of waterway, port, coastal, and ocean engineering.2000,126(2):88-97p
    [129] Ursell. F., Dean. R.G.., Yu. Y.S.. Forced small-amplitude water waves:acomparison of theory and experiment. Journal of Fluid Mechanics,1960,7(1):33-52p
    [130]王世一.数字信号处理.北京:北京理工大学出版社,2010,217-225页.
    [131]刘学敏,徐玉如.水下机器人运动的S面控制方法.海洋工程.2001,19(3):81-84页
    [132]刘建成,于华南,徐玉如.水下机器人改进的S面控制方法.哈尔滨工程大学学报.2002,23(1):33-36页
    [133]廖煜雷,庞永杰,庄佳园.无人水面艇嵌入式基础运动控制系统研究.计算机科学.2010,37(9):214-217页
    [134]庞永杰,李烨.带翼水下机器人的非线性拟合分段控制方法.智能系统学报.2009,4(3):258-262页
    [135]李岳明,庞永杰,万磊.水下机器人自适应S面控制.上海交通大学学报.2012,46(2):196-200页
    [136] Goda. Y., Suzuki. Y.. Estimation of Incident and Reflected Waves in Random WaveExperiments.Coastal Engineering.1976,ASCE,828-845p

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700