波浪冲击过程的流场变化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在海岸和近海工程中,波浪的冲击作用对位于浪溅区的透空式建筑物的安全有很大影响。在波浪冲击过程中,当波峰刚接触到建筑物底面时会产生历时很短但强度极大的冲击压力,这种极强的冲击荷载会引起建筑物上部结构的失稳或造成结构连接处的疲劳破坏。随着二十一世纪我国海洋开发规模的扩大,波浪冲击荷载的预报在海岸和近海工程设计中越来越受到重视,已成为近年来被广泛关注并亟待解决的重要课题。因此,开展波浪冲击过程的流场变化特性研究,有着重要的科学价值和实际意义。
     本文从物理模型试验和数值模拟两方面出发,对位于浪溅区的透空式结构物的波浪冲击特性进行了研究。物理模型试验方面,利用先进的瞬态全场测量技术—粒子图像测速(PIV)技术,研究了波浪对位于浪溅区的透空式建筑物上部结构冲击过程中的瞬时流场变化特性。通过对采集到的CCD图像的互相关分析,直观地显示了波浪冲击作用发生时结构物底面不同瞬时的流场状态,得到了瞬间的全场流体水质点的速度矢量,并且应用概率分析法研究了瞬时冲击压力峰值与波浪水质点瞬时运动速度之间的关系。
     数值模拟方面,首先建立了基于流体体积法(VOF)的随机波无反射数值波浪水槽。在水槽造波端,基于线性造波机理论设置了随机波的主动吸收式造波边界,即造波板的运动在生成目标波浪的同时,还产生一个抵消造波板二次反射波的附加运动。在数值波浪水槽的末端,设置了海绵层阻尼消波边界,实现了随机波的阻尼消波。通过水槽右端为直墙边界时的全反射情形和水槽内含有潜堤的部分反射情形的数值计算结果,验证了主动吸收式造波机的性能和沿水槽长度方向不同位置处入射波的稳定性。
     其次,利用本文所建立的数值模型对波浪冲击过程的压力变化特性、流场变化特性以及二者之间的关系进行了统计分析。研究了结构物底面波浪冲击压力及水质点垂向运动速度的分布规律,讨论了相对入射波高、结构相对宽度和相对净空等因素对结构物底面最大冲击压力及水质点最大垂向运动速度的影响规律,并给出了随机波冲击压力峰值与水质点垂向运动速度统计值之间的关系。
     最后,通过引入嵌套网格细分方法实现了建筑物附近的近域流场和外域流场的同步耦合求解。提出了网格重叠带上的速度、压力和波面的匹配边界条件,应用该模型对冲击过程中结构物附近的流场进行了精细模拟,并应用物理模型试验结果验证了采用嵌套网格算法的耦合数值模型的计算流场精度,且对耦合数值模型和全流场均匀细分网格算法的计算流场精度和计算效率进行了比较分析。
In coastal and offshore engineering,the wave impact in the splash zone has great influence on the safety of the open structures.In the process of wave slamming,the impact pressure with short duration and high peaks occurs when the water contacts the subface of the structure,which causes the destabilization of superstructure and the fatigue failure of joints. Along with the expansion of the ocean exploitation in the 21th century,the forecast of wave slamming loads in the design of coastal and offshore engineering is increasely valued and has become an important subject.It is significant to deeply research the characteristics in the process of the wave impact.
     This paper presents the experimental investigation and numerical simulation of the slamming on the horizontal plate suspended over the water surface in the splash zone.In the model experiment,the advanced instantaneous measuring technique,Particle Image Velocimetry(PIV),is applied to acquire the instantaneous velocity field of wave slamming. From the cross-correlation analysis results of the images captured by the CCD camera,the flow fields of the wave impacting on the structure are displayed visually,and the instantaneous whole-field fluid velocity vectors are obtained.The relation between the instantaneous pressure peaks and the according velocities of water particles is studied by probability analysis.
     In the numerical simulation,firstly,a numerical irregular wave flume with active absorption of re-reflected waves is simulated using VOF method.An active absorbing wave-maker based on linear wave theory is set on the left boundary of the wave flume.The absorbing waves are generated to eliminate the waves coming back to the generating boundary due to reflection from the outflow boundary and the structures.As for the end of the numerical flume,the numerical sponge layer achieves the damping elimination to the irregular wave.On the conditions of total reflection and partial reflection,the numerical results using the non-reflecting numerical wave flume are compared with that of the ordinary numerical wave flume to verify the performance of the non-reflecting numerical wave flume and the stability of the incident waves along the numerical wave flume.
     Secondly,the characteristics of pressure and flow field in the irregular wave impacting is investigated by use of the unreflected numerical model.The distributions of characteristic pressures and corresponding vertical velocities of fluid are presented.The influence of relative wave height,relative structure width and relative clearance on wave impact pressure and vertical velocity of fluid is discussed.The relation between irregular peak impact pressures and corresponding peak vertical velocities of fluid is analyzed.
     Finally,the synchro coupling between the neighbouring flow field of the structure and the external area is achieved by introducing the nested grid refinement(NGR) technique based on VOF method.The boundary conditions of velocity,pressure and wave surface in a 2D SOLA-VOF code is described.Detailed numerical simulation of flow field in the process of wave impact on the marine structures is implemented.The precision of the computed flow fields with nested grid and uniform grid are compared with the experimental flow fields.The computational efficiency of nested grid and uniform grid is discussed.
引文
[1]KAPLAN P,SILBERT M N.Impact forces on platform horizontal members in the splash zone[C].OTC,1976,2498:749-758.
    [2]TAYLOR J L.Some hydrodynamical inertia coefficients.Philosophical Magazine[J],1930,9(7).
    [3]ARMAND J L,COINTE R.Hydrodynamic impact analysis of a cylinder[C].OMAE,1986:250-256.
    [4]DALTON C,NASH J M.Wave slam on horizontal members of an offshore platform[C].OTC,1976,2500:769-775.
    [5]MILLER B L.Wave slamming loads on horizontal circular elements of offshore structures[J].Journal Royal Institute Naval Architects,1977,5:169-175.
    [6]FALRINSEN O,KJAERLAND O,NOTTVEIT,et al.Water impact loads and dynamic response of horizontal circular cylinders in offshore structures[C].OTC,1977,2741:119-126.
    [7]SARPKAYA T.Wave impact loads on cylinder[C].OTC,1978,3065:169-176.
    [8]CAMPBELL I M C,WEYNBERG P A.Measurement of parameters affecting slamming[R].Wolfson Unit for Marine Technology and Industrial Aerodynamics,1980.
    [9]ISAACSON M,PRASAD S.Wave slamming on a horizontal circular cylinder[C].ASCE,1992:652-666.
    [10]ISAACSON M,PRASAD S.Wave slamming on a horizontal circular cylinder[C].ISOPE,1993,3:274-281.
    [11]WANG H.Water wave pressure on horizontal plates[J].Journal of the Hydraulics Division,1970,96(10):1997-2017.
    [12]ELGHAMRY O A.Uplift forces on platform decks[C].OTC,1971:537-548.
    [13]KAPLAN P.Wave impact force on offshore structures:re-examination and new interpretations[C].OTC,1992,6814:79-86.
    [14]KAPLAN P,MURRAY J J,YU W C.Theoretical analysis of wave impact forces on platform deck structures[C].OMAE,1995:189-198.
    [15]GRONBECH J,STERNDORFF M J,GRIGORIAN H,JACOBSEN V.Hydrodynamic modeling of Wave-In-Deck forces on offshore platform decks[C].OTC,2001.
    [16]BAARHOLM R,FALTINSEN O M.Experimental and theoretical studies of wave impact on an idealized platform deck[C].ICHD,2000.
    [17]BAARHOLM R.Theoretical and experimental studies of wave impact underneath decks of offshore platforms[D]:PhD Thesis.Norwegian UniversitY of Science and Technology,Trondheim,Norway,2001.
    [18]BAARHOLM R,STANSBERG C T.Extreme vertical impact on the deck of a Gravity-Based Structure(GBS) platform[C].Rogue Waves 2004,Brest,France,2004:1-14.
    [19]STANSBERG C T,BAARHOLM R,FOKK T,GUDMESTAD O T,HAVER S.Ware amplification and possible wave impact on gravity based structure in 10~(-4) probability extreme crest Heights[C].OMAE,2004.
    [20]STANSBERG C T,KRISTIANSEN T.Non-linear scattering of steep waves around vertical Columns[J].Applied Ocean Research,2005,27:65-80.
    [21]STANSBERG C T,BAARHOLM R,KRISTIANSEN T,HANSEN E W M,RORTVEIT G.Extreme wave amplification and impact loads on offshore structures[C].OTC,2005.
    [22]BAARHOLM R.WaveLand phase Ⅱ:A numerical method for evaluation of wave-in-deck loads on large-volume offshore platforms[R].Marintek Report No.513179.03,2004.
    [23]BAARHOLM R.A simple numerical method for evaluation of water impact loads on decks of large-volume offshore platforms[C].OMAE,2005.
    [24]BLAGOVENSHCHENSKY S N.Theory of Ship Motion[M].Dover,New York,USA,1962.
    [25]严恺.海岸工程[M].北京:海洋出版社,2002,292-293.
    [26]STOKER J J.Water waves[M].New York:Interscience Publishers,1947.
    [27]交通部第一航务工程勘察设计院.海港码头结构设计手册[M].人民交通出版社,1975.
    [28]过达,蔡保华.透空式建筑物面板上波浪上托力的计算[J].河海大学学报,1980,1:14-33.
    [29]宋扔,白立兴.波浪对离岸透空式码头上部结构的作用[J].港工技术,1997,4:1-9.
    [30]李炎保,黄凌燕.开敞码头上部结构波浪上托力的试验研究[J].港口工程,1997,6:13.
    [31]周益人,陈国平,王登婷.透空式水平板波浪上托力计算方法[J].海洋工程,2004,22(2):26-30.
    [32]周益人,陈国平,黄海龙,王登婷.透空式水平板波浪上托力分布[J].海洋工程,2003,21(4):41-47.
    [33]SUCHITHRA N,KOOLA P M.A study of wave impact on horizontal slabs[J].Ocean Engineering,1995,22:687-697.
    [34]WANG Y X,LIU M Z,REN B.Experimental study of wave slamming[C],OMAE,1998.
    [35]MURRAY J J,KAPLANP,YU W C.Experimental and analytical studies of wave impact forces on Ekofisk platform structures[C].OTC,1995,7782:783-795.
    [36]REN B,WANG Y X.Laboratory study of random wave slamming on a piled wharf with different shore connecting structures[J].Coastal Engineering,2005,52:463-471.
    [37]REN B,WANG Y X.The study of impact pressure on the subface of open-piled structures induced by incident regular waves and irregular waves[J].China Ocean Engineering.2004,18(1):35-46.
    [38]WANG Y X,REN B.Experimental study of irregular wave slamming[C].ISOPE,2002:492-495.
    [39]REN B,WANG Y X.Spectral analysis of irregular wave impact on the structure in splash zone[C].OMAE,2002.
    [40]任冰,王永学.不规则波对透空式建筑物上部结构冲击作用时域分析[J].大连理工大学学报,2003,43(6):818-824.
    [41]任冰,王永学.不规则波对浪溅区结构物冲击作用的试验研究—频域分析[J].海洋工程,2003,21(4):53-60.
    [42]SCOLANY M,REMY F,THIBAULT B.Impact of three-dimensional standing waves on a flat horizontal plate[C].International Workshop on Water Waves and Floating Bodies,Loughborough,2006.
    [43]HIRT C W,NICHOLS B D.Volume of Fluid(VOF) method for the dynamics of free boundaries[J].Journal of Computational Physics,1981,39:201-225.
    [44]任冰,王永学.非线性波浪对结构物的冲击作用[J].大连理工大学学报,1999,39(4):562-566.
    [45]王永学,任冰.波浪冲击过程的湍流数值模拟[J].水动力学研究与进展A辑,1999,14(4):409-417.
    [46]IWANOWSKI B,GRIGORIAN H,SCHERF I.Subsidence of the Ekofisk platforms:wave in deck impact study.Various Wave Models and Computational Methods[C],OMAE,2002.
    [47]BAARHOLM R,FALTINSEN O M.A boundary element method for solving water impact on a platform deck[C].OMAE,2001.
    [48]BAARHOLM R,FALTINSEN O M.Wave impact underneath horizontal decks[J].Journal of Marine Science and Technology,2004,9:1-13.
    [49]LI L.Numerical prediction of impulsive uplift loads produced by cnoidal waves impacting coastal structures[C].ISOPE,2006:528-535.
    [50]MASHAYEK F,ASHGRIZ N.A Height-Flux Method for simulating free surface flows and interfaces[J].International Journal for Numerical Methods in Fluids,1993,17:1035-1054.
    [51]LAI C P.Wave interaction with structure:hydrodynamic loadings on platforms and docks[D]:PhD Thesis.Faculty of University of Southern California,California,USA,1986.
    [52]REN B,WANG Y X.Numerical simulation of random wave slamming on structures in the splash zone[J].Ocean Engineering,2004,31:547-560.
    [53]KLEEFSMAN K M,FEKKEN G,VELDMAN E P,IWANOWSKI B.An improved volume-of-fluid method for wave impact problems[C].ISOPE,2004:334-341.
    [54]KLEEFSMANT,LOOTS E,VELDMANA,BUCHNER B,BUNNIK T,FALKENBERG E.The numerical simulationof green water loading including the vessel motions and the incoming wave field[C].OMAE,2005.
    [55]BORDTKORB B.Prediction of wave-in-deck forces on fixed jacket-type structures based on CFD calculations[C].OMAE,2008.
    [56]API RP-2A-LRFD.Recommended practice for planning,designing and constructing fixed offshore platforms - load and resistance factor design[S].First edition July 1,1993,Reaffirmed May 16,2003.
    [57]孙鹤泉,沈永明,邱大洪,李广伟.波流实验中的图像处理技术[J].水利水电科技进展,2004,24(4):37-39.
    [58]申功炘.全场观测技术概念、进程与展望[J].北京航空航天大学学报,1997,23(3):332-340.
    [59]GRAY C,GREATED C A.The application of Particle Image Velocimetry to the study of the water waves[J].Optics and Laser in Engineering,1988,9:265-276.
    [60]GALLANZI M.High accuracy measurement of unsteady flow using digital particle image velocimetry[J].Optics and Laser Technology,1998,30:349-359.
    [61]孙鹤泉.基于图像分析的非接触测量方法在水工模型实验中的应用研究[D]:(博士学位论文).大连:大连理工大学,2004.
    [62]WESTERWEEL J.Fundamentals of digital particle image velocimetry[J].Measure Science and Technology,1997,8:1379-1392.
    [63]孙鹤泉,康海贵.DPIV流场测试技术中的数据处理[J].大连理工大学学报,2000,40(3):364-367.
    [64]孙鹤泉,沈永明,王永学,康海贵,李广伟.PIV技术的几种实现方法[J].水科学进展,2004,15(1):105-108.
    [65]SUN H Q.The hartley transform applied to particle image velocimetry[J].Measurement Science and Technology,2002,13(12):1996-2000.
    [66]MILGRAMJ n.Active water-wave absorbers[J].Fluid Mechanics,1970,43(4):845-859.
    [67]BULLOCK G N,MURTON G J.Performance of a wedge type absorbing wave maker[J].Waterway,Port,Coastal and Ocean Engineering,1989,115(1):1-17.
    [68]GILBERT G.Absorbing wave generators[J].Hydraulic Research Station Notes,1978.
    [69]HIRAKUCHI H,KAJIMA R,KAWAGUCHI T.Application of a piston-type absorbing wave-maker to irregular wave experiments[J].Coastal Engineering in Japan,1990,33(1).
    [70]IWATA K,KAWASAKI K,KIM D.Breaking limit,breaking and post-breaking wave deformation due to submerged structures[C].ASCE,1996,3:2338-2351.
    [71]李凌,林兆伟,等.基于动量源方法的黏性流数值波浪水槽[J].水动力学研究与进展A辑.2007,22(1):76-82.
    [72]王永学.无反射造波数值波浪水槽[J].水动力学研究与进展,1994,9(2):205-214.
    [73]TORCH P,JULIEN D R.An active wave generating - absorbing boundary condition for VOF type numerical model[J].Coastal Engineering,1999,38:223-247.
    [74]BULLOCK G N,CRAb,FORD A R.The influence of air and scale on wave impact pressures[J].Coastal Engineering,2001,42:291-312.
    [75]马福喜.三维带自由表明强紊动水流的数值模拟[D]:(博士学位论文).南京:河海大学,1992.
    [76]张长高.脉动速度的分解和脉动应力探讨[J].河海大学学报,1989,17(5):1-8.
    [77]KODAMA Y.Computation of ship' s resistance using an NS solver with global conservation[J].Journal of The Society of Naval Architects of Japan,1992,172:147-155.
    [78]TORREY M D,MJOLSNESS R C,STEIN L R.NASA-VOF3D:A three-dimensional computer program for impressible flows with free surface[R].Los Alamos Scientific Laboratory,1987.
    [79]FRIGAARD P,BRORSEN M.A time-domain method for separating incident and reflected irregular waves[J].Coastal Engineering,1995,205-215.
    [80]FRIGAARD P,CHRISTENSEN M.An absorbing wave-maker based on digital filters[C].ASCE,1994,1:168-180.
    [81]CHRISTENSEN M.Generation and active absorption of 2- and 3-dimensional water waves in physical models[D]:PhD thesis.Aalborg University,Aalborg,Denmark,1995.
    [82]ZHU S T.Separation of regular waves by a transfer function method[J].Ocean Engineering,1999,26:1435-1446.
    [83]王永学,彭静萍,孙鹤泉,李广伟.分离入射波与反射波的解析方法[J].海洋工程,2003,21(1):42-46.
    [84]柳淑学,王先涛.不规则波入、反射波时域分离方法[J].大连理工大学学报,2002,42(2):228-233.
    [85]柳淑学,吴斌,李木国,王静.无反射不规则波造波机系统的研究[J].水动力学研究与进展,2003,18(5):533-539.
    [86]俞聿修.随机波浪及其工程应用[M].大连理工大学出版社,2000.
    [87]邱大洪.波浪理论及其在工程上的应用[M].高等教育出版社,1984.
    [88]ROMATE J E.Absorbing boundary conditions for free surface waves[J].Computational Physics,1992,99:135-145.
    [89]SARPKAYA T,ISAACSON M.Mechanics of wave forces on offshore structure[J].Van Nostrand Reinhold,1981,234-280.
    [90]孙大鹏,李玉成.数值水槽内的阻尼消波和波浪变形计算[J].海洋工程,2000,18(2):46-50.
    [91]刘海青,赵子丹.数值波浪水槽的建立与验证[J].水动力学研究与进展A辑,1999,14(1):8-15.
    [92]OHYAMA T.Development of a numerical wave tank for analysis of nonlinear and irregular wave field[J].Fluid Dynamics Research,1991,8:231-251.
    [93]NICHOLS B D,HIRT C W.Methods for calculating multi-dimensional transient free surface flows past bodies[C].International Conference on Numerical Ship Hydrodynamics,1975.
    [94]NICHOLS B D,HIRT C W,HOTCHKISS R S.SOLA_VOF:A solution algorithm for transient fluid flow with multiple free boundaries[R].Los Alamos Scientific Laboratory report LA-8355,1980.
    [95]张长高.管中紊流新探索[J].河海大学学报,1990,18(1):1-10.
    [96]GODA Y.A comparative review on the functional forms of directional wave spectrum[J].Coastal Engineering Journal,1999,41(1):1-20.
    [97]GODA Y,SUZUKI Y.Estimation of incident and reflected waves in random wave experiments[C].ASCE,1976,1:828-845.
    [98]任冰.随机波浪对不同接岸型式码头上部结构的冲击作用研究[D]:(博士学位论文).大连:大连理工大学,2003.
    [99]UDO Z,HAROLD W Y.A nested grid refinement technique for magnetohydrodynamical flows[J].Computer Physics Communications,1997,101:54-74.
    [100]HAROLD W Y,MICHAEL K.Use of multiply nestedgrid for the solution of flux-limited radiation diffusion and hydrodynamics[J].Computer Physics Communications,1995,89:29-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700