斜坡式防波堤越浪过程的SPH模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用基于CSPM法和黎曼解修正的SPH方法建立了主动吸收式二维数值波浪水槽,研究了波浪沿斜坡堤爬坡和越浪过程的水动力特性。
     首先,对斜坡堤越浪的研究情况及SPH在水动力学方面的应用情况作了简要的回顾。
     然后,详细介绍了SPH方法的基本方程,即函数近似和粒子近似方程,并在此基础上对基本的控制方程进行了粒子离散,同时介绍了相关的实现技术,如边界条件、搜索方法和时间积分等。接着研究了孤立波在不可渗斜坡堤上的爬坡和越浪过程波面的空间分布及在各个测点历时变化,通过计算结果和试验结果的对比来验证本文建立的数学模型。
     最后,对规则波沿可渗透斜坡爬坡和越浪进行了研究。将可渗透斜坡按多孔介质处理,即将自由液面以下的可渗透层离散成流体粒子,求解的是空间平均流动。对渗透层外的流体求解N-S方程,在渗透层内通过将附加外力项加入动量方程来考虑多孔介质对流体的影响。首先研究了水槽内各个测点自由液面的变化和波浪沿斜坡爬坡和越浪过程中可渗透斜坡堤内的流场和压力分布情况,然后在不同周期、波高、斜坡坡度、孔隙率和平均粒径的情况下研究了越浪量的变化。结果表明:采用修正后的SPH方法所建立的模型计算得到的波面变化情况和试验结果有较好的吻合;在本文数值模型计算范围内,周期、波高和斜坡坡度对越浪量的影响最大,越浪量随周期和波高的增加而增加,随斜坡坡度的增加而减少;孔隙率对越浪量的影响最小,在周期较小的情况孔隙率为0.4时越浪量有最小值,但与其他孔隙率情况下的越浪量的差值微小,当周期为2s的时越浪量不再随孔隙率变化;平均粒径对越浪量的影响主要体现在小粒径范围内,平均粒径在10mm到25mm的范围内越浪量随粒径的增加明显减少,平均粒径大于25mm以后越浪量变化很小。
An 2D active absorbing wave flume was built based on the corrected SPH method by CSPM and Reimann solver to study the water dynamics of wave run-up and overtopping on sloping breakwaters.
     Firstly, the research of wave overtopping on breakwaters and the applications of SPH in hydrodynamics were briefly reviewed.
     Secondly, the basic equations, namely function approximation and particles approximation, were introduced in detail. The relative implementation technologies of SPH, such as boundary conditions, particles search algorithm and time integral, were also discussed. and then, the change of free surfaces profiles at different points when solitary wave run-up and overtopping on impermeable sloping breakwater were studied to validate the numerical models used in this paper by comparing SPH results and experiment data.
     Finally, regular wave run-up and overtopping on permeable sloping breakwaters were studied. The slope was dealt as porous media, namely, the permeable layer under the water surface was filled with particles. The spatial average flow was solved. The SPH model solves NS equations for the flows outside the porous media and the NS type equations for the flows inside the porous media. The presence of porous media is considered by including additional friction into the equations. Water surface elevations at different points and pressure fields in the porous media were both studied. And then the relations between overtopping mass and different periods, different wave heights, different gradient and diameters were studied. The results show that:the wave surfaces predicted by the model based corrected SPH is in good agreement with experiment data; in the range of numerical model, overtopping mass changed greatly with wave periods, wave height and gradient. the overtopping mass increases when wave height and period increase and decreases when gradient increases; porosity has least influence on overtopping mass, the overtopping mass has a least value when porosity is 0.4 in small period, but the difference is minor, when the period is 2 second, overtopping mass was no change with porosity anymore; when the size of diameter increases from 10mm to 25mm, overtopping mass decreases evidently, when the size of the diameter is greater than 25mm, overtopping mass changes little.
引文
[1]Saville T. Laboratory data on wave run up and overtopping[R]. Washington D. C.:Lake Okeechobee levee Sections, U.S. Army, Corps of Engineers, Beach Erosion Board,1955.
    [2]Saville T. Large-scale model tests of wave run up and overtopping on shore structures[R]. Washington, D. C.:TM-64, U.S. Army, Crops of Engineering, Beach Erosion Board,1958.
    [3]Paape A. Experimental data on the overtopping of seawalls by waves[G]//ASCE: Proceedings of 7th Conference on Coastal Engineering,1960.
    [4]Yuichi Iwagaki, Akira Shima, Masao Inoue. Effect of wave height and sea water level on wave overtopping and wave run-up[G]//JSCE:Coastal Engineering in Japan,1965.
    [5]Weggle J. R. Wave Overtopping equations[G]//ASCE:Proceedings of 15th Conference on Coastal Engineering,1976.
    [6]Owen M W. Design of seawalls allowing for overtopping[R]. HR wallingford:Hydraulics research station,1980:EX924.
    [7]Owen M W. Overtopping of sea defences[C]//Proceeding of Intl. Conference on Hydraulic Modelling of Civil Engineering Coventry:BHRA Structures.1982:469-480.
    [8]Owen M W, Steele AAJ. Effectiveness of recurved wave return wall[R]. Wallingford: Hydraulics Research, ASCE,1991:2508-2521.
    [9]Waal J P, Van der Meer J W. Wave run-up and overtopping on coastal Structures [G]// Proceedings of 23th Int. Conference on Coastal Engineering, ASCE,1992.
    [10]Van der Meer J W, Janssen J P F M. Wave run-up and wave overtopping at dikes and revetments[R]. Delft, Netherlands:Delft Hydraulics,1994.
    [11]Franco L, De Gerloni M. Van der Meer J W. Wave overtopping on vertical and composite breakwaters [G]//Proceedings of 24th Int. Conference on Coastal Engineering, Kobe, 1994.
    [12]Van der Meer J W, Janssen J P F M. Wave run-up and overtopping at dikes[M].Ed. Z. Demirbilek:Wave Forces on inclined and vertical Structures,1995.
    [13]Waal J P, De Tonjes P, Van der Meer J W. Overtopping of sea defences[G]//Proceedings of 25th Int. Conference on Coastal Engineering, ASCE, Orlando, New York,1996.
    [14]Van der Meer J W. Technical report wave run-up and wave overtopping at dikes[R]. Technical Advisory Committee on Flood Defence, Delft.2002.
    [15]卢无疆.直立堤堤前抛石对与浪了的影响[J].海洋工程,1985(1):81-90.
    [16]余广明,章家昌,周家宝.风浪在单坡堤上的越顶流量[J].水利水运工程学报,1991(3):233-239.
    [17]虞克,余广明.斜坡堤越浪试验研究[J].水利水运科学研究,1992(3):211-219.
    [18]王红,周家宝,章家昌.单坡堤上不规则波越浪量估算[J].水利水运科学研究,1996(3):58-63.
    [19]陈国平,周益人,琚烈红.海堤护面形式对波浪爬高和越浪的影响[J].水运工程,2005(10):28-30.
    [20]范红霞.斜坡式海堤越浪量及越浪流试验研究[D].南京:河海大学,2006.
    [21]李晓亮,俞聿修,赵凤亚,等.斜向和多向不规则波在斜坡堤上的平均越浪量的试验研究[J].海洋学报,2007(1):139-149.
    [22]李昌良,梁丙成.不规则波越浪计算的一个新公式[J].海洋通报,2008,27(5):91-99.
    [23]陈国平,周益人,严士常.不规则波作用下海堤越浪试验研究[J],水运工程,2010,(3):1-6.
    [24]罗兴远.弧形胸墙斜坡护岸越浪量及新测量方法的研究[D].大连:大连理工大学,2011.
    [25]代英男.斜坡堤越浪流厚度及堤后次生波的试验研究[D].大连:大连理工大学,2011.
    [26]Kobayashi N, Wurjanto A. Wave overtopping on coastal Structures[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering.1998,115(2):235-251.
    [27]Hu K, Mingham C G, Causon D M. Numerical simulation of wave overtopping of cosatal structures using the non-linear shallow water equations[J]. Coastal Engineering,2000,41(4):433-465.
    [28]Tuan T Q, Oumeraci H. A numerical model of wave overtopping on seadikes[J]. Coastal Engineering,2010,57(8):757-772.
    [29]周勤俊,王本龙,兰雅梅,刘桦.海堤越浪的数值模拟[J].力学季刊,2005,26(4):629-633.
    [30]Wang B L, Liu H. Higher order Boussinesq-type equations for waterwaves on uneven bottom[J]. Applied Mathematics and Mechanics,2005(6):774-784.
    [31]刘亚男,郭晓宇,王本龙,刘桦.基于RANS方程的海堤越浪数值模拟[J].水动力学研究与进展,2007,22(6):682-688.
    [32]Ingram D M, Gao F, Causon, Mingham C G, Troch P. Numerical investigations of wave overtopping at coastal structures[J]. Coastal Engineering,2009,56(2):190-202.
    [33]Shao S D, Ji C M, Graham D I. Simulation of wave overtopping by an imcompressible SPH model[J]. Coastal Engineering,2006,53(9):723-735.
    [34]Sollitt C K, Cross R H. Wave transmission through permeable breakwaters[C]/ Proceedings of 13th International Conference on Coastal Engineering, ASCE.1972: 1827-1846.
    [35]Rojanakamthorn S, Isobe M, Watanabe A. A mathematical model of wave tramsfomation over a submerged breakwater[J]. Coastal Engineering Japan,1989,32,:209-234.
    [36]Tsai C P, Chen B H, Lee F C. Wave transformation over submerged permeable breakwater on porous bottom[J]. Ocean Engineering,2006,33(11-12):1623-1643.
    [37]Van Gent M R A. The modelling of wave action on and in coastal structures [J]. Coastal Engineering,1994,22(3-4):311-339.
    [38]Cruz E C, lsobe M, Watanabe A. Boussinesq equations for wave transformation on porous beds[J]. Coastal Engineering,1997(1-2),30:125-156.
    [39]Cruz E C, Chen Q. Numerical modeling of nonlinear water waves over heterogeneous porous beds[J]. Ocean Engineering,2007,34(8-9):1303-1321.
    [40]Hirt C W, Nichols B D. Volume of fluid method for dynamics of free boundaries [J]. Computational Physics,1981,39(1):201-225.
    [41]Liu P L F, Lin P Z, Chang K A, Sakakiyama T. Numerical modeling of wave interaction with porous structures [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1999,125(6):322-330.
    [42]Van Gent M R A. Wave interaction with permeable coastal structures[D]. The Netherlands:Delft University,1995:8-18.
    [43]Hsu T J, Sakakiyama T, Liu P L F. A numerical model for wave motions and turbulence flows in front of a composite breakwater[J]. Coastal Engineering,2002,46(1): 25-50.
    [44]Losada I J, Lara J L, Damgaard E, Garcia N. Modelling of velocity and turbulence fields around and within low-crested rubble-mound breakwaters[J]. Coastal Engineering,2005,52 (10-11):887-913.
    [45]Lara J L, Garcia N, Losada I J. RANS modelling applied to random wave interaction with submerged permeable structures[J]. Coastal Engineering,2006,53(5-6): 395-417.
    [46]Lara J L, Losada I J, Guanche R. Wave interaction with low-mound breakwaters using a RANS model [J]. Ocean Engineering,2006,35 (13):1388-1400.
    [47]Karim M F, Tanimoto K, Hieu P D. Simulation of wave transformation in vertical permeable structure[C]//Proceedings of The Thirteenth International Offshore and polar Engineering Conference. Hawaii, USA,2004:89-97.
    [48]Karim M F, Tanimoto K, Hieu P D. Modelling and simulation of wave transformation in porous structures using VOF based two-phase flow model [J]. Applied Mathematical Modelling,2009,33(1):343-360.
    [49]Shao S D. Incompressible SPH flow model for wave interactions with porous media[J]. Coastal Engineering,2010,57(3):304-316.
    [50]Huang C J, Chang H H, Hwung H H. Structural permeability effects on the interaction of a solitary wave and a submerged breakwater[J]. Coastal Engineering,2003,49 (1-2):1-24.
    [51]Huang C J, Shen M L, Chang H H. Propagation of a solitary wave over rigid porous beds[J]. Ocean Engineering,2008,35(11-12):1194-1202.
    [52]Monaghan J J, Kos A. Solitary waves on a Cretan beach [J]. Journal of Waterway Port Coastal and Ocean Engineering,1999,152(3):145-454.
    [53]Bonet J, Lok T S L, Variational and momentum preservation aspects of Smooth Particle Hydrodynamics formulations[J]. Computer Methods Applying, Mech. Engrg,1999,180: 97-115.
    [54]Lo E Y M, Shao S D.Simulation of near shore solitary wave mechanics by an incompressible SPH method[J].Applied Ocean Research,2002,24(5):275-286.
    [55]Shao S D, Lo E Y M. Incompressible SPH method of simulating Newtonian and non-Newtonian flows with a free surface [J]. Advances in Water Resources,2003,26(7): 787-800.
    [56]Gotoh H, Shao S D, Memita T. SPH-LES model for numerical investigation of wave interaction with partially immersed breakwater [J]. Coastal Engineering,2004,46(1): 39-63.
    [57]Colagrossi A, Landrini M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J]. Journal of Computational Physics,2003,191(2):448-475.
    [58]Gesteira M G, Crequeiro D, Crespo C, Dalrymple R A. Green water overtopping analyzed with a SPH model[J]. Ocean Engineering,2005,32(2):223-238.
    [59]Riadh Ata. A stabilized SPH method for inviscid shallow water flows[J]. Int. J. Numer. Meth. Fluids,2005,47(2):139-159.
    [60]Rogers B D, Leduc J, Marongiu J C, Leboeuf F. Comparisom and evaluation of multi-phase and surface tension models[C]//In Proc.4th SPHERIC Int. Workshop, Nantes,2009:30-37.
    [61]Khayyer A, Gotoh H, Shao S D. Corrected Incompressible SPH method for accurate water-surface tracking in breaking waves[J]. Coastal Engineering,2008,55(3): 236-250.
    [62]Khayyer A, Gotoh H, Shao S D. Enhanced predictions of wave impact pressure by improved incompressible SPH methods[J]. Applied Ocean Research.2009,31 (2): 111-131.
    [63]Crespo A J C, Marongiu J C, Parkinson E, et al. High performance of SPH codes:Best approaches for efficient parallelization on GPU computing[C]//In Proc.4th SPHERIC Int. Workshop, Nantes,2009:69-76.
    [64]Herault A, Vicari A, Del Negro C, Dalrmple R A. Modelling water waves in the surf zone with GPU-SPHysics[C]//In Proc.4th SPHERIC Int. Workshop, Nantes,2009:77-84.
    [65]Dalrymple R A, Herault A. Levee breaching with GUP-SPHysics code[C]//In Proc.4th SPHERIC Int. Workshop, Nantes,2009:352-355.
    [66]Ferrari A, Dumbser M, Toro E F and Armanini A. A new 3D parallel SPH scheme for free surface flows[J]. Computers & Fluids,2009,38(6):1203-1217.
    [67]张健,陆利蓬,刘恩洲.SPH方法在溃坝流动模拟中的应用[J].自然科学进展,2006,16(10):1326-1330.
    [68]张学莹,潘中建,马小飞.复杂边界溃坝流与结构物作用过程的数值模拟[J].水动力研究与进展,2010,25(3):332-336.
    [69]张喜秋,于昌利.SPH方法在自由面问题中的应用[J].水利水运工程学报,2011,2:65-70.
    [70]李大鸣,刘江川,徐亚男.SPH法在大坝表面孔泄流数值模拟中的应用[J].水科学进展,2008,19(6):841-845.
    [71]肖潇,蒋昌波,程永舟.水流对浮体作用的SPH方法模拟[J].船舶力学,2011,15(8):861-866.
    [72]崔岩,吴卫,龚凯等.二维矩形水槽晃荡过程的SPH方法模拟[J].水动力学研究与进展,2008,23(6):618-624.
    [73]李大鸣,陈海舟,张建伟,徐亚男.基于SPH法的二维矩形液舱晃荡研究[J].计算力学学报,2010,27(2):369-374.
    [74]刘富,童明波,陈建平.基于SPH方法的三维液体晃动数值模拟[J].南京航空航天大学学报,2010,42(1):122-126.
    [75]高睿,任冰,王国玉,王永学.孤立波浅化过程的SPH数值模拟[J].水动力学研究与进展,2010,25(5):620-629.
    [76]郑坤.基于SPH方法的波浪对水平板冲击作用研究[D].大连:大连理工大学,2010.
    [77]任冰,高睿,王国玉,王永学.波浪对透空式结构物冲击作用的SPH数值模拟[J].海洋学报,2011.
    [78]Johnson G R, Stryk R A, Beissel S R. SPH for high velocity impact computations[J]. Computer Methods in Applied Mechanics and Engineering,139:347-373.
    [79]Hsiao S C, Lin T C. Tsunami-like solitary waves impinging and overtopping an overtopping an impermeable seawall:Experiment and RANS model ing[J]. Coasal Engineering,2010,57(1):1-18.
    [80]高杰.水槽无反射造波理论的研究和应用[D].天津:天津大学,2006:28-30.
    [81]Sakakiyama T, Kayama M. Numerical simulation of wave breaking and overtopping on wave absorbing revetment[C]//Proceeding of Coastal Engineering.1997:741-745.
    [82]Swegle J W, Hicks D L, Attaway W S. Smoothed particle hydrodynamics stability analysis [J]. Computational Physics,1995,116(1):123-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700