造波机网络运动控制系统建模及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为自动控制领域的一个重要分支,运动控制技术已被广泛应用于工业生产、设备制造等多个领域。随着控制任务复杂化、控制设备多样化,传统的点对点的控制方式已不能满足其大规模、分布式、多轴协同的控制要求。将网络引入该领域构成分布式网络运动控制系统,不但可以解决这些难题,而且能够简化系统的软硬件设计,降低成本。考虑到网络运动控制技术在大型海工实验设备—海洋造波机中的应用,本文拟研究网络延迟、丢包等对系统性能的影响,通过系统模型的建立和控制技术的研究解决吸收式造波机网络运动控制系统高速实时控制、高精度同步等关键技术难题,具体从以下几个方面做深入的研究:
     首先,从造波机网络运动控制的特点切入,构建层级式结构的海洋造波机网络运动控制系统,基于该结构通过对一个造波机网络运动控制系统子单元的分析和建模,给出在一定约束条件下整个系统全闭环数学模型。对该模型在四种应用触发模式框架下进行分析,明确建立的系统的触发模式。考虑网络运动控制系统现场应用的特点,进一步放宽约束条件,在系统中引入随机噪声干扰信号,并注意到在层级式结构下,数据包出现乱序的可能性,建立造波机网络运动控制系统现实的统一的数学模型。分析该模型,确定系统的稳定条件,并利用求解线性矩阵不等式的方法证明给出条件的合理性。
     其次,为了满足实验需要,确保在有界时延内检测到现场造的波浪的参数并传送给上位机,用以修正目标波谱数据,产生下一采样周期的控制命令,控制造波板做相应运动,实现主动吸收功能。考虑到在提出的层级式网络运动控制系统下,通信协议能够通过标准的以太网数据帧携带时间戳,因此可以在上位机记录端到端的网络通信延迟。基于此建立采用神经网络的观测预测器模型,预测系统未来延迟,从而确定系统下一采样时刻控制指令的输出。具体实现思路是将记录到的第K次采样之前的延迟时间序列值作为神经网络的输入,通过前馈神经网络进行训练,预先得到第K+1次采样的系统时间延迟值,根据此值给出系统控制输入的预估值。该方法实现的关键有两点:一是所采用的神经网络模型拓扑结构的选择,二是预测观测器模型的建立。此外,对提出的模型进行仿真分析,以验证基于该模型的系统在存在一定的延迟和丢包的情况下的稳定性及模型的有效性。
     再次,对在不同网络延迟类型下的系统模型的PID参数进行优化设计,给出符合评价函数标准的P、I、D几个参数在不同采样时间和系统时间常数下的变化规律。在分析不同类型延迟影响的基础上,为了实现系统的PID参数在线整定,提出两种网络PID智能整定方法:基于二进制编码的遗传算法PID整定方法和基于模糊控制的PID整定方法。针对相关整定方法建立系统仿真模型,在给定的网络延迟情况下,对比智能PID整定和常规方法整定的效果,分析延迟的引入对系统响应的影响。
     最后,采用时空图方法,分析基于三种主流工业以太网协议的系统时延构成,通过对比包含不同数量从站的系统通信延迟的变化,从理论的角度重点评估EtherCAT协议的延迟性能。同时设计基于EtherCAT协议的时钟同步功能实现方案,研究新的时钟漂移动态补偿算法。在此基础上,提出将EtherCAT协议用于海洋造波机网络运动系统的现场层控制,更高层直接连接通用以太网的层级式设计方案,在方案基础上搭建系统实验平台。为了保证实验平台的下位主站在多任务操作系统Windows下实时控制功能的实现,探讨WinXP操作系统之上的INtime实时核扩展,以及在该框架内主站协议栈功能的实现;设计采用高性能DSP芯片加上网络专用接口芯片以及控制接口电路的完整从站硬件平台,开发从站协议栈及控制应用程序,实现协议栈在DSP上的移植。系统设计拟实现以下目标:
     (1)构建多功能高速大带宽数据采集系统,使子系统主站能够对造波板前的波况信息在低于1毫秒的周期时间内进行实时同步采集;
     (2)搭建鲁棒性较好的闭环造波机网络通信控制系统,实现实时多板同步控制;
     (3)以网络为数据传输媒介完成对各个造波板的同步控制,并在多任务操作系统下实现造波机系统的实时控制。
     为验证建立的实验平台的有效性和可靠性,需要对建立的系统进行两方面的性能测试评估。即:一方面,通过多次造波实验,测试系统造波的稳定性、重复性和精确性,另一方面,对下位系统进行周期性和同步性的测试。
As one of the important branch of automatic control field, motion control technology has been widely used in modern industrial production, design, manufacture, and so on. However, with the complexity of control tasks and diversification of control devices, the traditional point-to-point control mode cannot cope with a large, distributed, and more collaborative axis control requirements. Introducing communication network into motion control field to build distributed motion control system can not only solve the above mentioned problems but also simplify the design of the software and hardware system and reduce the cost of system. Taking into account the application of networked motion control technology for large-scale experimental equipment named Wavemaker in ocean engineering field, the paper will try to solve the key technical problems which the absorption Wavemaker is controlled with high accuracy and high real-time performance. The model is established aiming at the delay time and data packets drop over network. And a series of intelligent control technologies are researched. The paper is outlined as follows:
     First of all, in view of the characteristics of Wavemaker, the hierarchical system structure of networked control Wavemaker is proposed. The system mathematical model is given based on analyzing one of control units of the subsystem. And the all closed loop system model is proposed under certain condition. The system trigger mode should be clearly defined in the framework of four application trigger modes. Considering the characteristics of networked motion control systems, the paper presents a unified mathematical model of networked motion control system for Wavemaker. In the model, the constraint condition is relaxed. The system with interference signal and disordered data packets is analyzed. The system stability conditions are proposed for the above mentioned mathematical model. The conditions are proved by the method of linear matrix inequalities.
     Second, to revise the target spectrum and cope with the experimental requirements, the wave parameters must be timely tested and sent to the upper computer under the bounded delay time. Taking advantage of the characteristic which the timestamp can be carried by the data packets in the networked motion control system with hierarchical structure, the observer prediction model based neural network is presented according to the recorded end-to-end communication delay in the upper computer. The model is used to predict the next communication delay time to determine the required control instructions. The specific method is to record the past delay time sequence values before the data sampling time K. The values are entered into the neural network and trained by the neural network model. After the training process is finished, the new control instructions are generated by the predicted delay time values before the data sampling time K+l. The proposed method includes two key aspects:the neural network topology selection for the predicted model. Moreover, taking into communication delay and data packets drop, the system based the model should be stable and the effectiveness of model must be verified through the simulation method.
     Third, the PID(Proportional-Integral-Derivative) parameters of networked motion control system should be optimized under different types of delay time. At the same time, the variation of parameters by cost standard function is given according to different sample time and system time constant. To achieve the online PID parameters of the subsystem automatic adjustment, the intelligent networked PID adjustment methods are proposed based on the analysis of the different types of delay time. Two methods are put forward named PID control method based on binary coded genetic algorithm and PID control method based on fuzzy theory, respectively. The system simulation model is established to evaluate the difference between the conventional adjustment method and the intelligent PID regulation method under Pre-set delay time.
     Finally, the composition of Industrial Ethernet delay time is analyzed by space-time diagram. We compare the delay time difference of the system including different number of slave stations using three mainstream Industrial Ethernet protocols, respectively. And we focus on verifying the EtherCAT protocol performance from the perspective of the protocol theory. And clock synchronization scheme based on EtherCAT protocol is put forward and the new clock dynamic drift compensation algorithm is set forth. Next, the design scheme of networked motion control system for Wavemaker is proposed. In the scheme, the EtherCAT protocol is proposed to construct the field devices control network and these devices communicate with the upper computer through standard Ethernet. The experimental platform is set up based on above scheme. The whole system structure consists of two parts named master station and slave station. To ensure the realization of the real-time performance, the function of EtherCAT master station protocol stack should be achieved on the Windows system platform which is extended the INtime real time core. The paper gives the hardware design diagrams of EtherCAT slave station experiment platform based on DSP controller and EtherCAT network interface chip. In addition, the software achieves the function of EtherCAT slave station protocol stack and the flow chart of each program module is presented. The system should be able to achieve the following goals:
     (1) The high-speed and high bandwidth data acquisition system should be constructed, and the master station of subsystem can finish real-time synchronization of data acquisition less than1millisecond.
     (2) To control synchronously the wave making boards, the closed-loop Wavemaker networked communication control system with better robustness should be set up.
     (3) The system must be able to control synchronously all of wave making boards through the communication network. And the real-time control function should be achieved under multi-tasking operating system.
     To verify the effectiveness and reliability of the designed experimental platform, the system performance must be evaluated. We test the stability, repeatability and accuracy of the designed system through making repeatedly wave in the experimental pool. On the other hand, the cycle and synchronization performance indexes of the subsystem should be tested.
引文
[1]Quanxin, Z. and C. Jinde. Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2012,23(03):467-479479.
    [2]Hespanha, J.P., P. Naghshtabrizi, and X. Yonggang. A Survey of Recent Results in Networked Control Systems [J]. Proceedings of the IEEE,2007,95(1):138-162.
    [3]王帅宇.闭环网络伺服控制技术研究[D].北京:北京理工大学.2006.
    [4]何飞跃.网络化控制系统在电力系统中的应用研究[D].湖北:华中科技大学,2006.
    [5]Mo-Yuen, C. and Y. Tipsuwan. Gain adaptation of networked DC motor controllers based on QoS variations [J]. IEEE Transactions on Industrial Electronics,2003,50(5):936-9439.
    [6]Hongbo, L., C. Mo-Yuen, and S. Zengqi. Speed control of a networked DC motor system with time delays and packet losses [J]. IEEE Industrial Electronics Society,2008:2941-2946.
    [7]Matsuo, K., T. Miura, and T. Taniguchi. A speed control method of small DC motor through IP network considering packet loss [J]. IEEE Transactions on Electrical and Electronic Engineering,2007, 2(6):657-659.
    [8]Caruntu, C.F. and C. Lazar. Networked Predictive Control for Time-varying Delay Compensation with an Application to Automotive Mechatronic Systems[J]. Control Engineering and Applied Informatics, 2011,13(04):19-25.
    [9]Chih-Lyang, H., C. Li-Jui, and Y. Yuan-Sheng. Network-based fuzzy decentralized sliding-mode control for car-like mobile robots [J]. IEEE Transactions on Industrial Electronics,2007, 54(1):574-585.
    [10]Bekiaris-Liberis, N. and M. Krstic. Compensation of Time-Varying Input and State Delays for Nonlinear Systems[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme,2012,134(01).
    [11]Abed, A.A., et al.. A Robust Neural Fuzzy Petri Net Controller for A Temperature Control System [J]. Procedia Computer Science,2011,5(0):881-890.
    [12]Al-Dabbagh, A.W. and L. Lu. Design and reliability assessment of control systems for a nuclear-based hydrogen production plant with copper-chlorine thermochemical cycle [J]. International Journal of Hydrogen Energy,2010,35(03):966-977.
    [13]Bayindir, R. and Y. Cetinceviz. A water pumping control system with a programmable logic controller (PLC) and industrial wireless modules for industrial plants-An experimental setup [J]. ISA Transactions,2011,50(02):321-328.
    [14]Gierach, K., D. Thompson, and P. Banerjee. An approach for facilitating service management in networked virtual manufacturing environments [J]. Robotics and Computer-Integrated Manufacturing, 2002,18(2):147-156.
    [15]Herz, D.M., et al.. Task-specific modulation of effective connectivity during two simple unimanual motor tasks:A 122-channel EEG study[J]. Neurolmage,2012,59(04):3187-93.
    [16]Lopez-Echeverria, D. and M.E. Magana. Variable Sampling Approach to Mitigate Instability in Networked Control Systems With Delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2012,23(01).
    [17]Asiewicz, P. and M. Pawlak. Development of Fault Tolerant Control System for condensation power turbine, in Fault Detection, Supervision and Safety of Technical Processes[M]. Elsevier Science Ltd: Oxford,2006.
    [18]张先波.港池多向造波机控制系统研究及应用[D].天津:天津大学,2008.
    [19]杨建军.室内小型多功能风浪水槽控制系统研究[D].山东:青岛大学,2010.
    [20]刘思,柳淑学,俞聿修,李金宣.基于小波变换法定义的波群参数[J].海洋学报(中文版),2010,32(02):148-154.
    [21]李木国,张丰,王静,张群.基于Winsock类开发的造波机控制系统通讯软件设计[J].计算机工程与设计,2009,30(06):1536-1538.
    [22]王静,张群,李木国.基于网络控制的方向谱造波机系统[J].中国海洋平台,2007,22(03):52-54.
    [23]李木国,金乃高,王静,张群.计算机技术在方向谱造波机控制软件中的应用[J].中国海洋平台,2001,16(05):62-67.
    [24]基于网络的远程运动控制系统的设计和研究[D].湖北:武汉理工大学,2005.
    [25]Ang, S.H., C. Dai, and R.P. Knott. Remote maintenance of control system performance over the Internet [J]. Control Engineering Practice,2007,15(5):533-544.
    [26]Ajor, R.L. and C.T. Ragsdale. Aggregating expert predictions in a networked environment [J]. Computers & Operations Research,2001,28(12):1231-1244.
    [27]Zhang, Y. and H. Ma. Theoretical and Experimental Investigation of Networked Control for Parallel Operation of Inverters[J]. IEEE Transactions on Industrial Electronics,2012,59(04):1961-1970.
    [28]Eorgiadis, C.K., I.K. Mavridis, and G.I. Pangalos. Healthcare teams over the Internet:programming a certificate-based approach [J]. International Journal of Medical Informatics,2003,70(2-3):161-171.
    [29]An Filibeli, M., O. Ozkasap, and M. Reha Civanlar. Embedded web server-based home appliance networks [J]. Journal of Network and Computer Applications,2007,30(2):499-514.
    [30]Chikawa, H., et al.. A Ubiquitous wireless network architecture and its impact on optical networks [J]. Computer Networks,2008,52(10):1864-1872.
    [31]Atzori, L., A. Iera, and G. Morabito. The Internet of Things:A survey [J]. Computer Networks,2010, 54(15):2787-2805.
    [32]Steed, A. and M.F. Oliveira. Chapter 3-Overview of the Internet, in Networked Graphics2010[M]. Morgan Kaufmann:Boston,2010.
    [33]Steed, A. and M.F. Oliveira. Chapter 1-Introduction, in Networked Graphics2010[M]. Morgan Kaufmann:Boston.,2010.
    [34]Conti, M., et al.. Research challenges towards the Future Internet [J]. Computer Communications, 2011,34(18):2115-2134.
    [35]Paul, S., J. Pan, and R. Jain. Architectures for the future networks and the next generation Internet:A survey [J]. Computer Communications,2011,34(1):2-42.
    [36]Zhang, X., X. Guan, and L. Chen. Fault diagnosis of weapon fire-control system based on BP neural network. Computer Measurement & Control[J].2010,18(11):2576-2578.
    [37]马卫国,邵诚.具有长时延及丢包的网络控制系统稳定性分析[J].控制与决策,2007,22(1):22.29.
    [38]樊卫华,蔡骅,吴晓蓓.胡维礼.具有延时和数据包丢火的网络控制系统的稳定性[J].南京理工大学学报(自然科学版).2004,28(5):465-468.
    [39]邢伟.王加房,王国良.具有丢包的长时延NCS的稳定性分析[J].东北大学学报(自然科学版),2008,29(10):1393-1397.
    [40]马永光,陈文颖,王兵树,葛伟.有时延和丢包的网络控制系统的补偿策略[J].计算机工程与应用,2010,46(14):75-78.
    [41]闫冬梅.网络控制系统的延时补偿方法[J].长春工业大学学报(自然科学版),2006,27(2):153-155.
    [42]李玉清,方华京,朱菲.随机时延网络化控制系统的自适应预测控制[J].华中科技大学学报(自然科学版),2009,10(S1):292-295.
    [43]马新军.不确定时滞系统鲁棒稳定性及鲁棒控制研究[D].广东:华南理工大学,2005.
    [44]Zhu, Z.Q. and X.C. Jiao. Fault detection for nonlinear networked control systems based on fuzzy observer[J]. Journal of Systems Engineering and Electronics,2012,23(1):129-136.
    [45]Li, Z. and H. Fang. Fuzzy controller design for networked control system with time-variant delays [J]. Journal of Systems Engineering and Electronics,2006,17(01):172-176.
    [46]Ma, C. and H. Fang. Research on stochastic control of networked control systems [J]. Communications in Nonlinear Science and Numerical Simulation,2009,14(02):500-507.
    [47]Yang, C.-X., Z.-H. Guan, and J. Huang. Stochastic fault tolerant control of networked control systems [J]. Journal of the Franklin Institute,2009,346(10):1006-1020.
    [48]元亮.针对时延和数据包丢失的网络控制系统分析与设计[J].电力科学与工程,2009,25(7):42-45.
    [49]高嫒.长时延网络控制系统的研究方法与展望[J].仪器仪表用户,2008,15(6):2-5.
    [50]黎煊,吴晓蓓.具有长时延和丢包的网络控制系统的故障检测[J].计算机工程与应用,2008,44(33):221-223.
    [51]董玲,王继华,白焰.有丢包的网络控制系统建模与指数稳定性分析[J].化工自动化及仪表,2009,36(4):26-29.
    [52]罗小元,尚美杰,陈彩莲,关新平.执行器端丢包故障的网络控制系统建模与设计[J].华中科技大学学报(自然科学版),2009,37(SI):263-266.
    [53]李洪波,孙增圻,孙富春.网络控制系统的发展现状及展望.2009年中国智能自动化会议论文集(第八分册)[控制理论与应用(专刊)][C].北京:中国智能自动化学会,2009.
    [54]索格罗.网络传输对控制系统性能的影响分析与控制策略研究[D].北京:清华大学,2005.
    [55]胡晓娅.基于交换式以太网的网络控制系统研究[D].武汉:华中科技大学,2006.
    [56]刘磊明,童朝南.网络控制系统的一种统一的Markov跳变模型[J].北京科技大学学报,2007,29(11):1163-1169.
    [57]常玲,李惠.随机最优非线性网络控制系统设计[J].电机与控制学报,2006,10(04):435-439.
    [58]徐广宁,朱善安.基于广义预测控制算法(GPC)的网络闭环控制系统研究[J].工业控制计算机,2004,17(12):12-13.
    [59]马长林,方华京.基于α-置信度网络化控制系统的转换控制[J].华中科技大学学报(自然科学 版),2008,36(04):48-50.
    [60]胡向东.具有QS特征的网络控制系统.2005中国控制与决策学术年会论文集(下)[C].吉林:东北大学出版社,2005.
    [61]Won-jong, K., J. Kun, and A. Ambike. Real-time operating environmentfor networked control systems [J]. Automation Science and Engineering, IEEE Transactions on,2006,3(3):287-296.
    [62]王素青,姜维福.基于TrueTime的网络控制系统调度算法的仿真研究[J].工业控制计算机,2008,21(12):46-48.
    [63]周黎辉,王天堃,徐大平.网络控制系统调度与控制综合设计研究综述[J].华北电力大学学报(自然科学版),2008,35(1):30-35.
    [64]王秀红,杨振光,高谦,陈贵霞.网络控制系统的分析与控制[J].控制工程,2011,18(2):271.274.
    [65]刘振安,葛愿.基于多包传输的网络控制系统的稳定性分析[J].计算机仿,2006,23(03):92-94.
    [66]Tipsuwan, Y. and M.-Y. Chow. Control methodologies in networked control systems[J]. Control Engineering Practice,2003,11(10):1099-1111.
    [67]Zhao, D., C. Li, and J. Ren. Fuzzy speed control and stability analysis of a networked induction motor system with time delays and packet dropouts [J]. Nonlinear Analysis:Real World Applications, 2011,12(1):273-287.
    [68]Shi, Y. and B. Yu. Robust mixed control of networked control systems with random time delays in both forward and backward communication links [J]. Automatica,2011,47(4):754-760.
    [69]Yang, D.-D. and H.-G. Zhang. Robust H∞ Networked Control for Uncertain Fuzzy Systems with Time-delay [J]. Acta Automatica Sinica,2007,33(7):726-730.
    [70]Qixin, Z., L. Hongli, and H. Shousong. Uniformed model of networked control systems with long time delay [J]. Journal of Systems Engineering and Electronics,2008,19(2):385-390.
    [71]Peng, C., et al.. A delay distribution based stability analysis and synthesis approach for networked control systems [J]. Journal of the Franklin Institute,2009,346(04):349-365.
    [72]Zhang, W.-A. and L. Yu. Modelling and control of networked control systems with both network-induced delay and packet-dropout [J]. Automatica,2008,44(12):3206-3210.
    [73]Lin, C., Z. Wang, and F. Yang. Observer-based networked control for continuous-time systems with random sensor delays [J]. Automatica,2009,45(2):578-584.
    [74]Zhang, L. and F. Hua-Jing. A novel controller design and evaluation for networked control systems with time-variant delays [J]. Journal of the Franklin Institute,2006,343(2):161-167.
    [75]Zhang, W.-A. and L. Yu. A robust control approach to stabilization of networked control systems with time-varying delays [J]. Automatica,2009,45(10):2440-2445.
    [76]朱其新.网络控制系统的建模、分析与控制[D].南京:南京航空航天大学,2003.
    [77]窦连旺.网络控制系统的建模、稳定性分析及其调度的研究[D].天津:天津大学,2004.
    [78]樊卫华.网络控制系统的建模与控制[D].南京:南京理工大学,2004.
    [79]方来华.网络控制系统分析、建模及控制研究[D].天津:天津大学,2005.
    [80]吴晨,许哲,何婧,许化龙.网络控制系统建模与控制[J].电光与控制,2009,16(9):37-39.
    [81]Ma, C. and H. Fang. Stochastic stabilization analysis of networked control systems [J]. Journal of Systems Engineering and Electronics,2007,18(1):137-141.
    [82]Mao, Z.-H. and B. Jiang. Fault Estimation and Accommodation for Networked Control Systems with Transfer Delay [J]. Acta Automatica Sinica,2007,33(7):738-743.
    [83]Huang, D. and S.K. Nguang. Robust fault estimator design for uncertain networked control systems with random time delays:An ILMI approach [J]. Information Sciences,2010,180(3):465-480.
    [84]Zhang, Y., Z. Liu, and B. Wang. Robust fault detection for nonlinear networked systems with stochastic interval delay characteristics [J]. ISA Transactions,2011,50(4):521-528.
    [85]Kim, D.-S., et al.. Maximum allowable delay bounds of networked control systems [J]. Control Engineering Practice,2003,11(11):1301-1313.
    [86]Ma, C., S. Chen, and W. Liu. Maximum allowable delay bound of networked control systems with multi-step delay [J]. Simulation Modelling Practice and Theory,2007,15(5):513-520.
    [87]Yang, F. and H. Fang. Control structure design of networked control systems based on maximum allowable delay bounds [J]. Journal of the Franklin Institute,2009,346(6):626-635.
    [88]Xu, W., Z. Zhou, and Q. Liu. Hybrid one-way delay estimation for networked control system [J]. Advances in Engineering Software,2010,41(5):705-711.
    [89]Addad, B., S. Amari, and J.J. Lesage. Genetic algorithms for delays evaluation in networked automation systems [J]. Engineering Applications of Artificial Intelligence,2011,24(3):485-490.
    [90]Ishido, Y., K. Takaba, and D.E. Quevedo. Stability analysis of networked control systems subject to packet-dropouts and finite-level quantization [J]. Systems & Control Letters,2011,60(5): 325-332.
    [91]Baocang, D.. Stabilization of linear systems over networks with bounded packet loss and its use in model predictive control [J]. Automatica,2011,47(11):2526-2533.
    [92]舒志兵,张杰.基于CAN总线网络化运动控制系统的研究[J].机械设计与制造,2008,1(3):181.183.
    [93]杨斌,苏剑波.彷人机器人的分布式控制系统设计[J].控制工程,2010,17(1):102-105.
    [94]张杰.永磁同步电机伺服系统矢量控制的研究[D].哈尔滨工程大学,2010.
    [95]杨光亮.车用永磁同步电机控制方法研究[D].大连理工大学,2009.
    [96]李子林.基于定子电流补偿理论的永磁同步电机弱磁控制策略研究[D].武汉理工大学,2010.
    [97]沈围.低速大转矩永磁同步电机控制系统研究[D].北京交通大学,2011.
    [98]缪礼锋.永磁同步伺服系统的设计与实现[D].中国科学技术大学,2011.
    [99]黎永华.基于双滑模的无传感器永磁同步电机控制系统研究[D].华南理工大学,2010.
    [100]鄂大志.网络控制系统的时延分析、建模与控制[D].东北大学,2009.
    [101]姜翀.网络控制系统的建模、分析与控制[D].东北大学,2010.
    [102]严怀成.网络控制系统的分析与综合[D].华中科技大学,2007.
    [103]朱其新.网络控制系统的建模、分析与控制[D].南京航空航天大学,2003.
    [104]Dan Shi, Hongjian Zhang, and Liming Yang. Time-Delay Neural Network for the Prediction of Carbonation Tower's Temperature [J]. IEEE Transactions on Instrumentation and Measurement,2003, 52 (4):1125-1128.
    [105]Yasar Becerikli, Yusuf Oysal. Modeling and prediction with a class of time delay dynamic neural networks[J]. Applied Soft Computing,2007,7(4):1164-1169.
    [106]吴桂坤.延迟反馈神经网络和两层反馈神经网络的研究[D].厦门大学,2008.
    [107]徐东坡.递归神经网络梯度学习算法的收敛性[D].大连理工大学,2009.
    [108]张超.高阶神经网络的梯度训练算法收敛性分析[D].大连理工大学,2008.
    [109]吕建成.神经网络中的若干问题研究[D].电子科技大学,2006.
    [110]柏春阳.基于自适应模糊PID的氯乙烯聚合釜温度控制研究[D].哈尔滨:哈尔滨工业大学,2010.
    [111]王利.模糊PID控制算法在电动压力发生器开发中的应用[D].吉林:吉林大学,2010.
    [112]白建波,张小松,刘庆君.模糊自适应P1控制在空调系统中的研究[J].化工学报,2010,69(S2):99.106.
    [113]葛继科,邱玉辉,吴春明,蒲国林.遗传算法研究综述[J].计算机应用研究.2008,25(10):2911.2916.
    [114]张兴华,朱筱蓉,林锦国.基于量子遗传算法的PID控制器参数自整定[J].计算机工程与应用.2007,43(21):218-220.
    [115]欧阳惠斌,阳武娇.PID参数整定法的仿真[J].计算机仿真.2007,24(7):323-325.
    [116]李庆春,沈德耀.一种新型的二维PID模糊控制器[J].控制工程.2011,18(4):623-626.
    [117]刘俊,卢建刚.基于BP神经网络自适应PID的负载控制系统[J].控制工程.2009,16(S2):74-77.
    [118]程跃,程文明,郑严.基于自适应模糊PID的中药提取温度控制[J].控制工程.2009,16(5):527-530.
    [119]潘学军,张兆惠.基于模糊PID的智能汽车控制系统[J].控制工程.2009,(05):618-622.
    [120]朱望纯,章浦,耿建平,高海英.VXI总线某导弹导引头自动测试系统[J].电子测量技术.2008,31(9):64-67.
    [121]党杰,涤尘,锦泉.基于CAN总线的通信设计与应用[J].控制工程.2005,12(1):81-83.
    [122]赵晓军,苏海霞,任明伟,曹勇,陈雷,王飞.基于ARM9和CAN总线的远程监控系统[J].计算机工程.2010,36(05):231-233.
    [123]姚晓峰,陈晓侠,张春光.工业以太网和CAN总线系统的通信软件设计[J].控制工程.2006,13(03):268-270.
    [124]邢江,关治洪.网络化控制系统的研究现状与展望[J].控制工程.2006,13(4):294-297.
    [125]康军,戴冠中.网络化控制系统综合控制方法研究[J].控制与决策.2009,24(2):181-186.
    [126]刘全利,王臣凯,王伟,高聪.LED大屏幕同步显示控制系统设计及实现[J].控制工程.2011,18(4):527-530.
    [127]白瑞林,史鹏飞,吉峰,徐义钊.基于Modbus/TCP的智能相机通信接口实现[J].控制工程.2011,18(4):618-622.
    [128]冯琛华,别红霞.基于DM642的以太网通信接口设计[J].信号处理.2007,23(5):783.785.
    [129]张益南.嵌入式Modbus/TCP协议的研究与实现[D].浙江:浙江大学,2008.
    [130]Neumann, P.. Communication in industrial automation—What is going on?[J]. Control Engineering Practice,2007,15(11):1332-1347.
    [131]Huynh, M. and P. Mohapatra. Metropolitan Ethernet Network:A move from LAN to MAN[J]. Computer Networks,2007,51(17):4867-4894.
    [132]Zhang, Q. and W. Zhang. Network partition for switched industrial Ethernet using genetic algorithm[J]. Engineering Applications of Artificial Intelligence,2007,20(1):79-88.
    [133]Zheng, J. and H.T. Mouftah. A survey of dynamic bandwidth allocation algorithms for Ethernet Passive Optical Networks[J]. Optical Switching and Networking,2009,6(3):151-162.
    [134]D'Ambrosia, J. and K. Shrikhande. Standardization efforts for Gigabit Ethernet and beyond[J]. Optical Fiber Technology,2011,17(5):p.512-517.
    [135]Goglin, B.. High-performance message-passing over generic Ethernet hardware with Open-MX[J]. Parallel Computing,2011,37(2):85-100.
    [136]Ji, Q. and B. Chen. Angle Measurement System Based on Ethernet[J]. Procedia Engineering, 2011,15(0):3184-3189.
    [137]Larrabeiti, D., et al.. Towards an energy efficient 10 Gb/s optical ethernet:Performance analysis and viability[J]. Optical Switching and Networking,2011,08(3):131-138.
    [138]Moraes, R., et al.. Enforcing the timing behavior of real-time stations in legacy bus-based industrial Ethernet networks[J]. Computer Standards & Interfaces,2011,33(3):249-261.
    [139]Vitturi, S., et al.. Real-time Ethernet networks for motion control[J]. Computer Standards Interfaces,2011,33(05):465-476.
    [140]Hung, M.-H., et al.. Development of an Ethernet-based equipment integration framework for factory automation[J]. Robotics and Computer-Integrated Manufacturing,2004,20(5):369-383.
    [141]Wang, W.Y.H., et al.. Design and development of Ethernet-based storage area network protocol[J]. Computer Communications,2006,29(9):1271-1283.
    [142]Caro, L.F., D. Papadimitriou, and J.L. Marzo. Enhancing label space usage for Ethernet VLAN-label switching[J]. Computer Networks,2009,53(7):1050-1061.
    [143]Lugli, A.B., M.M. Dias Santos, and L.R. Horta Rodrigues Franco. A computer tool to support in design of industrial Ethernet[J]. ISA Transactions,2009,48(2):228-236.
    [144]Seo, S.-H.. Development of Ethernet emulation driver for reflective memory[J]. Fusion Engineering and Design,2010,85(3-4):561-563.
    [145]Huang, T.-C. and K.-C. Chu. Networking without Dynamic Host Configuration Protocol server in Ethernet and Wireless Local Area Network[J]. Journal of Network and Computer Applications, 2011,34(06):2027-2041.
    [146]徐华福.基于CAN总线无人遥控潜水器控制系统设计研究[D].上海交通大学,2009.
    [147]张世维.航空发动机分布式控制系统结构多目标优化[D].南京航空航天大学,2007.
    [148]Jamsa-Jounela, S.-L.. Future trends in process automation[J]. Annual Reviews in Control,2007, 31(2):211-220.
    [149]Silvestre, J. and V. Sempere. An architecture for flexible scheduling in Profibus networks[J]. Computer Standards & Interfaces,2007,29(5):546-560.
    [150]van der Linden, G.W., et al.. Design of the Magnum-PSI safety, control and data acquisition system[J]. Fusion Engineering and Design,2008,83(2-3):273-275.
    [151]李木国,王磊,王静,张群.基于EtherCAT的工业以太网数据采集系统[J].计算机工程.2010,36(3):237-239.
    [152]EtherCAT Technology Group[EB/OL]. http://www.ethercat.org.cn.2012.04.04.
    [153]J. Jasperneite, M. Schumacher, and K. Weber. Limits of increasing the performance of industrial ethernet protocols.12th IEEE International Conference on Emerging Technologies and Factory Automation,2007[C]. USA:IEEE, Piscataway, NJ, USA,2007.
    [154]M. Rostan, J.E. Stubbs, D. Dzilno. EtherCAT enabled advanced control architecture. Advanced Semiconductor Manufacturing Conference (ASMC),2010[C].39-44.
    [155]B.A. GmbH.2008:Hardware Data Sheet ET1100-EtherCAT Slave Controller[EB/OL]. Vel.1.8, Available:http://www.beckhoff.coml.
    [156]G. Prytz, and J. Skaalvik.2010:Redundant and synchronized EtherCAT network.5th International Symposium on Industrial Embedded Systems,201-204.
    [157]Ethernet Powerlink[EB/OL]. http://www.ethernet-powerlink.org.
    [158]Ferrari, P., A. Flammini, and S. Vitturi, Performance analysis of PROFINET networks. Computer Standards & Interfaces,2006.28(4):p.369-385.
    [159]Kleines, H., et al. Performance aspects of PROFINET IO. in 2007 15th IEEE-NPSS Real-Time Conference, RT, April 29,2007-May 4,2007.2007. Batavia, IL, United states:Inst. of Elec. and Elec. Eng. Computer Society.
    [160]M. Rehnman, T. Gentzell.2008:Synchronization in a force measurement system using EtherCAT.13th IEEE International Conference on Emerging Technologies and Factory Automation, 1023-1030.
    [161]G. Cena, I. C. Bertolotti, S. Scanzio, A. Valenzano, C. Zunino.2010:On the accuracy of the distributed clock mechanism in EtherCAT.2010 IEEE International Workshop on Factory Communication Systems,43-52.
    [162]G. Cena, S. Scanzio, A. Valenzano, C. Zunino.2010:Performance evaluation of the EtherCAT distributed clock algorithm.2010 IEEE International Symposium on Industrial Electronics,3398-3403.
    [163]J. C. Lee, S. J. Cho, Y. H. Jeon, J. W. Jeon.2009:Dynamic drift compensation for the distributed clock in EtherCAT.2009 IEEE International Conference on Robotics and Biomimetics,1872-1876.
    [164]俞聿修.随机波浪及其应用[M].大连理工大学出版社,2003.
    [165]柳淑学,吴斌,李木国,王静.无反射不规则波造波机系统的研究[J].水动力学研究与进展,2003,18(5):532-539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700