东中国海大气气溶胶模型和海水后向散射模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东中国海以具有混浊沿岸水著称,属典型的二类水体。由于黄河、长江河水的入海,工业城市的沿海布局,使东中国海富集浮游植物、悬移质和黄色物质;蒙古和中国北部沙漠地区黄沙和陆源煤烟随大气传输入侵,使东中国海和东亚海域的大气气溶胶呈现强吸收性。因此,国外提供的海色卫星数据产品诸如ME RIs、MODIs在东中国海沿岸水域具有很大误差;中国的在轨海色传感器FY_3A/MERSI和HY_1B/cOcTs实际上缺乏可靠的数据产品。
     本文针对欧空局Envisat/MERIs数据,它是目前相对最佳的在轨海色传感器,利用1998—2010年东中国海海洋光学和大气光学现场测量数据集以及Mie散射和大气一海洋辐射传递模拟计算软件,对东中国海的大气气溶胶模型和海水后向散射模型进行了较深入的研究,它们是解决东中国海海色反演算法的关键问题。主要研究结果如下:
     1.ME RIs、MODIs大气校正算法在东中国海的评估。
     评估结果表明:经EsA大气校正算法获得的遥感反射比Rrs(?)在东中国海的印证平均相对误差达71%,最大相对误差高达300%。单次散射反照率ssA—Angstrom指数Ⅱ分布图被用于检验气溶胶模型的粒径分布和折射率特征,上述二者的气溶胶模型均不能涵盖东中国海的大气气溶胶特征。EsA大气校正算法在东中国海的性能总体上优于NAsA SeaI)As 6.1大气校正算法。后者的Angstrom指数Ⅱ在东中国海的性能优于前者。
     2.东中国海大气气溶胶光学性质。
     根据各类气溶胶光学厚度(?)和Angstrom指数Ⅱ的数值范围,利用AERONET和sKYNET气溶胶观测网数据库19个东中国海岸站以及中国海洋大学海洋遥感研究所海洋光学数据库c)RSI02DB 6个航次620个站位的数据,首次给出东中国海大气气溶胶(?)分类分布图,以及三种气溶胶类型的粒径分布和单次散射反照率光谱。东中国海大气气溶胶以海盐(cM)、煤烟(Bu)和黄沙(DD)共同作用的混合型为主导;煤烟的作用大于黄沙;黄沙的作用与区域和季节有关;几乎没有海盐作用为主的区域和季节。根据现场数据统计结果,给出东中国海大气气溶胶光学性质统计参数。
     3.东中国海大气气溶胶模型及气溶胶反射率查找表。
     利用气溶胶粒径分布和折射率现场数据以及气溶胶粒径双峰对数正态分布,首次给出东中国海大气气溶胶模型,包括粒径分布模型参数表和折射率参数表。利用Mie:散射计算软件,由该气溶胶模型计算气溶胶光学性质并与现场测量数据比较,二者吻合;用另一组现场测量数据作比较印证。利用德国柏林自由大学研发的MOMO大气海洋辐射传递计算软件,进一步给出适用于东中国海的大气气溶胶反射率查找表。
     4.东中国海海水后向散射模型
     利用中国海洋大学的oRSIo2DB数据库东中国海6个航次575站位的数据,选择【30xarfdl]et a1.(2009)的海中悬浮粒子散射系数b。(?)光谱模型,拟合获得适用于东中国海的b。(?)模型参数r计算公式和平均值。b。《¨模型计算值与现场测量值的相对误差分别为4.76%和5.22%,均方根误差RMStj为0.1117和0.1199。基于Morel的悬浮粒子后向散射系数(?)光谱模型,拟合给出适用于东中国海的悬浮粒子后向散射系数bu。(”光谱幂指数的计算公式和平均值。bb。(”模型计算值与现场测量值的相对误差分别为5.22%和5.24%,RMsE均为0.0016。在此基础上,给出东中国海(?)的光谱模型。进一步利用同步测量的悬浮粒子浓度sPM数据,给出sPM与bp(532)、bbp(532)、bbp(532)/bp(532)的经验关系式。
East China Seas are famous for containing turbid coastal waters and are typical case II waters. East China Seas are abundant of phytoplankton, suspended particulate matter and colored dissolved organic matter due to the Yellow River and Yangtze River plumes and a coastal industrial city layout. The atmospheric aerosols have strong absorption properties resulting from the invasion of sand and land-based sources of soot transporting from Mongolia and Desert regions in northern China atmospheric. Therefore, the ocean color data products provided with overseas sensors, e.g., MERIS, MODIS, have big errors for coastal waters in East China Seas. The Chinese in-orbit ocean color sensors, i.e., FY-3A/MERSI and HY-1b/COCTS are actually lack of reliable data products.
     This paper is focused on Envisat/ MERIS data, which is relatively best in-orbit ocean color sensor at present. Using data sets of ocean and atmospheric field measurements during 1998-2010 in East China Seas and atmosphere - ocean radiative transfer modeling, further study on aerosol model and seawater backscattering model for East China Seas were made. The models are the key to solve the ocean color retrieval algorithm for East China Seas. The main results are listed as follows:
     1.Evaluation of atmospheric correction algorithm for MERIS and MODIS in East China Seas.
     The evaluation results suggest that the average validation error of Rrs( ) from ESA atmospheric correction algorithm in East China Seas can reach 71% and the maximum of the validation error is as high as 300%. The distributions of single scattering albedo SSA-?ngstr?m exponent were used to examine the characteristics of aerosol models, aerosol size distribution and index of refraction. The ESA and NASA aerosol models cannot represent the aerosol characteristics over East China Seas. The performance of ESA atmospheric correction algorithm in East China Seas is generally better than the NASA SeaDAS 6.1 atmospheric correction algorithm.
     2.Optical properties of aerosols over East China Seas
     According to the range of aerosol optical depth a and ?ngstr?m exponent for various types of aerosols, the category distribution of a– over East China Seas, and the size distribution and single scattering albedo for three aerosol types were first provided by use of data from 19 ground-based stations in East China Seas of AERONET and SKYNET aerosol-monitoring network and 620 stations in 6 cruises of Ocean Remote Sensing Institute Ocean Optics DataBase ORSIO2DB, Ocean University of China. The aerosols over East China Seas are dominated by the mixture of sea salt (CM), soot (BU) and sand (DD). The effect of soot is greater than sand, and the effect of sand is associated with areas and seasons. Little areas and seasons are dominated by sea salt aerosols. Based on the statistics of field data, the statistical parameters for aerosol optical properties over East China Seas were given.
     3.Aerosol models over East China Seas and aerosol reflectance look-up table.
     According to the field measurements of aerosol size distribution and index of refraction, as well as bimodal lognormal particles size distribution, aerosol models over East China Seas were provided for the first time, including the tables of aerosol size distribution and index of refraction. Based on the established aerosol models, the aerosol optical properties computed with Mie theory were compared with field measurements. They agreed well. Another group of field measurements were used for validation. The aerosol reflectance look-up table over East China Seas was established using atmosphere-ocean radiative transfer modeling MOMO developed by Free University Berlin, Germany.
     4.Seawater backscattering models for East China Seas
     The scattering coefficient spectral model for suspended particulate matter bp( )published in Doxaran et al. (2009) was selected as a reference. The expression and average value of parameter for East China Seas were obtained by fit. The relative errors between the computed value of bp( ) from the model and the in-situ value are 4.76% and 5.22%, and the RMSE are 0.1117 and 0.1199. Based on Morel’s backscattering coefficient spectral model for suspended particulate matter bbp( ), the expression and average value of the power exponent in the bbp( ) model were derived by fit. The relative errors between the modeled and in-situ values of bbp( ) are 5.22% and 5.24% , and the RMSE is both 0.0016 . On this basis, the spectral model of bbp( )/ bp( ) for East China Seas was established. Using simultaneous measurements of concentration of suspended particulate matter SPM, the empirical relationship between SPM and bp(532), bbp(532), bbp(532) / bp(532) were further established respectively.
引文
[1] AERONET Version 2 Inversion Product Descriptions, http://aeronet.gsfc.nasa.gov/new_web/optical_properties.html.
    [2] Ahmad, Z., and R. S. Fraser, An iterative radiative transfer code for ocean-atmosphere systems, J. Atmos. Sci., 39, 656–665, 1982.
    [3] Ahmad, Z., B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B.N. Holben, New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans, Appl. Opt., 49, 5545-5560, 2010.
    [4] Aiken, J., and G. Moore, MERIS ATBD 2.5: Case 2 Turbid Water Flag, Available online at: http://envisat.esa.int/instruments/meris/pdf/atbd_2_05.pdf , 2000a.
    [5] Aiken, J., and G. Moore, MERIS ATBD 2.6: Case 2 (S) bright pixel atmospheric correction,Available online at: http://envisat.esa.int/instruments/meris/pdf/atbd_2_06.pdf , 2000b.
    [6] André, J.-M., and A. Morel, Atmospheric corrections and interpretation of marine radiances in CZCS imagery, revisited, Oceanologica Acta, 14, 3-22, 1991.
    [7] Antoine, D., and A. Morel, Relative importance of multiple scattering by air molecules and aerosols in forming the atmospheric path radiance in the visible and neat infrared parts of the spectrum, Appl. Opt., 37, 2245-2259, 1998.
    [8] Antoine, D., and A. Morel, A multiple scattering algorithm for atmospheric correction of remotely-sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones, Int. J. Remote Sens., 20, 1875-1916, 1999.
    [9] Antoine, D., and A. Morel, MERIS ATBD 2.7: Atmospheric correction of the MERIS observations over ocean Case-1 waters, Available online at: http://envisat.esa.int/instruments/meris/pdf/atbd_2_07.pdf , pp82, 2005.
    [10] Babin, M., D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe, J. Geophys. Res., 108(C7), 3211, doi:10.1029/2001JC000882, 2003a.
    [11] Babin, M., A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,Limnol. Oceanogr., 48, 843-859, 2003b.
    [12] Bailey, S. W., and M. Wang, Satellite aerosol optical thickness match-up procedures, NASA Technical Memorandum, NASA Goddard Space Flight Center, Greenbelt, 2001-209982,70-72, 2001.
    [13] Bailey, S. W., and P. J. Werdell, A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ., 102, 12-23, 2006.
    [14] Bailey, S. W., B. A. Franz, and P. J. Werdell, Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing, Opt. Express, 18, 7521-7527, 2010.
    [15] Barnard, A. H., W. S. Pegau, and J. R. V. Zaneveld, Global relationships in the inherent optical properties of the oceans, J. Geophys. Res., 103(24), 955–24, 968, 1998.
    [16] Binding, C. E., D. G. Bowers, and E. G. Mitchelson-Jacob, An algorithm for the retrieval of suspended sediment concentrations in the Irish sea from SeaWiFS ocean colour satellite imagery, Int. J. Remote Sens., 24, 3791-3806, 2003.
    [17] Binding, C. E., D. G. Bowers, and E. G. Mitchelson-Jacob, Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters; the impact of variable particle scattering properties, Remote Sens. Environ., 94 (3), 373-383, 2005.
    [18] Boss, E., and W. S. Pegau, Relationship of Light Scattering at an Angle in the Backward Direction to the Backscattering Coefficient, Appl. Opt., 40, 5503-5507, 2001.
    [19] Boss, E., W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution, J. Geophys. Res., 109, C01014, doi:10.1029/2002JC001514, 2004.
    [20] Bowers, D. G., C. E. Binding, and M. Ellis, Satellite remote sensing of the geographical distribution of suspended particle size in an energetic shelf sea, Estuarine, Coastal and Shelf Science, 73, 457-466, 2007.
    [21] Bricaud, A., and A. Morel, Atmospheric corrections and interpretation of marine radiances in CZCS imagery: use of a reflectance model, Oceanologica Acta, 7, 33-50, 1987.
    [22] Carder, K. L., F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures, J. Geophys. Res., 104, 5403–5421, 1999.
    [23] Carder, K. L., F. R. Chen, J. P. Cannizzaro, J. W. Campbell, and B. G. Mitchell, Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a, Advances in Space Research, 33 (7), 1152–1159, 2004.
    [24] Cox, C., and W. Munk, Measurements of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter, Jour. Opt. Soc. Am., 44, 838–850, 1954.
    [25] Doerffer, R., and H. Schiller, Pigment index, sediment and gelbstoff retrieval from directional water leaving radiance reflectances using inverse modelling technique, MERIS ATBD 2.12,1997.
    [26] Doxaran, D., J. M. Froidefond, and P. Castaing, Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects using reflectance ratios,Appl. Opt., 42, 2623-2634, 2003.
    [27] Doxaran, D., M. Babin and E. Leymarie. Near-infrared light scattering by particles in coastal waters. Opt. Express, Vol. 15, No. 20 12834-12849, 2007.
    [28] Doxaran, D., K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared, Limnol. Oceanogr., 54, 1257-1271, 2009.
    [29] Dubovik, O., and M. D. King, A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673-20696,2000a.
    [30] Dubovik, O., A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, Accuracy assessment of aerosol optical properties retrieval from AERONET sun and sky radiance measurements, J. Geophys. Res, 105, 9791-9806, 2000b.
    [31] Dubovik, O., B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590-608, 2002a.
    [32] Dubovik, O., B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, Non-spherical aerosol retrieval method employing light scattering by spheroids, Geophys. Res. Lett., 10, 10.1029/2001GL014506, 2002b.
    [33] Dubovik, O., A. Sinyuk, and T. Lapyonok et al., Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619, 2006.
    [34] Eck, T. F., B. N. Holben, J. S. Reid, N. T. O'Neill, J. S. Schafer, O. Dubovik, A. Smirnov, M.A. Yamasoe, and P. Artaxo, High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions, Geophys. Res. Lett., 30 (20), 2035, doi:10.1029/2003GL017861, 2003.
    [35] Eltermann, L., UV, visible, and IR attenuation for altitudes to 50 km. EnvironmentalResearch Paper No. 285, AFCRL-68-0153, Airforce Cambridge Research Laboratories, 1968.
    [36] Fell, F., and J. Fischer, Numerical simulation of the light field in the atmosphere-ocean system using the matrixoperator method, J. Quant. Spectrosc. Radiat. Transfer, 69, 351-388,2001.
    [37] Fischer, J., and H. Grassl, Radiative transfer in an atmosphere-ocean system: an azimuthallydependent matrixoperator approach, Appl. Opt., 23, 1032-1039, 1984.
    [38] Frouin, R., M. Schwindling, and P. Y. Deschamps, Spectral reflectance of sea foam in the visible and near infrared: In situ measurements and remote sensing implications, J. Geophys. Res., 101, 14, 361–14, 371, 1996.
    [39] Gao, B.-C., M. J. Montes, Z. Ahmad, and C. O. Davis, Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space, Appl. Opt. 39, 887-896, 2000.
    [40] Gao, B.-C., M. J. Montes, R.-R. Li, H. M. Dierssen, and C. O. Davis, An atmospheric correction algorithm for remote sensing of bright coastal waters using MODIS land and ocean channels in the solar spectral region, IEEE Trans. Geosci. Remote Sens., 45, 1835-1843, doi:10.1109/TGRS.2007.895949, 2007.
    [41] Gordon, H. R., Removal of atmospheric effects from satellite imagery of the oceans, Appl. Opt., 17, 1631-1636, 1978.
    [42] Gordon, H. R., and D. K. Clark, Atmospheric effects in the remote sensing of phytoplankton pigments, Boundary-Layer Meteorol., 18, 299-313, 1980.
    [43] Gordon, H. R., and D. K. Clark, Clear water radiances for atmospheric correction of Coastal Zone Color Scanner imagery, Appl. Opt., 20, 4175-4180, 1981.
    [44] Gordon, H. R., and D. J. Castaflo, The Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects, Appl. Opt., 26, 2111-2122, 1987.
    [45] Gordon, H. R., J. W. Brown, and R. H. Evans, Exact Rayleigh Scattering Calculations for use with the Nimbus-7 Coastal Zone Color Scanner, Appl. Opt., 27, 862–871, 1988a.
    [46] Gordon, H. R., O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, A semi-analytic radiance model of ocean color, J. Geophys. Res., 93, 10909–10924, 1988b.
    [47] Gordon, H. R., and D. J. Castano, Aerosol Analysis with the Coastal Zone Color Scanner: A simple method for including multiple scattering effects,Appl. Opt., 28(7), 1320-1326, 1989
    [48] Gordon, H. R., and M. Wang, Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh scattering component,App. Opt., 31, 4247-4260, 1992.
    [49] Gordon, H. R., and M. Wang, Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm, Appl. Opt., 33, 443-452, 1994a.
    [50] Gordon, H. R., and M. Wang, Influence of oceanic whitecaps on atmospheric correction of SeaWiFS, Appl. Opt., 33, 7754–7763, 1994b.
    [51] Gordon, H. R., T. Du, and T. Zhang, Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption, Appl. Opt., 36, 8670-8684, 1997.
    [52] Han, Z., Y. Q. Jin, and C. X. Yun, Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data. Int. J. Remote Sens., 27 (19), 4329
    [53] Hansen, J. E., and L. D. Travis, Light Scattering in Planetary Atmospheres, Space Science Reviews, 16, 527 610, 1974.
    [54] HE, M., S. He, Q. Yang, Y. Wang, Z. Liu, J. Sha, and C. Hu. Overview of Chinese spaceborne ocean observing systems, onboard sensors and data products (1988 - 2025), ESA Special Publication SP-684, 2010.
    [55] He, X., D. PAN, and Z. Mao, Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters, Acta oceanologica sinica, 23 (4), 609-615, 2004.
    [56] Holben, B. N., T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, AERONET - A federatedinstrument network and data archive for aerosol characterization, Remote Sens. Environ., 66,1-16, 1998.
    [57] Hu, C., K. L. Carder, and F. E. Muller-Karger, Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method, Remote Sens. Environ., 74, 195-206, 2000.
    [58] IOCCG, Atmospheric Correction for Remotely-Sensed Ocean-Colour Products.Wang, M. (ed.), Reports of the International Ocean-Colour Coordinating Group, No.10, IOCCG, Dartmouth, Canada, 2010.
    [59] Kaskaoutis, D. G., H. D. Kambezidis, N. Hatzianastassiou, P. G. Kosmopoulos, and K. V. S. Badarinath, Aerosol climatology: On the discrimination of aerosol types over four AERONET sites, Atmos. Chem. Phys. Disc., 7, 6357– 6411, 2007.
    [60] Kaufman, Y. J., G. P. Gobbi, and I. Koren, Aerosol climatology using a tunable spectral variability cloud screening of AERONET data, Geophys. Res. Lett., 33, L07817, doi: 10.1029/ 2005GL025478, 2006.
    [61] Khatri, P., and T. Takamura, An algorithm to screen cloud-affected data for sky radiometer data analysis, Journal of the Meteorological Society of Japan, 87 (1), 189-204, 2009.
    [62] Koepke, P., Effective reflectance of oceanic whitecaps, Appl. Opt., 23, 1816–1824, 1984.
    [63] Kokhanovsky, A. A., Spectral reflectance of whitecaps, J. Geophys. Res., 109, C05021, doi:10.1029/2003JC002177, 2004.
    [64] Krawczyk, H., A. Neumann, and M. Hetscher, Mathematical and physical background of principal component inversion. In: Proceedings 3rd International Workshop on MOS-IRS and Ocean Colour, Wissenschaft und Technik Verlag, Berlin, 83-92, 1999.
    [65] Krawczyk, H., A. Neumann, T. Walzel, and G. Zimmermann, Investigation of interpretation possibilities of spectral high dimensional measurements by means of principal componentanalysis - a concept for physical interpretation of those measurements, Proc. SPIE, 401-411, 1993.
    [66] Large, W. G., and S. Pond, The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341–364, doi:10.1007/s00382-008-0441-3, 2009.
    [67] Larouche, P., U. Boyer-Villemaire, Suspended particulate matter in the St. Lawrence estuary and Gulf surface layer and development of a remote sensing algorithm, Estuarine, Coastal and Shelf Science, 90 (4), 241-249, 2010.
    [68] Lavendera, S. J., M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters , Continental Shelf Research, 25(4), 539-555, 2005.
    [69] Lee, J., J. Kim, C. H. Song, J.-H. Ryu, Y.-H. Ahn, and C. K. Song, Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager, Remote Sens. Environ., 114 (5), 1077-1088, 2010.
    [70] Lee, Z., K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, Hyperspectral remote sensing for shallow waters. 1. A semianalytical model. Appl. Opt., 37(27), 6329-6338, 1998.
    [71] Lee, Z., K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Appl. Opt., 38(18), 3831-3843, 1999.
    [72] Lee, Z., K. L. Carder, R. F. Chen, and T. G. Peacock, Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data, J. Geophys. Res., (106), 11639-11651, 2001.
    [73] Lee, Z., K. L. Carder, and R. A. Arnone, Deriving Inherent Optical Properties from Water Color: a Multiband Quasi-Analytical Algorithm for Optically Deep Waters, Appl. Opt.,41(27), 5755-5772, 2002.
    [74] Li, L., H. Fukushima, R. Frouin, B. G. Mitchell, M. HE, I. Uno, T. Takamura, and S. Ohta, Influence of submicron absorptive aerosol on Sea-viewing Wide Field-of-view Sensor (SeaWiFS) - derived marine reflectance during Aerosol Characterization Experiment (ACE)-Asia, J. Geophys. Res., 108(D15), 4472, doi:10.1029/2002JD002776, 2003.
    [75] Li, Y., Atmospheric Correction of SeaWiFS Imagery for Turbid Coastal and Inland Waters: Comment, Appl. Opt. 42, 893-895, 2003.
    [76] Liou, K.-N., An Introduction to Atmospheric Radiation.Academic, New York, pp.392, 1980.
    [77] Long, C. N., and T. P. Ackerman, Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects, J. Geophys. Res., 105(D12), 15,609–15,626, doi:10.1029/2000JD900077, 2000.
    [78] McKee, D., M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters, Appl. Opt., 48, 4663-4675, 2009.
    [79] Mélin, F., M. Clerici, G. Zibordi, B. N. Holben, and A. Smirnov, Validation of SeaWiFS and MODIS aerosol products with globally distributed AERONET data, Remote Sens. Environ.,114, 230-250, 2010.
    [80] Miller, R. L., and B. A. McKee, Using MODIS Terra 250 m imagery to map concentration of total suspended matter in coastal waters, Remote Sens. Environ., 93 (1), 259 266, 2004.
    [81] Mitchell, B. G., Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique, SPIE Ocean Optics X: P.137-148, Orlando, FL, USA,1990.
    [82] Mobley, C. D., Light and Water: Radiative Transfer in Natural Waters, Academic Press, San Diego, Calif., 1994.
    [83] Moore, G. F., J. Aiken, and S. J. Lavender, The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS, Int. J. Remote Sens., 20 (9), 1713 - 1733, 1999.
    [84] Moore, K. D., K. J. Voss, and H. R. Gordon, Spectral reflectance of whitecaps: Instrumentation, calibration, and performance in coastal waters, Jour. Atmos. Ocean. Tech., 15, 496-509, 1998.
    [85] Moore, K. D., K. J. Voss, and H. R. Gordon, Spectral reflectance of whitecaps: Their contribution to water-leaving radiance, J. Geophys. Res., 105 (C3), 6493–6499, doi:10.1029/1999JC900334, 2000.
    [86] Morel, A., The scattering of light by seawater: experimental results and theoretical approach(Diffusion de la lumie`re par les eaux de mer. Re′sultats expe′rimentaux et approche the′orique.), in Optics of the Sea, Interface and In-Water Transmission and Imaging (NATO Advisory Group for Aerospace Research and Development), 1973.
    [87] Morel, A., and D. Antonie, Pigment index retrieval in case 1 waters, ESA OC ATBD 2.9,PO-TN-MEL-GS-0005, pp25, 2007.
    [88] Moulin, C., H. R. Gordon, V. F. Banzon, and R. H. Evans, Assessment of Saharan dust absorption in the visible from SeaWiFS imagery, Geophys. Res. Lett., 106D (18), 239-249,2001.
    [89] Mueller, J. L., and R.W. Austin, Ocean Optics Protocols for SeaWiFS Validation, NASA Tech. Memo., 104566, Vol. 1995.
    [90] Nakajima, T, G. Tonna, R. Rao, P. Boi, Y. J. Kaufman, and B. N. Holben, Use of skybrightness measurements from ground for remote sensing of particulate polyispersions, Appl.Opt., 35: 2672-2686, 1996.
    [91] NASA OC (Ocean Color Chlorophyll) v6 website: http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/ocv6/
    [92] Nobileau, D., and D. Antoine, Detection of blue-absorbing aerosols using near infrared and visible (ocean color) remote sensing observations. Remote Sens. Environ., 95, 369-387,2005.
    [93] O'Neill, N.T., T. F. Eck, A. Smirnov, B. N. Holben, and S. Thulasiraman, Spectral discrimination of coarse and fine mode optical depth, J. Geophys. Res., 108 (D17), 4559, doi:10.1029/2002JD002975, 2003.
    [94] Oo, M., M. Vargas, A. Gilerson, B. Gross, F. Moshary, and S. Ahmed, Improving atmospheric correction for highly productive coastal waters using the short wave infrared retrieval algorithm with water-leaving reflectance constraints at 412 nm, Appl. Opt., 47, 3846-3859, 2008.
    [95] Pace, G., A. di Sarra, D. Meloni, S. Piacentino, and P. Chamard, Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types, Atmos. Chem. Phys., 6 (3), 697–713, 2006.
    [96] Payne, R. E.,Albedo of the Sea Surface. J. Atmos. Sci., 29, 959-970, 1972.
    [97] Pegau, W. S., D. Gray, and J. R. V. Zaneveld, Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity, Appl. Opt. 36, 6035-6046, 1997.
    [98] Ruddick, K. G., F. Ovidio, and M. Rijkeboer, Atmospheric Correction of SeaWiFS Imagery for Turbid Coastal and Inland Waters, Appl. Opt. 39, 897-912, 2000.
    [99] Santer, R., V. Carrere, P. Dubuisson, and J. C. Roger, Atmospheric corrections over land for MERIS. Int. J. Remote Sens., 20, pp. 1819–1840, 1999.
    [100] Schiller, H. and R. Doerffer, Neural Network for Emulation of an Inverse Model–Operational Derivation of Case II Water Properties from MERIS data. Int. J. Remote Sens., 20: 1735–1746, 1999.
    [101] Schroeder, Th., and M. Schaale, MERIS Case-2 Water Properties Processor, BEAM Plug-in, http://www.brockmann-consult.de/beam/plugins.html, 2005.
    [102] Schroeder, Th., I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, Atmospheric correction algorithm for MERIS above Case-2 waters, Int. J. Remote Sens., 28, No. 7, 1469-1486, 2007a.
    [103] Schroeder, Th., M. Schaale, and J. Fischer, Retrieval of atmospheric and oceanicproperties from MERIS measurements: A new Case-2 water processor for BEAM, Int. J. Remote Sens., 28(24): 5627-5632, 2007b.
    [104] Schwindling, M., Modeles et measures pour l’observation spatiale de la couleur de l’ocean: Diffusion atmospherique par les aerosols et reflexion de surface par l’ecume, Docteur de L’Universite these, Univ. des Sci. et Tech. de Lille. pp 245, 1995.
    [105] Shettle, E. P., and R. W. Fenn, Models for the aerosols of the lower atmosphere and theeffects of humidity variations on their optical properties. Environmental Research Paper No. 676,AFGL-TR-79-0214, Airforce Geophysics Laboratory, 1979.
    [106] Shi, W., and M. Wang, Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing, Remote Sens. Environ., 110 (2), 149-161, 2007.
    [107] Siegel, D. A., M. Wang, S. Maritorena, and W. Robinson, Atmospheric correction of satellite ocean color imagery: the black pixel assumption, Appl. Opt., 39 (21), 3582–3591, 2000.
    [108] Smirnov, A., B. N. Holben, O. Dubovik, R. Frouin, T. F. Eck, and I. Slutsker, Maritime component in aerosol optical models derived from aerosol robotic network data, J. Geophys. Res. D, 108 (1), AAC14.1–AAC14.11, 2003.
    [109] Smirnov,A., B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker, Cloud screening and quality control algorithms for the AERONET database, Remote Sens. Environ., 73, 337-349,2000.
    [110] Stramski, D., M. Babin, and S. B. Wozniak, Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater, Limnol. Oceanogr., 52, 2418-2433, 2007.
    [111] Stumpf, R. P., R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul,A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, In Patt, F.S. et al., 2003, Algorithm updates for the fourth SeaWiFS data reprocessing, NASA Tech. Memo. 2003-206892, Vol. 22, S. B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003.
    [112] Sullivan, J. M., et al., Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range, Appl. Opt. 45, 5294-5309, 2006.
    [113] Tassan, S., and G. M. Ferrari., An alternative approach to absorption measurements of aquatic particles retained on filters, Limnol. Oceanogr., 40, 1358–1368, 1995.
    [114] Tassan, S., Local algorithms using SeaWiFS data for the retrieval of phytoplankton,pigments, suspended sediment, and yellow substance in coastal waters, Appl. Opt., 33, 2369-2378, 1994.
    [115] Thuillier, G., M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions, Sol. Phys., 214, 1-22, 2003.
    [116] Wang, M., S. Bailey, C. Pietras, C. R. McClain, and T. Riley, SeaWiFS aerosol optical thickness matchup analyses, NASA Tech. Memo. 2000-206892, NASA Goddard Space Flight Center SeaWiFS Postlaunch Tech. Rep. Series, 10, 39–44, 2000.
    [117] Wang, M., and W. Shi, Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies, Geophys. Res. Lett., 32, L13606, 2005.
    [118] Wang, M., Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations, Appl. Opt., 46, 1535-1547, 2007.
    [119] Wang, M., J. Tang, and W. Shi, MODIS-derived ocean color products along the China east coastal region, Geophys. Res. Lett., 34, L06611, 2007.
    [120] Werdell, P. J., B. A. Franz, and S. W. Bailey, Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay, Remote Sens. Environ., 114 (10), 2238-2247, 2010.
    [121] Whitmire, A. L., E. Boss, T. J. Cowles, and W. S. Pegau, Spectral variability of the particulate backscattering ratio, Opt. Express, 15, 7019-7031, 2007.
    [122] Whitlock, C. H., D. S. Bartlett, and E. A. Gurganus, Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols, Geophys. Res. Lett., 9, 719-722, 1982.
    [123] World Climate Research Program (WCRP), A preliminary cloudless standard atmosphere for radiation computation. International Association for Meteorology and Atmsopheric Physics, Radiation Commission, Boulder, CO, USA, 1984, CSP-112, WMO/TD-No. 24, March 1986.
    [124] ak, S. B., D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California, J. Geophys. Res., 115, C08027, doi:10.1029/2009JC005554,2010.
    [125] Zaneveld, J. R. V., J. Kitchen, and C. Moore, The scattering error correction of reflecting-tube absorption meters, in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258,44–55, 1994.
    [126] Zhang, M., J. Tang, Q. Dong, Q. Song, and J. Ding, Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery, Remote Sens. Environ., 114, 392–403, 2010a.
    [127] Zhang, M., J. Tang, Q. Song, and Q. Dong, Backscattering ratio variation and its implications for studying particle composition: A case study in Yellow and East China seas, J. Geophys. Res., 115, C12014, doi:10.1029/2010JC006098, 2010b.
    [128] Zhang, T., F. Fell, and Z. Liu et al., Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean colour in Case I waters, J. Geophys.Res., 108: 3286, 2003.
    [129] Zhao, F., and T. Nakajima, Simultaneous determination of water-leaving reflectance and aerosol optical thickness from Coastal Zone Color Scanner measurements, Appl. Opt., 36: 6949-6956, 1997.
    [130] Zhao, F., and T. Nakajima, Simultaneous determination of water-leaving reflectance and aerosol optical thickness from Coastal Zone Color Scanner measurements, Appl. Opt., 36, 6949–6956, 1997.
    [131]曹文熙,钟其英,杨跃忠,南海水色遥感的主因子分析,遥感学报,2(02),112—115,1999.
    [132]陈楚群,海洋水色遥感资料红光波段的大气纠正,热带海洋,17(02):81—87,1998.
    [133]丁静,唐军武,宋庆君等,中国近岸混浊水体大气修正的迭代与优化算法,遥感学报,10(5),732-741,2006.
    [134]刘良明,张红梅,张丰,近海二类水体的MODIS影像大气校正方法,武汉大学学报,32(2),104—107,2007.
    [135]刘炜,李桐基,朱建华,陈清莲,黄东海海区总悬浮物散射特性研究,海洋技术,26(2),42-46,2007.
    [136]吕霞,亚洲吸收性气溶胶的大气校正算法的仿真研究,硕士学位论文,2007.
    [137]毛志华,黄海清,朱乾坤,潘德炉.我国海区SeaWiFS资料大气校正,海洋与湖沼,32(6),581—587,2001.
    [138]丘仲锋,东海赤潮高发区水色遥感算法及赤潮遥感监测研究,博士论文,2006.
    [139]宋庆君,唐军武,黄海、东海海区水体散射特性研究,海洋学报,28(4),56-63,2006.
    [140]孙凌,针对HY-1A CCD的大气修正与水体组分反演,博士学位论文,2005.
    [141]唐军武,王晓梅,宋庆君,李铜基,黄海军,任敬萍,简伟军,黄、东海二类水体水色要素的统计反演模式,海洋科学进展,22,1—7,2004.
    [142]韦钧,陈楚群,施平,一种实用的二类水体Sea WiFS资料大气校正方法,海洋学报,24(4),118—126,2002
    [143]朱建华,李桐基,黄东海海区浮游植物色素吸收系数与叶绿素a浓度关系研究,海洋技术,23(4),117—122,2004a.
    [144]朱建华,李铜基,黄东海非色素颗粒与黄色物质的吸收系数光谱模型研究,海洋技术,23(2),2004b.
    [145]张民伟,二类水体真三维Monte Carlo模拟极其大气校正研究,博士论文,146pp,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700