吸收式除湿工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶液吸收式除湿系统,可以利用50℃~80℃的低品位热源作为再生能源,所用除湿剂对环境友好,同时能除去空气中的尘埃、细菌、霉菌及其他有害物,提高空气品质。从保护环境、节约能源等方面来看是一种很有竞争力的除湿技术。
     本文针对LiCl溶液吸收式除湿工艺系统的关键过程——溶液吸收除湿与溶液解吸再生以及系统整体,开展了实验研究、模拟分析与系统工艺设计工作。
     利用流程模拟软件ASPEN PLUS,选择NRTL电解质溶液活度系数模型,并选择CaCl_2溶液作为除湿剂,吸收器和再生器分别选用RadRrac和Flash2模块,建立了溶液吸收式除湿循环的系统模拟。根据灵敏度分析,其空气除湿性能系数可达0.7以上,优于现有LiCl溶液除湿装置的0.65的水平,并表明提浓稀溶液的有效性,据此确定了实验设计参考的循环操作条件。
     进一步,分析比较了逆流绝热填料塔与内冷型除湿塔的优缺点,选择比表面积大、结构紧凑、空气处理能力大的填料塔作为吸收器。本研究填料塔塔体采用有机玻璃板,塔高1.2m,填料层高度为60cm,规格为20×20×20cm~3立方型不锈钢孔板波纹的规整填料。同时,提出了结构简单、空气压降小、动力部件少的雾化闪蒸喷淋再生器新型结构。本研究再生塔塔体采用有机玻璃,塔高1.0m,喷嘴采用实心锥形喷头,有效喷淋高度为40cm。
     进行了逆流绝热吸收实验和模拟分析。考察了内部因素(液气比、溶液浓度与溶液温度)和外部因素(空气入口温度、湿度)对除湿量的影响规律。实验数据表明,在上述实验条件下,吸收器最大除湿量达到0.443g·s~(-1),平均除湿量达到0.368g·s~(-1),证明了本装置有很好的除湿效果。改变吸收器内部因素对除湿效果有较大的影响,如溶液质量浓度由0.322增加到0.363,空气出口含湿量相应地由13.9g·kg~(-1)降到12.2g·kg~(-1),下降幅度比较明显;而外部因素的改变对除湿效果影响较弱,如当空气温度由33.5℃降到26.4℃时,空气出口含湿量仅由10.9g·kg~(-1)下降到10.5g·kg~(-1)。根据实验结果,将除湿器的除湿量与除湿器入口各参数进行拟和,得到如下关联式:m=3697h~(2.022)t_a~(-0.498)G~(0.666)x_i~(3.471)t_1~(-2.223)L~(0.114)其中:m为除湿量,kg·s~(-1)。
     建立了除湿过程的传热传质模型。模型计算值与实验结果趋势一致。分析了除湿器的出口空气含湿量、空气温度、溶液浓度、溶液温度参数随塔高的变化关系。从模型分析得出低温高浓的入口溶液对吸收除湿过程有强化作用,而空气入口温度的变化对吸收除湿过程影响较弱。本实验装置的最佳液气比约为3.0。
     进行了雾化喷淋再生实验和模拟分析。基于喷淋量21.61·h~(-1),再生器入口空气温度为28℃,相对湿度为45%的实验条件,选择溶液入口温度和再生风机电压分别为80℃/100V、90℃/100V、80℃/100V的三组因素,测得溶液浓度变化率分别为0.82%、1.33%、1.23%。实验结果表明雾化喷淋再生与采用填料塔和管式降膜塔的再生效果相同。建立了雾化喷淋再生过程的数学模型,分析了再生器的出口空气含湿量、空气温度、溶液浓度、溶液温度参数随塔高的变化关系。从模型分析得出高温入口溶液对雾化喷淋再生过程有强化作用,而空气入口温度的变化对雾化喷淋再生过程影响较弱。
Solution absorption dehumidification system, which use the low-temperature heat sources between 50°C to 80°C such as solar energy、industrial waste heat to regenerate, can remove the dust in the air、bacteria、fungi and other harmful substances, improve the air quality. From the protection of the environment and energy, it is a competitive dehumidifying technology.
     This paper points to the key process of solution absorption dehumidification system, the absorption、the regeneration and the whole process, does the experimental research、simulation analysis and process design. ASPEN PLUS was used to simulate the system, and according to the simulate result, pulverization spray regenerator was effective for concentrating the solution. Further, choose the packed tower as the absorber based on the analysis and comparison between the packed tower and the cooled tower.
     As for the absorber, the internal factors (liquid gas ratio, the concentration and temperature of the solution) and external factors (the temperature of air, humidity) on the humidity of outlet air was inspected. Experimental data showed that the device had very good performance. The changes of internal factors have greater effect on the desiccant compare to the external factors. The mathematic model of the packed tower was established, and the simulation accorded with the experimental data. The model was used to analysis the outlet parameters of the air humidity, air temperature, solution concentration and temperature varieties alongside the tower. Low temperature and high concentration of the inlet solution can strengthen the dehumidification, while for the experimental device, the best mass flow of solution to air ratio is about 3.0.
     As for the regeneration experiment with the pulverization spray regenerator, tested the regeneration capacity on different inlet solution temperature and air flow. Experimental data show that use the simple structure, low pressure drop pulverization spray regenerator to renew the dilute solution is totally feasible. The model of the regenerator was built to analysis the distribution of the outlet solution concentration and temperature. High inlet solution temperature can strengthen the regeneration, which was consistent to experimental data, while the inlet air temperature and humidity effects weakly.
引文
[1]铃木谦一郎,大矢信男.除湿设计[M].北京:中国工业出版社,1983.
    [2]张立志.除湿技术.北京:化学工业出版社,2005.
    [3]Lazzarin RM,Gasparella A,Longo GA.Chemical dehumidification by liquid desiccants:theory and experiment[J].International Journal of Refrigeration,1999,22(4):334-347.
    [4]Gandhidasan P,Uhah U R,Kettleborough C F.Analysis of heat and mass transfer between a desiccant-air system in a packet tower[J].Journal of Solar Energy Engineering,1987,109(5):89-93.
    [5]Abul-Wahab S A,Zurigat Y H,AbuArabiM K.Predictions of moisture removal rate and dehumidification effectiveness for structured liquid desiccant air dehumidifier[J].Energy,2004,29(1):19-34.
    [6]Fumo N,Gsowami D Y.Study of an aqueous lithium chloride desiccant system:dehumidification and desiccant regeneration[J].Solar Energy,2002,72(4):351-361.
    [7]Ertas A.Properties of a new liquid desiccant solution-Lithium chloride and calcium chloride mixture[J].SolarEnergy.1992,49(3):205-212.
    [8]Ahmed S Y,Gandhidasan P,AlFarayedhiA A.Thermodynamic analysis of liquid desiccants[J].Solar Energy,1998,62(1):11-18.
    [9]Ameel T A,Gee K G,Wood B D.Performance predictions of alternative,low cost absorbents for open cycle absorption solar cooling[J].Solar Energy,1995,54(2):65-73.
    [10]杨英,李心刚,李惟毅,等.液体除湿特性的实验研究[J].太阳能学报,2000,21(2):155-159.
    [11]Ahmed S Y,Gandhidasan P.A,Farayedhi A A.Thermodynamic analysis of liquid desiccants[J].Solar Energy,1998,62(1):11-18.
    [12]Manuel R.Properties of aqueous solutions of lithium and calcium chlorides:formulations for use in air conditioning equipment design[J].International Journal of Thermal Sciences,2004,43(4):367-382.
    [13]Haim M F,Grossman G.A packed bed dehumidifier/regenerator for solar air conditioning with liquid desiccants[J].Solar Energy,1980,24(6):541-550.
    [14]Arshad Y.Khan and Jorge L.Martinez.Modelling and parametric analysis of heat and mass transfer performance of a hybrid liquid desiccant absorber[J].Energy Conversion and Management,1998,39(10):1095-1112.
    [15].Abdul-Wahab S A,Abu-Arabi M K and Zurigat Y H.Effect of structured packing density on performance of air dehumidifier[J].Energy Conversion and Management,2004,45(15-16):2539-2552.
    [16]Giovanni A.Andrea Gasparella.Experimental analysis on chemical dehumidification of air by liquid desiccant and desiccant regeneration in a packed tower[J].Journal of Solar Energy Engineering,2004,126:587-591.
    [17]Gommed K,Grossman G.,Ziegler F..Experimental investigation of a LiCl-water open absorption system for cooling and dehumidification[A].Transactions of the ASME,2004,126:710-715.
    [18]董岩,李惟毅,方承超..溶液型空气除湿实验研究[J].天津大学学报,2001,34(1):81-84.
    [19]由世俊,华君,涂光备.金属填料表面热质传递实验研究[J].制冷学报,2000,4:35-39.
    [20]李震,江忆,陈晓阳,等.溶液-湿空气热质交换过程的匹配研究[J].暖通空调HV&AC,2005, 35(1):103-109.
    [21]Liu X H.,Geng K C.,Linand B R.,Jiang Y..Combined cogeneration and liquid-desiccant system applied in a demonstration building[J].Energy and Buildings,2004,36(9):945-953.
    [22]柳建华,邬志敏,丁育红,等.液体除湿空调系统的除湿器性能试验[J].流体机械,2005,33(12):61-64.
    [23]Saman W,Krause M,Vajen K.Solar cooling technologies:current status and recent developments[A].Solar2004:Life,the Universe and Renewable.
    [24]KhanA.Y.Cooling and dehumidification performance analysis of internally cooled liquid desiccant absorber[J].Applied Thermal Engineering,1998,18(5):265-281.
    [25]ShahabAlizadeh,KameKhouzam.A study into the potential of using liquid desiccant solar air-conditioner with gas backup in Brisbane-Queensland[A].Solar2004:Life,the Universe and Renewable.
    [26]孙健,赵云,施明恒.太阳能液体除湿空调性能的实验研究[J].能源研究与利用,2002,5:30-32.
    [27]张小松,费秀峰,施明恒,等.蓄能型溶液除湿蒸发冷却空调系统中除湿器研究[J].东南大学学报(自然科学版),2003,33(1):72-75.
    [28]赵云.太阳能液体除湿空调系统的研究[D].南京:东南大学动力工程系,2002.
    [29]王明华,郑丹星.LiCl水溶液垂直降膜吸收过程的实验与模拟[J].北京化工大学学报,2005,32(1):5-9.
    [30]Oberg V,Goswami D Y.Experimental study of the heat and mass transfer in a packed bed liquid desiccant air dehumidifier[J].Journal of Solar Energy Engineering,1998,120(4):289-297.
    [31]Gandhidasan P,Ullah U R.Calculation of heat and mass transfer coefficients in a packed tower operating with a desiccant-air contact system[J].Journal of Solar Energy Engineering,1986,108(5):123-127.
    [32]Gandhidasan P,Ullah U,Kettleborough C F.Analysis of heat and mass transfer between a desiccant-air system in a packed tower[J].Journal of Solar Energy Engineering,1987,109(5):89-93.
    [33]Khan A Y.Parametric analysis of heat and mass transfer performance of a packed-type liquid desiccant absorber at part-load operation conditions[J].ASHRAE Transactions,1996,102(1):349-357.
    [34]Khan A Y.Sensitivity analysis and component modeling of a packed-type liquid desiccant system at partial load operating conditions.International Journal of Energy Research,1994,18(7):643-655
    [35]Khan A Y,Ball H D.Development of a generalized model for performance evaluation of packed-type liquid sorbet dehumidifiers and regenerators[J].ASHRAE Trans,1992,98(1):525-533.
    [36]Stevens D I,Braun J E.An effectiveness model of liquid-desiccant system heat/mass exchangers [J].Solar Energy,1989,42(6):449-455.
    [37]Sadasiva M,Balakrishnan A R.Effectiveness-NTU method for design of a packed bed liquid desiccant dehumidifiers[J].Transactions of the Institution of Chemical Engineers,1992,70(2):572-577.
    [38]陈晓阳,刘晓华,李震等.溶液除湿/再生设备热质交换过程解析解法及其应用[J].太阳能学报,2004,25(4):509-514.
    [39]路则锋,陈沛霖.逆流填料式液体除湿系统传热传质过程的分析解法及应用[J].太阳能学报,2000,21(4):339-446.
    [40]路则锋.填料式液体除湿系统传递过程理论解及验证[J].同济大学学报,2001,29(2):149-153.
    [4l]路则锋.填料式液体除湿系统设计计算的ε-NTU法[J].暖通空调,2002,32(3):126-128.
    [42]Grossman G.Simultaneous heat and mass transfer in film absorption under lam in air flow[J].International Journal of Heat and Mass Transfer,1983,26(3):357-371.
    [43]Grossman G..Mivhael T.Heath.Simultaneous heat and mass transfer in absorption of gases inturbulent liquid films[J].International Journal of Heat and Mass Transfer,1984,27(12):2365-2376.
    [44]Yang R,Wood B.D.A numerical modeling of an absorption process on a liquid falling film[J].Solar Energy,1992,48(3):195-198.
    [45]代彦军,俞金娣,张鹤飞.液体除湿空调系统的数学模拟与性能分析[J].太阳能学报,1998,19(3):307-313.
    [46]代彦军,张鹤飞 俞金娣.错流降膜液体干燥剂除湿/再生传热传质数学模型及分析[J].化工学报,2001,52(6):510-515.
    [47]http://www.kathabar.com,2006.
    [48]Rix J,Nevrala D,Chauvet L et al.Gas-Powered Liquid Desiccant Dehumidifier.Applied Energy[J],1993,45(4):167-180.
    [49]US Patent:1285032.
    [50]AIL Research,OA6000 A Liquid-Desiccant Dedicated Outdoor Air System,www.ailr.com.
    [51]http://www.qdhaike.com,2006.
    [52]http://www.gyldac.com/index.htm,2006.
    [53]张小松,费秀峰,施明恒等.蓄能型溶液除湿蒸发冷却空调系统中除湿器研究[J].东南大学学报,2003,33(1):1-4.
    [54]袁卫星,江亿,张寅平等.热能驱动与电能驱动空调系统技术经济性比较方法[J].太阳能学报,2001,22(1):12-16.
    [55]Manuel R.Properties of aqueous solutions of lithium and calcium chlorides:formulations for use in air conditioning equipment design[J].International Journal of Thermal Sciences,2004,43(4):367-382
    [56]何潮洪,冯霄.化工原理[M].北京:科学出版社,2001
    [57]王运东,骆广生,刘谦.传递过程原理[M].北京:清华大学出版社,2002
    [58]Factor H.M,Grossman G.A packed bed dehumidifier regenerator for solar air conditioning with liquid desiccant[J].Journal of Solar Energy Engineering,1987,109:89-93
    [59]Perry's chemical engineer's handbook,7~(th)ed.,New York

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700