冷热电联供系统集成机理研究及全工况性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式冷热电联供系统以其高的能源利用率和环保优势成为我国节能减排的首选技术之一,但现有的冷热电联供系统存在变工况运行性能差、中低品位变温余热无法高效回收利用等难题,导致系统热力性能与经济性恶化。因此,研究系统全工况性能调控方法和动力余热驱动除湿循环对提高分布式冷热电联供系统能源利用效率意义重大。
     本文根据各单元设备的全工况模型,组合成具有特定功能的冷热电联供系统模型,提出改善系统变工况性能的调控方法,对分布式冷热电联供系统性能影响因素进行了定量化的理论分析,建立了冷热电联供系统优化模型。研究了与各种冷热电负荷需求相适应运行模式,采用一次能源利用率和相对节能率作为评价准则,分析了冷电比、发电效率和功率等因素对系统性能的影响,采用蓄能、电压缩式制冷或补燃对系统性能进行调控。结果表明,冷电比是影响系统性能的主要因素,对于“以电定冷”模式,随着冷电比增加,系统一次能源利用率增大,相对节能率先增大后减少,存在着最佳冷电比;对于“以冷定电”模式,随着冷电比增加,系统一次能源利用率和相对节能率先增大后减少,达到最佳冷电比时,系统处于最优运行状态点。
     本文对内燃机冷热电联供系统性能进行了深入的理论与实验研究,在单元设备和用户冷热电负荷动态特性基础上,分析了变工况条件下系统性能下降的原因,内燃机输出功率改变,制冷机组性能改变,导致整个系统性能发生变化,当内燃机输出功率为40kW,系统性能最佳,验证了冷热电联供系统全工况优化模型的准确性。研究了内燃机冷热电联供系统各单元设备中可用能的利用状况,采用“黑箱”模型对系统进行分析,柴油机发电过程损失最大,换热器的损失最小,且随着内燃机输出功率的增加,各设备过程的损失增加。
     针对高温高湿地区的气候特点,研究了动力余热驱动的氯化锂溶液吸收式除湿过程及其对地域性分布式冷热电联供系统性能的影响,探悉了冷热电联供系统正逆耦合循环和吸收式除湿逆循环间耦合机理,分析了冷热电联供系统和余热负荷驱动吸收式逆循环的能量输入或输出的比例调控和变工况能量特性。实验研究了利用内燃机缸套水为再生热源液体吸收式除湿特性及其对冷热电联供系统性能的影响,分析了缸套水热负荷以及LiCl溶液吸收式除湿机组变工况特性,探寻了提高冷热电联供系统热力性能的方法。结果表明,带除湿的冷热电联供系统的一次能源利用率相对于常规冷热电联供系统提高了15%左右,相对节能率提高了20%左右。
     采用全工况性能调控方法和低品位余热驱动吸收式除湿技术,设计了1200kW级工业园区冷热电联供系统,提出了多种正逆循环、多个热力系统耦合集成方案,综合考虑热力性能和经济性能,采用优先考虑系统全工况性能,兼顾用户侧冷热电需求的主动蓄能新思路,带蓄能的冷热电联供系统集成方案优势明显,其一次能源利用率达81.7%,节能率达34.7%,作为工业园区推荐方案。根据冷热电联供系统实际运行测试数据,分析了冷热电联供系统热力性能,系统的一次能源利用率达到77.6%,相对节能率达到25.3%。验证了系统集成与全工况性能调控理论和方法的正确性,为分布式冷热电联供系统集成方案提供理论与实验依据。
Distributed energy system with its high energy efficiency and environmental protectionadvantages become one of the preferred technology for energy conservation and emissionreduction. Off-design performance was poor, and waste heat of low grade temperature cannotbe efficiently recycled, it leads to thermal performance and economy of CCHP systemdeteriorated. Therefore, the control methods of off-design performance and dehumidificationcycle driven by waste heat of CCHP system have been investigated in this paper, it is greatsignificance to to improve distributed CCHP system energy efficiency.
     According to the off-design model of each unit, the model of combined cooling heatingand power cogeneration system with specific features has been explored. The control methodsof improving the system off-design performance were proposed. The influence factors ofCCHP system have been analyzed. The optimization model of CCHP system established. Theoperation modes of all kinds need adopting of cold, heat and power load was investigated.The evaluation criterias of primary energy rate and relative energy saving ratio were adopted.The impact of cooling to power ratio, the efficiency of power generation and power on theCCHP system was analyzed. The performance of CCHP system was controlled by energystorage, electric compression refrigeration or afterburning. The results showed that, thecooling to power ratio was the main factor affecting performance of CCHP system. With thecooling to power ratio increasing, the primary energy rate increased, and relative energysaving ratio increased firstly and then decreased following the cooling load mode, there wasoptimal cooling to power ratio. With the cooling to power ratio increasing, the primary energyrate and relative energy saving ratio increased firstly and then decreased following the powerload mode, there was optimal running point.
     Combined the off-design model and the experimental platform, the theoretical andexperimental performance of the internal combustion engine CCHP system has beeninvestigated.based on dynamic characteristic of user’s need and each unit. The resons of poorperformance was investigated. The best working state of CCHP system had been explored,when power of combustion engine was40kW. In order to further study the available energyutilization of internal combustion engine CCHP system. Exergy analysis for CCHP systemhad been researched adopting the "black box" model. The distribution and reasons of exergyloss were analyzed. The exergy loss of combustion engine was the largest, and the exergy lossof heat exchange was the least. With output power increasing, the exergy loss of each unitincreased.
     Since low grade heat would not to be efficiently recovered and the damp climaticcharacteristics of southern China area, low grade waste heat effective utilization mechanismof CCHP system were studied. LiCl solution absorption dehumidification unit was driven bylow grade heat. The experiment platform of dehumidification unit driven by low grade heat ofinternal combustion engine cylinder jacket water was built. The low grade heatdehumidification mechanism and experimental research had been carried out. The off-designperformance of LiCl solution absorption dehumidification unit was investigated in thispaper.The results show that, compared to conventional CCHP system, the primary energy rateof CCHP system with dehumidification increased by about15%, relative energy saving ratioincreased by20%.
     All kinds of integrated schemes of industrial park1200kW CCHP system wereresearched, which combined internal combustion engine, absorption refrigeration, absoptiondehumidification, energy storage and other integration technologies. Considering thetechnology and economy, the scheme with ice storage had obvious advantages. As therecommended scheme, its primary energy utilization rate was81.7%, relative primaryenergysaving rate was34.7%. According to the actual test data of CCHP system, thermalperformance of CCHP system was analyzed. The primary energy rate was77.6%, and relativeprimary energy saving rate was25.3%. It verified control theory and method correctness ofsystem integration and performance.
引文
[1]崔民选.中国能源发展报告[R].北京:社会科学文献出版社,2009
    [2]张德义.世界能源消费形势刍议[J].中外能源,2012,17(3):1-11
    [3]倪维斗,陈贞,李政.我国能源现状及某些重要战略对策[J].中国能源,2009,30(12):5-9
    [4]阎长乐,赵志林.中国能源发展报告[R].北京:中国计量出版社,2003
    [5]蔡睿贤,张娜.关于分布式能源系统的思考[J].科技导报,2006,23(9):7-8
    [6]徐建中.科学用能与分布式能源系统[J].中国能源,2005,27(8):10-13
    [7]华贲.我国分布式能源发展战略探讨[J].科技管理研究,2004,24(1):3-5
    [8] Jones, T., P. Newton. Distributed energy systems[R]. Transitions: Pathways towardssustainable urban development in Australia,2008,411-424
    [9] Jiayi, H., J. Chuanwen, X. Rong. A review on distributed energy resources andMicroGrid[J]. Renewable and Sustainable Energy Reviews,2008,12(9):2472-2483
    [10] Ackermann, T., G. Andersson, L. S der. Distributed generation: a definition[J]. Electricpower systems research,2001,57(3):195-204
    [11]冉鹏.分布式能源系统的研究现状与应用前景[J].热力发电,2005,34(3):1-3
    [12] El-Khattam W., M. Salama. Distributed generation technologies, definitions andbenefits[J]. Electric power systems research,2004.71(2):119-128
    [13] Al‐Sulaiman, F.A., F. Hamdullahpur, I. Dincer. Trigeneration: a comprehensivereview based on prime movers[J]. International Journal of Energy Research,2011,35(3):233-258
    [14] Wu, D., R. Wang. Combined cooling, heating and power: a review[J]. Progress inenergy and combustion science,2006,32(5):459-495.
    [15] Qi, Y.D., Z.G. Liu, G.M. Song. CCHP and Reliability of Electricity Supply[J].Advanced Materials Research,2011,250:3173-3176
    [16]金红光,郑丹星,徐建中.分布式冷热电联产系统装置及应用[M].北京:中国电力出版社,2010
    [17] Smith, M., P. Few, J. Twidell. Technical and operational performance of a small-scalecomined heat-and-power (CHP) plant[J]. Energy,1995,20(12):1205-1214
    [18] De Paepe, M., P. D’Herdt, D. Mertens. Micro-CHP systems for residentialapplications[J]. Energy Conversion and Management,2006,47(18):3435-3446
    [19]杨勇平,徐二树.分布式能量系统[J].现代电力,2008,24(5):72-76
    [20]孔祥强,王如竹,黄兴华.浅谈分布式区域冷热电联供系统[J].供热供暖,2002,5:5-7
    [21] EIA, U.. Annual energy outlook2011with projections to2035[R]. Washington DC:Energy Information Administration, United States Department of Energy,2011
    [22] Kramer,R.. Distribution system of the future[R]. DOE Distribution and InterconnectionR&D Annual Program Review Meeting, Jan.2003
    [23]朱成章.美国冷热电联产纲领及启示[J].中国电力,2000,33(9):91-94
    [24] Cariani, W., W. Guo.欧洲热电业的现状和前景[J].能源工程,2004,2:7-10
    [25]荣幼澧.德国及欧盟热电联产的现状及发展趋势[J].华东电力,2002,28(1):12-15.
    [26] Chicco, G., P. Mancarella. Distributed multi-generation: a comprehensive view[J].Renewable and Sustainable Energy Reviews,2009,13(3):535-551
    [27] Carradore, L., F. Bignucolo. Distributed multi-generation and application of the energyhub concept in future networks[R]. Universities Power Engineering Conference,2008
    [28] Arteconi, A., C. Brandoni, F. Polonara. Distributed generation and trigeneration: Energysaving opportunities in Italian supermarket sector[J]. Applied Thermal Engineering,2009,29(8):1735-1743
    [29] Chicco, G., P. Mancarella. Characterization and planning of distributed multi-generationplants[J]. Electric power generation, transmission and efficiency (editor: CM Lefebvre),2007,17-73
    [30]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359
    [31]国务院.中华人民共和国节约能源法[M].北京:人民出版社,2008
    [32]陈和平.我国热电联产政策及状况的评述[J].热力发电,2001,2:2-4
    [33]财政部,关于发展天然气分布式能源的指导意见[R],2011.
    [34]殷虹,庄妍.天然气分布式能源项目投资管理及建议[J].中国能源,2013,34(11):32-35
    [35]陈艳,成金华.我国能源政策问题研究综述[J].中国能源,2006,28(10):24-27
    [36]陈清泰.中国国家能源战略和政策[J].中国发展评论:中文版.2004,6(1):1-5
    [37]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[R].北京:2006
    [38]刘志平.我国热电联产发展现状及前景[J].中国能源,1998(9):6-10
    [39] Fumo, N., P.J. Mago, L.M. Chamra. Analysis of cooling, heating, and power systemsbased on site energy consumption[J]. Applied Energy,2009,86(6):928-932
    [40]蒋润花.分布式能源系统研究[D].北京:中国科学院研究生院,2009
    [41] Alanne, K., A. Saari. Distributed energy generation and sustainable development[J].Renewable and Sustainable Energy Reviews,2006,10(6):539-558
    [42] Pehnt, M.. Environmental impacts of distributed energy systems-the case of microcogeneration[J]. Environmental science&policy,2008,11(1):25-37
    [43] Xu, J.. Research, development and the prospect of combined cooling, heating, andpower systems[J]. Energy,2010,35(11):4361-4367
    [44]胡文斌,华贲.分布式能源站在我国的推广前景及对策分析[J].科技进步与对策,2004,12:119-120
    [45]徐建中.分布式供电和冷热电联产的前景[J].节能与环保,2002,3:10-14
    [46] Soares, J., et al.. Distributed energy resource short-term scheduling using SignaledParticle Swarm Optimization[J]. Energy,2012,42(1):466-476
    [47]金红光.化学能与物理能综合梯级利用原理[J].中国科学: E辑,2005,35(3):299-313
    [48]杨敏林,杨晓西,金红光.分布式能源系统集成方案研究[J].东莞理工学院学报,2006,13(4):113-116
    [49]张洪伟,龙妍,黄素逸.分布式能源系统的方案选择及性能分析[J].暖通空调,2004,34(5):47-51
    [50] Kong, X., R. Wang, X. Huang. Energy efficiency and economic feasibility of CCHPdriven by stirling engine[J]. Energy Conversion and Management,2004,45(9):1433-1442
    [51]何晓红.内燃机热电联产系统的变工况特性研究[D].北京:中国科学院研究生院,2008
    [52] Pilavachi, P.. Mini-and micro-gas turbines for combined heat and power[J]. AppliedThermal Engineering,2002,22(18):2003-2014
    [53] Carno, J., A. Cavani, L. Liinanki. Micro gas turbine for combined heat and power indistributed generation[R]. The1998International Gas Turbine&Aeroengine Congress&Exhibition,1998
    [54] Hong-Guang, F.Z.-B.J.. Performance assessment of combined cooling, heating andpower [J]. Journal of Engineering thermophysics,2005,5:10-19
    [55] Yitai, M., L. Yan. Thermodynamic analysis of CCHP system based on feasibility andavailability[J]. Hv&Ac,2003,6:201-210
    [56] Ho, W., et al.. Design of distributed energy system through electric system cascadeanalysis (ESCA)[J]. Applied Energy,2012,99:309-315
    [57]冯志兵,金红光.冷热电联产系统的评价准则[J].工程热物理学报,2006,26(5):725-728
    [58]侯健敏,周德群.分布式能源研究综述[J].沈阳工程学院学报(自然科学版),2008,4(4):289-294
    [59]吕静,王中铮.热电冷三联产评价标准述评[J].节能,1998(7):10-12
    [60]沈维道.工程热力学[M].北京:高等教育出版社,2001
    [61]韩巍.多能源互补的多功能能源系统及其集成机理[D].北京:中国科学院研究生院,2006
    [62]朱明善.能量系统的分析[M].北京:清华大学出版,1988
    [63]冯志兵.燃气轮机冷热电联产系统集成理论与特性规律[D].北京:中国科学院研究生院,2006
    [64] Xu, D., M. Qu. Energy, environmental, and economic evaluation of a CCHP system fora data center based on operational data[J]. Energy and Buildings,2013,67:176-186
    [65] Roque Diaz, P., Y. Benito, J. Parise. Thermoeconomic assessment of a multi-engine,multi-heat-pump CCHP (combined cooling, heating and power generation) system-a casestudy[J]. Energy,2010,35(9):3540-3550
    [66] Kuramochi, T., et al.. Techno-economic prospects for CO2capture from distributedenergy systems[J]. Renewable and Sustainable Energy Reviews,2013,19:328-347
    [67] Gor ek, A., P. Glavi. Process integration of a steam turbine[J]. Applied ThermalEngineering,2003,23(10):1227-1234
    [68] Biezma, M., J. San Cristóbal. Investment criteria for the selection of cogenerationplants-a state of the art review[J]. Applied Thermal Engineering,2006,26(5):583-588
    [69] Mago, P., L. Chamra. Analysis and optimization of CCHP systems based on energy,economical, and environmental considerations[J]. Energy and Buildings,2009,41(10):1099-1106
    [70] Li, H., et al.. Energy utilization evaluation of CCHP systems[J]. Energy and Buildings,2006,38(3):253-257
    [71]谢诺琳,孙志高.冷热电联产系统性能评价指标研究[J].建筑热能通风空调,2008,27(4):81-83
    [72] Marques, R.P., et al.. Thermodynamic analysis of tri-generation systems taking intoaccount refrigeration, heating and electricity load demands[J]. Energy and Buildings,2010,42(12):2323-2330
    [73] Campanari, S., L. Boncompagni, E. Macchi. Microturbines and trigeneration:optimization strategies and multiple engine configuration effects[R]. iASME Turbo Expo2002: Power for Land, Sea, and Air. American Society of Mechanical Engineers,2002
    [74] Sun, Z.-G., N.-L. Xie. Experimental studying of a small combined cold and powersystem driven by a micro gas turbine[J]. Applied Thermal Engineering,2010,30(10):1242-1246
    [75] Colombo, L.P., F. Armanasco, O. Perego. Experimentation on a cogenerative systembased on a microturbine[J]. Applied Thermal Engineering,2007,27(4):705-711
    [76]冯志兵,金红光.燃气轮机冷热电联产系统及其热力分析[J].动力工程,2005,25(3):358-358
    [77]冯志兵,金红光.燃气轮机冷热电联产系统与蓄能变工况特性[J].中国电机工程学报,2006,26(4):25-30
    [78]冯志兵,金红光.燃气轮机冷热电联产系统技术与经济性分析[J].热能动力工程,2005,20(4):425-429
    [79] Lee, J.-B., S.-H. Lyu, J.-H. Kim. A Daily Operation Scheduling of Cogeneration Systemwith a Thermal Storage Tank[R]. TRANSACTIONS-INSTITUTE OF ELECTRICALENGINEERS OF JAPAN B,1994,114:1295-1295
    [80] Ren, H., et al.. Multi-objective optimization for the operation of distributed energysystems considering economic and environmental aspects[J]. Applied Energy,2010,87(12):3642-3651
    [81] Cho, H., et al.. Evaluation of CCHP systems performance based on operational cost,primary energy consumption, and carbon dioxide emission by utilizing an optimal operationscheme[J]. Applied Energy,2009,86(12):2540-2549
    [82] Colella, W.G.. Modelling results for the thermal management sub-system of a combinedheat and power (CHP) fuel cell system (FCS)[J]. Journal of power sources,2003,118(1):129-149
    [83]孔祥强,李瑛,王如竹,黄兴华.燃气轮机冷热电联供系统优化与节能经济性研究[J].暖通空调,2005,35(7):4-9
    [84]胡燕飞,吴静怡,李胜.冷热电联供系统的优化运行分析[J].华北电力大学学报,2010,1:5-9
    [85]张万坤.楼宇冷热电联产系统(BCHP)的配置及其最优运行分析[D].上海:上海交通大学,2003
    [86]孔祥强,王如竹,李瑛,黄兴华.微型冷热电联供系统的优化运行[J].上海交通大学学报,2008,42(3):365-369
    [87] Jiang-Jiang, W., Z. Chun-Fa, J. You-Yin. Multi-criteria analysis of combined cooling,heating and power systems in different climate zones in China[J]. Applied Energy,2010,87(4):1247-1259
    [88] Wang, J., et al.. Optimization design of BCHP system to maximize to save energy andreduce environmental impact[J]. Energy,2010,35(8):3388-3398
    [89]吴大为.分布式冷热电联产系统的多目标热力学优化理论与应用研究[D],上海:上海交通大学,2008
    [90]王江江.楼宇级冷热电联供系统优化及多属性综合评价方法研究[D].河北:华北电力大学,2012
    [91]林汝谋,金红光.燃气轮机发电动力装置及应用[M].北京:中国电力出版社,2004
    [92]金红光,林汝谋.能的综合梯级利用与燃气轮机总能系统[M].北京:科学出版社,2008
    [93]张娜,蔡睿贤.环境温度对燃气轮机功热并供装置及联合循环变工况性能的影响[J].工程热物理学报,2001,22(5):529-532
    [94]张娜,蔡睿贤.单轴恒速燃气轮机及其功热并供装置的变工况显式解析解[J].工程热物理学报,1998,19(2):141-144
    [95]张娜,林汝谋,蔡睿贤.压气机特性通用数学表达式[J].工程热物理学报,1996,17(1):21-24
    [96]沈炳正,黄希程.燃气轮机装置[M].北京:机械工业出版社,1991
    [97]张士杭.燃气轮机循环与变工况性能[M].北京:清华大学出版社,1993
    [98] Zhang, N., R. Cai. Analytical solutions and typical characteristics of part-loadperformances of single shaft gas turbine and its cogeneration[J]. Energy Conversion andManagement,2002,43(9):1323-1337
    [99] Yun, K.T., et al.. Modeling of reciprocating internal combustion engines for powergeneration and heat recovery[J]. Applied Energy,2013,102:327-335
    [100] Coney, M., C. Linnemann, H. Abdallah. A thermodynamic analysis of a novel highefficiency reciprocating internal combustion engine-the isoengine[J]. Energy,2004,29(12):2585-2600
    [101] Desantes, J., et al.. Experiments on the influence of intake conditions on localinstantaneous heat flux in reciprocating internal combustion engines[J]. Energy,2011,36(1):60-69
    [102] Woschni, G.. A universally applicable equation for the instantaneous heat transfercoefficient in the internal combustion engine[J]. Significance,1967,2012:12-11.
    [103] Heywood, J.B.. Internal combustion engine fundamentals[S]. America, Mcgraw-hillNew York,1988
    [104] Zucrow, M.J., J.D. Hoffman. Gas dynamics[S]. New York: Wiley,1976
    [105]陆耀祖.内燃机构造与原理[M].北京:中国建材工业出版社,2004
    [106]唐开元,欧阳光耀.高等内燃机学[M].北京:国防工业出版社,2008
    [107]杨承,杨泽亮,蔡睿贤.吸收式制冷机典型特性DOE-2模型的修正及其应用[J].制冷学报,2008,28(6):51-56
    [108] Gordon, J., K.C. Ng. A general thermodynamic model for absorption chillers:theory and experiment[J]. Heat Recovery Systems and CHP,1995,15(1):73-83
    [109]刘志刚.工质热物理性质计算程序的编制及应用[M].北京:科学出版社,1992
    [110] ASHRAE, A.H.. Fundamentals ASHRAE[S]. Inc., Atalanta, GA,1989
    [111] DiGuilio, R., et al.. Properties of lithium bromide–water solutions at hightemperatures and concentrations-I[J]. Thermal conductivity. ASHRAE Trans.1990,96(1):702-708
    [112] Lee, R., et al.. Properties of lithium bromide-water solutions at high temperatures andconcentrations-II: Density and Viscosity[J]. ASHRAE Trans,1990,96(1):709-728
    [113]王林.小型吸收式制冷机原理与应用[M].北京:中国建筑工业出版社,2011
    [114]吴业正.制冷原理及设备[M].西安:西安交通大学出版社,1987
    [115] Kaita, Y.. Thermodynamic properties of lithium bromide–water solutions at hightemperatures[J]. International Journal of Refrigeration,2001,24(5):374-390
    [116] Figueredo, G.R., M. Bourouis, A. Coronas. Thermodynamic modelling of atwo-stage absorption chiller driven at two-temperature levels[J]. Applied ThermalEngineering,2008,28(2):211-217
    [117] Tozer, R., A. Syed, G. Maidment. Extended temperature–entropy(T-S) diagrams foraqueous lithium bromide absorption refrigeration cycles[J]. International Journal ofRefrigeration,2005,28(5):689-697
    [118]唐艺丹.余热驱动的溶液除湿空调系统特性研究[D].哈尔滨:哈尔滨工业大学,2009
    [119]王明华,郑丹星. LiCl水溶液垂直降膜吸收过程的实验与模拟[J].北京化工大学学报,2005,32(1):5-9
    [120]孙健,施明恒,赵云.液体除湿空调再生性能的实验研究[J].工程热物理学报,2003,24(5):867-869
    [121]何源.分布式能源系统的分析及优化[D].天津:天津大学,2007
    [122] Mago, P., L. Chamra, J. Ramsay. Micro-combined cooling, heating and powersystems hybrid electric-thermal load following operation[J]. Applied Thermal Engineering,2010,30(8):800-806
    [123] Wang, J.-J., Y.-Y. Jing, C.-F. Zhang. Optimization of capacity and operation forCCHP system by genetic algorithm[J]. Applied Energy,2010,87(4):1325-1335
    [124]冯志兵,金红光.冷热电联产系统节能特性分析[J].工程热物理学报,2007,27(4):541-544
    [125]蔡睿贤.功热并供评价准则及燃气轮机功热并供基本分析[J].工程热物理学报,1987,8(3):201-205
    [126]马婉玲.分布式能源系统中燃气轮机热电联产的研究[D].合肥:合肥工业大学,2008
    [127] Kong, X., et al.. Experimental investigation of a micro-combined cooling, heatingand power system driven by a gas engine[J]. International Journal of Refrigeration,2005,28(7):977-987
    [128] Zhang, C., et al.. Experimental research on LiBr refrigeration–Heat pump systemapplied in CCHP system[J]. Applied Thermal Engineering,2011,31(17):3706-3712.
    [129] Khatri, K.K., etal.. Experimental investigation of CI engine operatedmicro-trigeneration system[J]. Applied Thermal Engineering,2010,30(11):1505-1509
    [130]刘晓华,易晓勤,江亿.两种常用液体吸湿剂传质性能的比较[J].化工学报,2009,3:567-573
    [131]张永权.液体除湿性能及系统的研究[D].广州:广东工业大学,2007
    [132] Liu, X., X. Yi, Y. Jiang. Mass transfer performance comparison of two commonlyused liquid desiccants: LiBr and LiCl aqueous solutions[J]. Energy Conversion andManagement,2011,52(1):180-190
    [133] Mishima, O.. Application of polyamorphism in water to spontaneous crystallizationof emulsified LiCl‐H2O solution[J]. The Journal of chemical physics,2005,123(15):154506
    [134]王彩玲,张立志,张炎.基于LiCl溶液的复合支撑液膜的制备及其透湿性测定[J].膜科学与技术,2008,28(5):57-61
    [135] Conde, M.R.. Properties of aqueous solutions of lithium and calcium chlorides:formulations for use in air conditioning equipment design[J]. International Journal of ThermalSciences,2004,43(4):367-382
    [136]田龙舟.吸收式除湿工艺研究[D].北京:北京化工大学,2008,
    [137]田龙舟,郑丹星. LiCl溶液吸收除湿器的实验与模拟[J].北京化工大学学报:自然科学版,2009,35(6):12-16
    [138] Gandhidasan, P.. A simplified model for air dehumidification with liquid desiccant[J].Solar Energy,2004,76(4):409-416
    [139] Mansourizadeh, A., A. Ismail. Hollow fiber gas–liquid membrane contactors for acidgas capture: a review[J]. Journal of hazardous materials,2009,171(1):38-53
    [140] Zhang, L.-Z., C.-H. Liang, and L.-X. Pei. Conjugate heat and mass transfer inmembrane-formed channels in all entry regions[J]. International Journal of Heat and MassTransfer,2010,53(5):815-824
    [141]徐建中,隋军,金红光.分布式能源系统现状及趋势[J].太阳能,2004,4:14-16
    [142]胡波.分布式能源站机组选型原则[J].电力勘测设计,2011,4:30-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700