超声雾化液体除湿空调系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于超声雾化液体除湿的思想,设计出超声雾化液体除湿空调系统,并设计搭建了除湿系统性能测试实验台。采用质量比为1:1的氯化钙、氯化锂混合盐溶液作为除湿剂,实验测定了超声雾化液体除湿空调系统的效率。结果表明,在9种不同实验条件下,该系统的除湿效率约为18.1%~26.9%。实验还分析了盐溶液除湿剂的质量分数、气液反应时间、液气比等关键运行参数对系统性能的影响。结果表明,盐溶液质量分数、气液反应时间、液气比等因素对系统除湿效率有显著的影响。在38%~35%的范围内,随着混合盐溶液质量分数的逐渐减小,超声雾化液体除湿系统的除湿效率逐渐降低。在超声雾化液体除湿空调系统中,延长气液反应时间,可提高除湿效率。在本文实验条件下,系统的液气比仅为0.18~0.84。当液气比由0.18增至0.84时,除湿效率可提高约50%。在本文实验条件下,超声雾化液体除湿空调系统的被处理空气会产生约0.66℃~1.48℃的温升,且除湿效率越高,空气温升越大。
     采用数学分析的方法分析了各关键运行参数对超声雾化液体除湿空调系统性能的影响,作为系统改进策略的参考。数学分析的结果表明,对本文研究的超声雾化液体除湿系统,当液气比小于1.0时,保持其他运行参数不变,增加液气比值能够显著地提高系统的除湿效率,而当液气比大于1.0时,继续增加液气比对除湿效率的改善不明显。延长气液反应时间能够有效改善超声雾化液体除湿系统的效率,但气液反应时间与液气比会互相影响。经数学计算,当液气比为0.2时完全反应时间为1.6s,而液气比逐渐增大至1.0时,完全反应时间仅为0.3s。增加液气比会增加系统的耗液量,因此在适当的液气比条件下,需通过延长气液反应时间来增加系统效率、降低除湿成本。对于超声雾化液体除湿系统,粒径约50μm的盐溶液雾化颗粒使得除湿过程中的传质系数大大增加,继续减小粒径会增加雾化成本,因此该粒径是超声雾化除湿系统合适的选择。
     根据以上数学分析的结果,对超声雾化液体除湿空调系统进行了改进,以达到在合理利用建筑空间的同时,有效改善系统性能的目的。
     此外,在超声雾化液体除湿系统的研究基础上,结合传统的空气式溶液再生器提出了超声雾化液体再生的思想,并对除湿系统和再生系统进行了整合,设计出超声雾化液体除湿/再生系统。该系统能够有效地提高除湿/再生效率,降低系统阻力,减少系统输送能耗,并且合理利用太阳能、工业废热等低品位能源。
Based on the conception of dehumidification with liquid desiccant making use of the ultrasound atomization technology, a new kind of ultrasound atomization dehumidifying system with liquid desiccant was designed, and an experiment bench was constructed for the performance analysis of the system. The mixed salt solution of Lithium chloride and Calcium chloride with the mass ratio 1:1 was used as the liquid desiccant in the system. The efficiency of the system was studied by different experiments. It’s found that the dehumidification efficiency of this system is 18.1%~26.9% under 9 groups of experimental conditions. In additional, the effects of quality concentration of calcium chloride and lithium chloride mixture solution, liquid-air ratio and air-liquid reaction time were analyzed according to experimental data. It’s found that the efficiency decreases when the salt quality concentration decreases from 38% to 35%; liquid-air ratio and air-liquid reaction time greatly affect the dehumidification efficiency. Increasing the reaction time helps improve efficiency of the ultrasound atomization dehumidifying system with liquid desiccant. Besides, the efficiency increases 50% when the liquid-air ratio increases from 0.18 to 0.84. Moreover, the temperature of the processed air is raised by 0.66℃~1.48℃when the efficiency increases.
     Mathematical model was established to predict efficiency of the ultrasound atomization dehumidifying system with liquid desiccant under different conditions. Results from the mathematical analysis could be used for the optimization of the system. It’s found that increasing the liquid-air ratio when it’s less than 1.0 could help improve the performance significantly. Meanwhile, if the value is higher than 1.0, keeping increasing the liquid-air ratio does not work well. Besides, increasing the air-liquid reaction time also improves the efficiency of the dehumidification system. However, relationship between the reaction time and liquid-air ratio is very complicated, and they are affected by each other. Through the mathematical analysis, it’s found that the reaction time is less than 1.6s if the liquid-air ratio is 0.2, but the reaction time could be reduced to 0.3s by increasing the liquid-air ratio to 1.0. However, raising the liquid-air ratio means increasing the consumption of the solution, so increasing the reaction time to improve the performance without increasing the cost of solution is preferred. The mass transfer coefficient during the dehumidifying process is increased by atomizing the liquid desiccant into droplets with the diameter about 50μm, which is appropriate for the ultrasound atomization dehumidifying system with liquid desiccant.
     An optimized ultrasound atomization dehumidifying system with liquid desiccant was designed according to the results of the mathematical analysis, of which the dehumidification efficiency is improved and the space utilization is more reasonable.
     At last, based on the research of ultrasound atomization dehumidifying system, a liquid desiccant regenerating system was proposed by optimizing traditional regenerator. The ultrasound atomization dehumidifying and regenerating system was designed, of which the dehumidification and regeneration efficiency is improved, and the energy consumption is lower by reducing the system resistance. Besides, the solar energy and industrial waste heat could be used in this ultrasound atomization dehumidifying and regenerating system.
引文
[1]江亿.我国建筑耗能状况及有效的节能途径.暖通空调, 2005, 35(5):30-40
    [2]刘晓华,江亿.温湿度独立控制空调系统.北京:中国建筑工业出版社, 2006
    [3]易晓勤.温湿度独立控制空调系统在地铁站的应用.暖通空调, 2010, 40(7):19-21
    [4]朱冬生,剧霏等.除湿器研究进展.暖通空调, 2007, 37(4):35-40
    [5]雷海燕,刘雪玲.固体吸附式除湿空调系统及其研究进展.天津理工大学学报, 2005, 21(3):49-51
    [6]董军涛,张立志.膜法空调除湿的原理与进展研究.暖通空调, 2008, 38(5):22-28
    [7]赵伟杰,张立志,裴丽霞.新型除湿技术的研究进展.化工进展, 2008, 27(11):1710-1718
    [8]梅林.紧凑式双级并联液体溶液除湿器性能研究[硕士论文].上海:上海交通大学, 2006
    [9] W. Kessling, E. Laevemann, C. Kapfhammer. Energy storage for desiccant cooling systems component development. Solar Energy, 1998, 64: 209-221
    [10]朱瑞琪,李怀富.溶液除湿型空调系统中吸收器的工作模拟和实验.流体工程, 1992, 20(2):56-59
    [11]刘晓华,江亿等.叉流除湿器中溶液与空气热质交换模拟.暖通空调, 2005, 35(1):115-119
    [12]李震,刘晓华,江亿等.带有溶液热回收器的新风空调机.暖通空调, 2005, 35(1):90-95
    [13]刘晓华,江亿.溶液全热回收器与单级喷淋模块结合的新风机组.清华大学学报(自然科学版), 2004, 44(12):1626-1629
    [14]刘晓华,李震等.溶液除湿/再生设备热质交换过程解析解法及其应用.太阳能学报, 2004, 25(4):509-514
    [15]熊军等.燃气驱动的三级液体除湿空调系统及其特点分析.建筑热能通风空调, 2004, 23(5):35-37
    [16] Lazzarin R M, Gasparella A, Longo G A. Chemical dehumidification by liquid desiccant: Theory and Experiment. International Journal of Refrigeration, 1999, 22(4): 334-347
    [17] Gandhidasan P. Prediction of pressure drop in a packed bed dehumidifier operating with liquid desiccant. Applied Thermal Engineering, 2002, 22(10): 1117-1127
    [18] Nelson Fumo, D.Y. Goswami. Study of an aqueous lithium chloride desiccant system: Air dehumidification and desiccant regeneration. Solar Energy, 2002, 72(4): 351-361
    [19]易晓勤,刘晓华.两种液体吸湿剂的除湿性能比较.中国科技论文在线, 2009, 4(7):522-526
    [20] Ameel T A, Gee K G, Wood B D. Performance predictions of alternative, low cost absorbents for open cycle absorption solar cooling. Solar Energy, 1995, 54(2): 65-73
    [21]杨英,李心刚,李惟毅.液体除湿特性的实验研究.太阳能学报, 2000, 21(2):155-159
    [22] Eratsa A, Kiris I. Properties of a new liquid desiccant solution-lithium chloride and calcium chloride mixture. Solar Energy, 1992, 49(3): 205-212
    [23] Ahmed S Y, Gandhidasan P. Thermodynamic analysis of liquid desiccant. Solar Energy, 1998, 62(1): 11-18
    [24]项辉,张立志.液体吸收除湿强化技术的研究进展.暖通空调, 2005, 35(7):26-31
    [25] Wood R W, Loomis A L. The physical and biological effects of high frequency sound waves of great intensity, Phil Mag, 1927(4): 417-436.
    [26]王俐,连之伟,刘蔚巍.结合超声雾化技术的液体除湿系统分析.中南大学学报自然科学版, 2011, 42(1):240-246
    [27] Wang Li, Lian Zhiwei. Improvement of conventional liquid desiccant dehumidification technology. Journal of Southeast University (English Edition), 2010, 26(2): 212-216
    [28] Partridge George P, Davis Wayne T. A mechanical model based mathematical of sulfurdioxide absorption into calcium hydroxide slurry in a spray dryer. Chemical Engineering Commune, 1990, 96(1):97-112
    [29] Dantuluri S R, Davis W T. Mathematical model of sulfur absorption into calcium hydroxide slurry in a spray dryer. Separating Science and Technology, 1990, 25(13):1843-1855
    [30]孙健,宫小龙.除湿溶液蒸汽压的研究.制冷学报, 2004, 1:27-30
    [31]陶有迁.超声雾化在盐雾试验中的应用.电子产品可靠性与环境试验, 2000, (3):27-30
    [32] Messing G L, ZHANG Shi-chang, Jayanthi G V. Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 1993, 76(11): 2707-2726
    [33] Patil P S. Versatility of chemical spray pyrolysis technique. Materials Chemistry and Physics, 1999, 59 (3): 185-198
    [34]时钧,汪家鼎,余国琮.化学工业手册[M].北京:化学工业出版社, 1996
    [35] GAO Zhi-chang, JIA Gui-ren. Performance test of mesh demister. Chinese Journal of Oil-Gasfield Surface Engineering, 1993, 12(1): 60?62
    [36]丁涛,李保明.太阳能除湿系统中混和盐溶液的性能.农业工程学报, 2009, 25(10):236-240
    [37] G. A. Longo, A. Gasprella. Experimental and theoretical analysis of heat and mass transfer in a packed column dehumidifier/regenerator with liquid desiccant. International Journal of Heat and Mass Transfer, 2005, 48(25-26): 5240-5254
    [38] Liu Xiaohua, Jiang Yi. Coupled heat and mass transfer characteristic in packed bed dehumidifier/regenerator using liquid desiccant. Energy Conversion and Management, 2008, 49(1): 1357-1366
    [39] Conde M R. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design. International Journal of Thermal Sciences, 2004, 43(4)
    [40]江亿,李震.溶液式空调及其应用.暖通空调, 2004,34(11):88-97
    [41] J. Stichlmari, J L. Bravo. General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns. Gas Sep, 1989, Purif 3: 19-28
    [42] Yonggao Yin, Xiaosong Zhang. A new method for determining coupled heat and mass transfer coefficients between air and liquid desiccant. International Journal of heat and mass transfer, 2008, 51: 3287-3297
    [43] G. Grossman. Simultaneous heat and mass transfer in film absorption under laminar flow. Int. J. Heat Mass Transfer, 1983, 26 (3): 357–371
    [44] A. Ali, K. Vafai. An investigation of heat and mass transfer between air and desiccant film in an inclined parallel and counter flow channels. Int. J. Heat Mass Transfer, 2004, 47 (8-9): 1745–1760
    [45] Arshad Y. Khan. Sensitivity analysis and component modeling of a packed-type liquid desiccant system at partial load operating conditions. Int. J. Energy Res, 1994, 18 (7): 643–655
    [46] X.Y. Chen, Z. Li, Y. Jiang. Analytical solution of adiabatic heat and mass transfer process in packed-type liquid desiccant equipment and its application, Sol. Energy, 2006, 80 (11): 1509–1516
    [47]彭冬根,张小松,殷勇高.一种新型溶液再生装置理论性能研究.太阳能学报, 2008, 29(9):1078-1085
    [48]王强,王刚.液体除湿空调系统溶液再生性能的理论研究与实验分析.制冷与空调, 2010, 24(4):124-128
    [49]李宪莉,由世俊等.溶液再生式蒸发冷凝器运行参数对系统性能的影响.天津大学学报, 2010, 43(8):734-742
    [50]丁涛,黄之栋等.太阳能除湿系统中混合盐溶液的除湿/再生效率.农业工程学报, 2010, 26(2):295-299
    [51] P. Gandhidasan. Quick performances prediction of liquid desiccant regeneration in apacked bed. Solar Energy, 2005, 79(1): 47-55
    [52]彭东根,张小松.太阳能空气预处理溶液再生装置稳态性能研究.太阳能学报, 2009, 30(2):164-169
    [53]罗磊,张小松.叉流填料再生器中传热传质系数的实验研究.中国工程热物理学会学术会议论文,传热传质学,编号:073475
    [54]熊珍琴,代彦军,王如竹.两级双溶液除湿/再生模块实验研究.工程热物理学报, 2009, 30(9):1558-1560
    [55]易晓勤,刘晓华,江亿等.两种除湿溶液的再生性能对比实验研究.太阳能学报, 2010, 31(2):168-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700