液体除湿空调室内空气品质的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一方面,液体除湿由于空气带液问题而给室内带来一些金属离子,同时也增加了除湿空气中的气溶胶粒子含量,从而对空气品质构成了负面影响。但是另一方面,填料塔结构类似湿式除尘器,能去除空气中气溶胶粒子,起到改善空气品质的作用。为分析在不同除湿剂下这两种作用的程度,本文分别以LiCl、CaCl_2及其1:1的混合溶液为除湿剂,初步实验研究了液体除湿环境下的室内空气品质。
     通过理论计算,设计并搭建了除湿实验系统。首先以LiCl溶液为除湿剂,对空气中Li~+的不同采样方式、采样时间和采样位置进行了对比性实验。由实验结果得到,本实验采样方法选为去离子水吸收法,采样时间定为2~3h,采样位置选为风口较为合适。然后分别以三种溶液为除湿剂,进行了除湿塔的除湿性能实验,结果表明三种除湿剂中以混合溶液的性价比最高。在液气比为0.4~1.5、0.7~1的除湿条件下,分别对填料塔的出口空气的Li~+、Ca~(2+)浓度和进出口空气的气溶胶粒子个数浓度进行了检测。检测结果显示:当以混合溶液为除湿剂时,空气中共存的Li~+、Ca~(2+)浓度之和要大于单一成分除湿剂的Li~+或Ca~(2+)浓度,但其最大值未超过70μg/m~3;本实验台填料塔对粒径≥5μm气溶胶粒子有明显的除尘作用,其它小粒径范围的气溶胶粒子,由于液沫夹带和溶液腐蚀的原因,出现除湿塔出进口浓度比值大于1的现象。
On the one hand, liquid desiccant has negative effects on the indoor air quality (IAQ)because flowing air carries small drops of desiccant solution to bring directly metal-ionsof liquid desiccant into indoor air and increase simultaneously its aerosol particlescontent. On the other hand, however, packed column also plays role in the improvementair quality for the same function of filitering particles as wet scrubber indehumidification process. In order to analyze these two kinds of effect under the differentliquid desiccant, this paper studies initially on IAQ of liquid desiccant air conditioningby using different solutions of Lithium Chloride, Calcium Chloride and mixture ofLithium Chloride and Calcium Chloride at equal proportion as the liquid desiccantrespectivily.
     Through the theoretical calculation, a liquid desiccant experimental system isdesigned and built in this paper. Firstly, a comparison experiment for different airsampling means, different air sampling intervals and different positions for Lithium Ionin dehumidified air is carried on by taking Lithium Chloride solution as liquid desiccant.The experimental results show that it is appropriate for the experimental system in thispaper to choose deionized water absorption method as the sampling mean, 2 to 3 hours asthe sampling interval and air outlet as the sampling position. Then the experimentresearch is conducted on desiccant performance of packed column by using the threekinds of solutions as liquid desiccant, and the result indicates that the mixed solution hasthe highest cost-performance in the three kinds of solutions.The concentration of LithiumIon and (or) Calcium Ion and the concentration of the number of the aerosol particles indehumidified air is detected under the liquid to gas ratio from 0.4 to 1.5 and from 0.7~1respectivily. It can be concluded from the detected results that the sum of theconcentration of Lithium Ion and Calcium Ion in dehumidified air when using mixedsolution as liquid desiccant is higher than that of Lithium Ion or Calcium Ion while usingLithium Chloride solution or Calcium Chloride solution as liquid desiccant respectively,but the maximum value of them doesn't go over 70μg/m~3, and the packed cloum has clear dusting function to the aerosol particles whose diameter is over 5μm while the ratioof the concentration of the number of the aerosol particles at outlet to inlet is more than 1for others with smaller particle size because of the effect of entrainment and solutioncorrosion.
引文
[1] 陈晓阳、江亿等.湿度独立控制的空调系统的工程实践[J].暖通空调,2004,34(11):103-109.
    [2] 江亿、李震等.溶液式空调及其应用.暖通空调[J],2004,34(11):88-97.
    [3] Oberg and Goswami.et al. Performance simulation of solar hybrid liquid desiccant cooling for ventilation air preconditioning. In: Solar Engineering 1998, Proceedings of the International Solar Energy Engineering Conference, ASME, Fairfield, NJ (1998), pp. 176-182.
    [4] A.Ertas, E.E.Anderson and I.Kiris, Properties of a new liquid desiccant solution-lithium chloride and calcium-chloride mixture, solar energy, Vol.49, No.3, pp.205-212, 1992.
    [5] 宫小龙、孙健等.除湿溶液除湿性能的对比试验研究[J].制冷与空调,2005,5(5):81-84.
    [6] 赵云、施明恒.太阳能液体除湿空调系统中除湿剂的选择[J].工程热物理学报,2001,22(增刊):165-168.
    [7] 孙健、宫小龙、施明恒.除湿溶液蒸汽压的研究[J].制冷学报,2004(1):27-30.
    [8] 项辉、张立志等.液体吸收除湿强化技术的研究进展[J].暖通空调,2005,35(7):26-31.
    [9] 王倩、郝红等.除湿空调系统研究进展[J].煤与热力,2005(8):72-76.
    [10] 刘晓华等.温湿度独立控制空调系统[M].北京:中国建筑工业出版社,2006:110-133.
    [11] 孙健、赵云等.太阳能液体除湿空调性能的试验研究[J].能源研究与利用,2002(5):30-32.
    [12] 张村、施明恒等.三种太阳能液体除湿空调除湿器的比较[J].节能技术与产品,2002(6):29-48.
    [13] 赵云、施明恒等.太阳能液体除湿空调系统中除湿器型式的选择[J].太阳能学报,2002(2):32-35.
    [14] 刘晓华、江亿等.叉流除湿器中溶液与空气热质交换模型[J].暖通空调,2005,35(1):115-119.
    [15] 赵华、郑宏飞等.太阳能液体除湿空调的研究进展[J].新能源与新材料,2004, 6(28):28-30.
    [16] 代彦军、王如竹等.太阳能液体干燥剂除湿潜能储存热质传递过程研究[J].工程热物理学报,2001,22(5):605-608.
    [17] 刘晓华、江亿等.溶液除湿空调系统中叉流再生装置热质交换性能分析[J].暖通空调,2005,35(12):10-15。
    [18] Nelson Fumo and D. Y. Goswami, Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration, Solar Energy. 72 4 (2002), pp. 351-361
    [19] 路则锋、陈沛霖.逆流填料式液体除湿系统传热传质过程的分析解法及应用[J].太阳能学报,2004,21(4):439-446.
    [20] 陈晓阳、刘晓华.溶液除湿/再生设备热质交换过程解析解法及应用[J].太阳能学报,2004,25(4):509-514.
    [21] 方承超、孙克涛.太阳能液体除湿空调系统模型的建立与分析[J].太阳能学报,1997,18(2):128-133.
    [22] 李震、江亿.溶液除湿空调及热湿独立处理空调系统[J].暖通空调,2003,33(6):26-29。
    [23] 李震、刘晓华.带有溶液热回收器的新风空调机[J].暖通空调SARS特集,2003,33:55-57。
    [24] Wang P K, Grover S N, Pruppacher H R. On the effect of electric charges, on the Scavenging of aerosol particles byclouds and small raindrops,Journal of Atmospheric Sciences, 1978, 35: 173~51743.
    [25] 铃木谦一郎、大矢信男,著.除湿设计[M].李先瑞.译.北京:中国建筑工业出版社,1983:118-127.
    [26] Chinese CDC Virus Disease Institute. Test of whether lithium bromide and lithium chloride mixed solution kills SARS virus. Beijing, Chinese CDC Virus Disease Institute, 2003.
    [27] Moschandreas D J, Relwani S M. Impact of the humidity pump on indoor environment. GRI Report No GRI 90/0193, Gas Research Institute, 1990.
    [28] Chung T W, Ghosh T K, Hines A L, et al. Removal of selected pollutants from air during dehumidification by lithium chloride and triethylene glycol solution. In: ASHRAE Trans. 1993, 99(1).
    [29] Chau C K, Worek W M. Numerical and experimental modeling of cosorption processes of triethylene glycol in a packed bed liquid desiccant dehumidifier. (in the process of submission).
    [30] 张伟荣、刘晓华等.溶液除湿方式对室内空气品质影响的初步研究[J].暖通空调,2004,34(11):114-117.
    [31] Chen Xiaoyang, Jiang Yi, Li Zhen, et al. An introduction of independent humidity control system with liquid desiccant air conditioner. ISHVAC, Beijing, China, 2003. 1024~1049.
    [32] 费秀峰.蓄能型溶液除湿蒸发冷却空调系统的初步研究[D].南京:东南大学,2001.
    [33] 刘乃鸿.工业塔新型规整填料应用手册[M].天津:天津大学出版,1993:47、197.
    [34] Huber M, Hiltrunner R. Packed rectifying column with maldistribution [J]. Chen Eng Sci, 1966, 21: 819-912.
    [35] Cihla Z, Schmidt O. Behavior of liquids flowing through the packing of a cylinder column [J]. Coll Czech Chem Comm, 1957, 22: 896-907.
    [36] 王树楹主编.现代填料塔技术指南[M].北京:中国石化出版社,1998:11、163-180.
    [37] 《化学工程手册》编辑委员会.化学工程手册[M].北京:化学工业出版社,1998:13-30~13-32.
    [38] 董谊仁、孙凤珍.塔设备除雾技术[J].化工生产与技术2000,7(2):6-11.
    [39] 董谊仁、孙凤珍.塔设备除雾技术(续一)[J].化工生产与技术2000,7(3):3-6.
    [40] 董谊仁、孙凤珍.塔设备除雾技术(续二)[J].化工生产与技术2000,7(4):3-5.
    [41] Fabian P, Cusack R, Hennessey P and Neuman M, Chem Eng, 1993(11):148.
    [42] Holmes T L and Chen G K. Chem Eng, 1984,(15):82
    [43] 上海化工学院、天津大学等编.化学工程[M].北京:化学工业出版社,1980.
    [44] 张立志编著.除湿技术[M].北京:化学工业出版社,2004:191-193.
    [45] 张红彦.规整填料塔中液流体力学行为的研究及传质模型的建立[D].天津大学博士学位论文.1999:63-68.
    [46] [德]莱恩哈特·毕力特著.填料塔[M].北京:化学工业出版社,1998.
    [47] 梁晓星主编.空气环境监测[M].北京:化学工业出版社,2005.
    [48] 崔九思主编.室内空气污染监测方法[M].北京:化学工业出版社,2002.
    [49] 徐伯洪、闫惠芳主编.工作场所有害物质监测方法[M].北京:中国人民公安大学出版社,2003:3-22、41、58.
    [50] 户正永编.气溶胶科学引论[M].北京:原子能出版社,1999:1.
    [51] 孙一坚主编.工业通风(第三版)[M].北京:中国建筑工业出版社,1994:87-89.
    [52] 茅清希编.工业通风[M].上海:同济大学出版社,1998:142-146,93-98.
    [53] 尚晓东著.现代除尘理论与技术[M].北京:冶金工业出版社,2002:172-175.
    [54] 杨书申、邵龙义等.大气颗粒物浓度检测技术及其发展[J].北京工业职业技术学院学报,2005,4(1):36-39.
    [55] 黄璐等编.化工设计.化学工业出版社[M],2001,251~252.
    [56] 天恩、麦本熙、丁慧华等.化工原理(下册)[M].北京:化学工业出版社,1984:176.
    [57] 顾卫国.液体除湿空调试验研究[D].硕士学位论文,2005:45-49.
    [58] 刘光启、马连湘等主编.化工物性算图手册[M].北京:化学工业出版社,2002:60、63.
    [59] 刘光启、马连湘等主编.化学化工物性数据手册(无机卷)[M].北京:化学工业出版社,2002:464-465.
    [60] 李萍、姚丽珠.用原子吸收和火焰发射光谱法测定矿泉水中锂[J].抚顺石油学院学报,2003,23(1):26-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700