二元及多元金属硫族化物的合成及其光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属硫族化物纳米材料作为半导体材料中一个重要的成员因其优异的光电性质显示出其在光学、磁学、电学、生物医学、电化学和太阳能电池等领域广泛的应用前景。但是这些光电性质具有尺寸、形貌和化学组分依赖特性。因此,合理设计、可控合成具有特殊光学、电学和磁学性质的金属硫族化物纳米材料已成为纳米生物医学、光电器件、催化等前沿领域的研究热点。制备具有新颖形貌的金属硫族化物纳米晶、并探索其生长机制,进而实现对尺寸、维度及物性的调控,这对于研究纳米结构与材料物性的关联,实现按照人们的意愿合成具有某些特殊性质的材料,从而组装成各种功能器件具有重要意义。尽管当前人类对金属硫族化物的纳米制备与合成已经取得了较大的发展,但这些进展主要集中在对二元金属硫族化物的控制合成上,对于三元及三元以上的硫族化物的可控合成还不尽完善。因此,大量、廉价并且高效地合成与组装不同组份与形貌的多元金属硫族化物纳米材料无论从基础研究,还是从性能和应用的角度来看,都有着特殊重要的意义。本论文主要从可控合成三元Cu-Bi-S系列化合物及四元Cu2ZnSnS/Se4系列纳米材料出发,探究了它们的形貌结构以及生长机理,并研究了这些化合物的光电学、电化学性能、光学带隙以及光伏性能等。另外,本文还研究了ZnSe-Au纳米线所形成的接触在通过电流自加热后其微结构的变化,以及发生应变后ZnSe纳米线内部电学性能以及热学性能的变化。所取得的具体成果如下:
     (1)利用水热法可控的制备了同时具有八角形与六角形两种外形的Cu9BiS6纳米片、以及结晶性较好的CuBiS2纳米线。分析了他们的微结构以及优先生长面与优先生长方向。通过分析其光学带隙发现,Cu9BiS6纳米片的禁带宽度为1.25eV,CuBiS2纳米线的禁带宽度为1.1eV,两者都与太阳光谱中的可见光谱非常匹配,因此是一种较好的光伏备选材料。
     (2)一步水热法合成了具有多层次结构的Cu3BiS3纳米花,通过对其生长机制的探究发现,这种花状结构的形成可归结为一个自腐蚀过程,其参与的可逆反应使得内部的晶核向外生长,并最终形成了多孔结构。这种Cu3BiS3多孔结构的光学带隙大约为1.2eV。作为一种新的锂离子电池阳极材料,它的首次放电与充电容量分别为676与564mAhg-1,初始库伦效率为83.4%。初始放电值要高于二元Bi2S3的理论放电值(625mAhg-1),而二元Bi2S3正是因为硫元素较高的质量容量以及铋元素很大的体积容量才被用在锂离子电池阳极材料。
     (3)用湿化学方法合成了四元Cu2ZnSnS4纳米颗粒。这种颗粒直径较小,仅为10nm左右。XRD确定其晶体结构为四方晶系的锌黄锡矿。SEM观察确定Cu2ZnSnS4纳米颗粒单分散性较好,无明显团聚。紫外-可见吸收光谱法测定其光学带隙大约为~1.5eV。由场诱导光电压谱(简称FISPS)测量的表面光生电荷性能证实Cu2ZnSnS4纳米颗粒在激发光波长为630nm左右发生明显的光伏响应,与其带隙1.5eV对应,说明光照引起的是一个带带直接跃迁。
     (4)本章通过原位焦耳热的方法,利用透射电子显微镜(TEM),在金与硒化锌纳米线所形成的接触处(M-S)达到了可控的界面合金化处理。TEM检测显示,金电极在M-S接触处原位熔化了,并且硒化锌纳米线的尖端被熔化后的金所覆盖。实验结果证实,反向偏置的M-S接触的合金化处理是因为在这个接触处所存在的肖特基势垒具有很高的阻抗值,这与阴极控制模式相吻合。因此,原位焦耳热的方法是一种行之有效的方法,可以用来改善基于金属-半导体-金属纳米结构的纳米电子器件的性能。
     (5)本章通过原位TEM技术研究了应变对ZnSe纳米线中载流容量的影响。在TEM的观察下,使用一个可移动的探针电极在纳米线轴向施加压缩应力,能够在单根ZnSe纳米线中的选定区域创建应变。仔细操作可移动探针电极,诱发应变在ZnSe纳米线弯曲的曲率级别上可控。原位电流诱导焦耳热的方法证实了,在对抗焦耳热方面单根ZnSe纳米线中应变的部分比未发生应变的部分有更好的性能。因此,通过特意创建应变,ZnSe纳米线的载流容量得到了有效增强。实验结果也证实了,在同一根纳米线中,电导率与热导率会因为引入的应变而发生明显的增长。
Crystalline metal sulfides as a typical and important group of semiconductorshave attracted extensive investigation due to their unique optical, magnetic andelectrical properties and the intriguing prospects for developments in photovoltaicsolar cells, biological labeling and medical diagnostics, etc. However, the uniquephotoelectrical properties of colloidal semiconductor nanocrystals exhibit distinct size-,shape-and composition dependence. Thus, developing general and facile syntheticapproaches that yield metal sulfides nanocrystals with precise control over not only thesize and shape but also the chemical composition is highly desirable for bothfundamental studies and practical applications. At present, a wealth of methods hasbeen developed for the synthesis of metal sulfide nanocrystals, but these developmentsare mainly concentrated in the controlled synthesis of binary sulfide. It is not desirableto controllable synthesis of ternary sulfides or even multiple sulfides. Therefore,large-scale, low-cost and effective synthesis and assembling of the metal sulfides withdifferent morphologies have a special significance both from the point ofnanoscientific and nanotechnological views.
     In this paper, we mainly focus on the issues related to the facile synthesis,morphology control and growth mechanism of ternary and quaternary metal sulfides.Then we have characterized the photoelectric property, optical band gap andphotovoltaic performance of these compounds. Further more, this paper also studiedthe internal electrical properties of the binary ZnSe nanowires under applied strain.The main contents are as follows:
     (1) Single crystalline Cu9BiS6nanoplates and composite structure CuBiS2nanowires have been synthesized via a hydrothermal route by using different sovlents.The morphology of these nanoplates identified by electron microscope was thehexagonal and octagonal configurations respectively. And the CuBiS2nanowires wereproved to be the twin crystal. The microstructures and growth direction of these twokind of nanostructures were analysed carefully by TEM photos. Optical diffusereflectance measurement demonstrated that these Cu9BiS6nanoplates and CuBiS2nanowires have a band gap of1.25eV and1.1eV respectively, which matched thesolar spectrum very well, thus were confirmed to be the alternative photovoltagematerials.
     (2) Flower-like hierarchical nanostructures with Cu3BiS3nanosheets asbuilding blocks formed by in situ corrosion of matrix Cu3BiS3microspheres weresynthesized via a facile hydrothermal method. Their morphology, microstructure, andcrystalline phase were characterized by scanning electron microscopy (SEM),transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively.Pore-size distribution analysis indicated that both mesopores and micropores existed inthe as-obtained products, which are favourable for increasing of surface-to-volumeratio. The optical band-gap of the hierarchical Cu3BiS3nanostructures was estimatedto be~1.2eV by UV-vis spectroscopy. Electrochemical measurements were also usedto investigate the electrochemical Li+intercalation performance for the flower-likeCu3BiS3nanostructures. The results showed that the initial discharge capacity of thenanosheets based Cu3BiS3hierarchical structures is676mAhg-1which is lager thanthe thereotical value of Bi2S3(625mAhg-1), but it degraded quickly duringsubsequent cycles, and further improvement in cyclic stability is still needed forpractical application in lithium-ion batteries.
     (3) Cu2ZnSnS4nanoparticles have been prepared by wet chemical method. Thecrystal structure analyzed by XRD coincides to stannite with tetragonal symmetry andlattice parameters a=0.5427nm and c=1.0848nm. Morphology of these nanoparticlescharacterized by SEM coincides to the well-dispersed nanospheres with the diameterranging from5nm to10nm. The band gap has been estimated to be about1.5eVbased on the corresponding Uv-vis absorption spectra.
     (4) Controllable interfacial alloying is achieved at a Au-ZnSe nanowire (M-S)contact via in situ Joule heating inside transmission electron microscopy (TEM). TEMinspection reveals that the Au electrode is locally molten at the M-S contact and the tipof the ZnSe nanowire is covered by the Au melting. Experimental evidences confirmthat the alloying at the reversely biased M-S contact is due to the high resistance of theSchottky barrier at this M-S contact, coincident to cathode-control mode.Consequently, in situ Joule heating can be an effective method to improve theperformance of nanoelectronics based on a metal-semiconductor-metal nanostructure.
     (5) The effect of strain on the current carrying capacity of ZnSe nanowire hasbeen studied by in situ transmission electron microscopy (TEM). Under TEMinspection the strain can be created at the selected position in a single ZnSe nanowireby the compressive stress applied along its axial direction using a movable probeelectrode. The induced strain is controllable in the magnitude of curvature of the ZnSenanowire bent by careful manipulation of the movable probe electrode. In situ current-induced Joule heating has confirmed that the strained segment in a single ZnSenanowire exhibited better ability than the unstrained segments against Joule heating.Consequently, the current carrying capacity of the ZnSe nanowire can be effectivelyenhanced by intentionally created strain. The experimental results have also provedthat a significant increase of the electrical conductance and the thermal resistance canbe achieved simultaneously in a single nanowire by the intentionally designed andcreated strain.
引文
[1] Jun Y W, Choi J S, Cheon J W. Shape control of semiconductor and metal oxidenanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed,2006,45:3414-3439
    [2]张中太,林元华,唐子龙等.纳米材料及其技术的应用前景.材料工程,2000,3:42-48
    [3]张池明.超微粒子的化学特性.化学通报.1993,8:20-23
    [4]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001,59-64
    [5] Du Y, Xu B, Fu T, et al. Near-Infrared Photoluminescent Ag2S Quantum Dotsfrom a Single Source Precursor. Journal of the American Chemical Society,2010,132,1470-1471
    [6] Zhang Y, Xu H, Wang Q. Ultrathin single crystal ZnS nanowires. ChemicalCommunications.2010,46:8941-8943
    [7] Lu Y, Jia J, Yi G. Selective growth and photoelectrochemical properties ofBi2S3thin films on functionalized self-assembled monolayers. CrystEngComm,2012,14:3433-3440
    [8] Bettina L, Inga O, Marta D, et al. Extension of the benzyl alcohol route to metalsulfides:“nonhydrolytic” thio sol–gel synthesis of ZnS and SnS2. Chem.Commun.2011,47:5280-5282
    [9] Shen S, Zhang Y, Peng L, et al. Generalized synthesis of metal sulfidenanocrystals from single-source precursors: size, shape and chemicalcomposition control and their properties. CrystEngComm,2011,13:4572-4579
    [10] Sheldrick W S, Wachhold M. Chalcogenidonetalates of the Heavier Group14and15elements. Coordination Chemstry Reviews.,1998,176:211-322
    [11] WheIdrick W S, Wachhold M. Solventothermal Synthesis of Solic-StateChalcogenidonetalates. Angew Chem Int Ed Engl,1997,36:206-224.
    [12] Kanatzidis M G. Molten Alkali-Metal PolychalcogeIlides as Reagent and Solventfor the Synthesis of New ChalcogeIlide Materials. Chem Mater,1990,2(4):353-362
    [13] Parise J B, Ko Y. MateriaIs Consisting of Two Interwoven4-connectedNetworks: Hydrothermal Synthesis and structure of [Sn5S9O2][HN(CH3)3]2.Chem. Mater,1994(6):718-720
    [14]白音孟和,徐效清,安永林.多元金属硫化物的溶剂热合成研究进展.内蒙古师范大学学报(自然科学汉文版),2011,40(2):162-170
    [15] O’Sullivan C, Gunning R D, Sanyal A, et al. Spontaneous Room TemperatureElongation of CdS and Ag2S Nanorods via Oriented Attachment. J. Am. Chem.Soc.,2009,131:12250-12257
    [16] Li L, Wu P, Fang X, et al. Single-Crystalline CdS Nanobelts for ExcellentField-Emitters and Ultrahigh Quantum-Efficiency Photodetectors. Adv. Mater.,2010,22:3161-3165
    [17] Liu Z, Liang J, Xu D, et al. A facile chemical route to semiconductor metalsulfide nanocrystal superlattices. Chem. Commun.,2004,23:2724-2725
    [18] Zhao Y, Zhang Y, Zhu H, et al. Low-Temperature Synthesis of Hexagonal(Wurtzite) ZnS Nanocrystals. J. Am. Chem. Soc.,2004,126:6874-6875
    [19] Liu Z, Liang J, Li S, et al. Synthesis and growth mechanicsm of Bi2S3nanoribbons. Chem Eur J,2004,10:634-640
    [20] Steigerwald M L, Alivisatos A P, Gibson J M, et al. Surface derivatization andisolation of semiconductor cluster molecules. J Am Chem Soc,1988,110:3046-3050
    [21] Trindade T, O’Brien P. Synthesis of CdS and CdSe nanoparticles by thermolysisof diethyldithio-or diethyldiseleno-carbamates of cadmium. J Mater Chem,1996,6:343-347
    [22] Lu Q, Gao F, Zhao D. One-Step Synthesis and Assembly of Copper SulfideNanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple OrganicAmine-Assisted Hydrothermal Process. Nano Lett,2002,2:725-728
    [23] Wang X, Zhuang J, Peng Q, et al. Synthesis and Characterization of Sulfide andSelenide Colloidal Semiconductor Nanocrystals. Langmuir,2006,22:7364-7368.
    [24] Wang Z W, Daemen L L, Zhao Y S, et al. Morphology-tuned wurtzite-type ZnSnanobelts. Nat. Mater.,2005,4:922-927
    [25] Murray C B, Noms D J, Bawendi M G. Synthesis and characterization of nearlymonodisperse CdE (E=sulfur, selenium, tellurium) semiconductornanocrystallites. J. Am. Chem. Soc.,1993,115:8706-8715
    [26] Peng Z A, Peng X G. Formation of High-Quality CdTe, CdSe, and CdSNanocrystals Using CdO as Precursor. J. Am. Chem. Soc.,2001,123:183-184.
    [27] Yu W W, Peng X G. Formation of High-Quality CdS and Other II-VISemiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity ofMonomers. Angew. Chem.,Int. Ed.,2002,41:2368-2371
    [28] Peng X G, Green X. Chemical Approaches Toward High-Quality SemiconductorNanocrystals. Chem. Eur. J.,2002,8:335-339
    [29] Joo J, Na H B, Yu T, et al. Generalized and Facile Synthesis of SemiconductingMetal Sulfide Nanocrystals. J. Am. Chem. Soc.,2003,125:11100-11105
    [30] Choi S H, An K, Kim E G, et al. Simple and Generalized Synthesis ofSemiconducting Metal Sulfide Nanocrystals. Adv. Funct. Mater.,2009,19:1645–1649
    [31] Wang D S, Zheng W, Hao C H, et al. A Synthetic Method for Transition-MetalChalcogenide Nanocrystals. Chem.-Eur. J.,2009,15:1870-1875.
    [32] Lee S M, Jun Y W, Cho S N, et al. Single-Crystalline Star-Shaped Nanocrystalsand Their Evolution: Programming the Geometry of Nano-Building Blocks. J.Am. Chem. Soc.,2002,124:11244-11245
    [33] Trindade T, O’Brien P, Zhang X M, et al. Synthesis of PbS nanocrystallitesusing a novel single molecule precursors approach: X-ray single-crystal structureof Pb(S2CNEtPri)2. J. Mater. Chem.,1997,7:1011-1016
    [34] Trindade T, O’Brien P, Zhang X M. Synthesis of CdS and CdSe nanocrystallitesusing a novel single-molecule precursors approach. Chem. Mater.,1997,9:523-530
    [35] Mirkovic T, Hines M A, Nair P S, et al. Single-source precursor route for thesynthesis of EuS nanocrystals. Chem. Mater.,2005,17:3451-3456
    [36] Plante J L, Zeid T W, Yang P D, et al. Synthesis of metal sulfide nanomaterialsvia thermal decomposition of single-source precursors. J. Mater. Chem.,2010,20:6612-6617
    [37]冯怡,马天翼,刘蕾,等.无机纳米晶的形貌调控及生长机理研究.中国科学B辑:化学.2009,39(9):864-886
    [38] Bell D C, Wu Y, Barrelet C J, et al. Imaging and analysis of nanowires.Microscopy Res Tech,2004,64:373-389
    [39] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowirenanolasers. Science,2001,292:1897-1899
    [40] Fujita S Z, Kim S W, Ueda M, et al. Artificial control of ZnO nanostructuresgrown by metalorganic chemical vapor deposition. J Crystal Growth,2004,272:138-142
    [41] Wu J J, Liu S C, Wu C T, et al. Heterstructures of ZnO-Zn coaxial nanocablesand ZnO nanotubes. Appl Phys Lett,2002,81:1312-1314
    [42] Bell D C, Wu Y, Barrelet C J, et al. Imaging and analysis of nanowires.Microscopy Res Tech,2004,64:373-389
    [43] Wagner R S, Ellis W C. The vapor-liquid-solid mechanism of crystal growth andits application to silicon. Trans Metall Soc AIME,1965,233:1053-1055
    [44] Wu Y, Yang P. Germanium Nanowire Growth via Simple Vapor Transport. Chem.Mater.2000,12:605-607
    [45]张旭东,刑英杰,奚中和.类单晶氧化锌纳米棒的制备与表征.真空科学与技术学报,2004,24:16-18
    [46] Guo Q, Hillhouse H W, Agrawal R. Synthesis of Cu2ZnSnS4Nanocrystal Inkand Its Use for Solar Cells, J. AM. CHEM. SOC.2009,131:11672-11673
    [47] SheIdrick W S, Wachhold M. Solventothermal Synthesis of Solic-StateChalcogenidonetalates. Angew Chem Int Ed Engl,1997,36:206-224
    [48] Chou J, Kanatzidis M G, Hydrothermal Synthesis and Charicterization of(Me4N)[HgAsSe3],(Et4N)[HgAsSe3], and ((Ph4P)2[Hg2As4Se11]: Novel1-DMercury selenoarsenates. J solid state chem.,1996,123:115-122
    [49] Wu Q B, Ren S, Deng S Z, et al. Growth of aligned Cu2S nanowire arrays withAAO template and their field-emission properties. J. Vac. Sci. Technol. B,2004,22(3):1282-1285
    [50] Kim M, Cho S M, Pulsed electrodeposition of palladium nanowire arrays usingAAO template. Mater. Chem. Phys.,2006,96(2-3):278-282
    [51] Kim Y H, Han Y H, Lee H J, et al. High density silver nanowire arrays usingself-ordered anodic aluminum oxide (AAO) membrane. J. Kor. Cera. Soc.,2008,45(4):191-195
    [52] Shi L, Pei C, Xu Y, et al. Template-Directed Synthesis of OrderedSingle-Crystalline Nanowires Arrays of Cu2ZnSnS4and Cu2ZnSnSe4. J. Am.Chem. Soc.,2011,133(27):10328-10331
    [53] Li Y Q, Tang J X, Wang H, et al. Heteroepitaxial growth and optical propertiesof ZnS nanowire arrays on CdS nanoribbons, Appl. Phys. Lett.,2007,90(9):093127-093129
    [54] Li Z Q, Shi J H, Liu Q Q, et al. Large-scale growth of Cu2ZnSnSe4andCu2ZnSnSe4/Cu2ZnSnS4core/shell Nanowires. Nanotechnology,2011,22:265615
    [55] Stupp S M,Braun P V. Molecular manipulation of microstructures:Biomaterials,ceramics, and semiconductors. Science,1997,277:1242-1248
    [56] Zhan J, Yang X, Wang D, et a1. Polymer controlled growth of CdS nanowire.Adv Mater,2000,12:1348-1351
    [57] Meldrum F C, Wade V J, Nimmo D I, et a1. Synthesis of inorganic nanophasematerials in supramolecular protein cages. Nature,1991,349:684-687
    [58] Du Y, Xu B, Fu T, et al. Near-Infrared Photoluminescent Ag2S Quantum Dotsfrom a Single Source Precursor. J. Am. Chem. Soc.,2010,132(5):1470-1471
    [59] Bruchez M, Moronne M, Gin P, et al. Semiconductor Nanocrystals asFluorescent Biological Labels. Science,1998,281:2013-2016
    [60] Chan C W, Nie S M. Science, Quantum Dot Bioconjugates for UltrasensitiveNonisotopic Detection.1998,281(5385):2016-2018
    [61] Jung H, Park C, Sohn H. Bismuth sulfide and its carbon nanocomposite forrechargeable lithium-ion batteries, Electrochimica Acta,2011,56:2135-2139
    [62] Dachraoui M, Vedel J. Improvement of cuprous sulphide stoichiometry byelectrochemical and chemical methods. Sol. Cells,1987,22:187-194
    [63] Lee H, Yoon S W, Kim E J, et al. In-Situ Growth of Copper Sulfide Nanocrystalson Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell andAmperometric Glucose Sensor Materials. Nano Lett.,2007,7(3):778-784
    [64] Alivisatos A P. Semiconductor clusters, Nanocrystals, and Quantum dots.Science,1996,271(5251):933-937
    [65] Chan W C W, Nie S M. Quantum Dot Bioconjugates for UltrasensitiveNonisotopic Detection. Science,1998,281(5385):2016-2018
    [66] Mattoussi H, Mauro J M, Goldman E R, et al. Self-Assembly of CdSe-ZnSQuantum Dot Bioconjugates Using an Engineered Recombinant Protein. J. Am.Chem. Soc.2000,122(49):12142-12150
    [67] Wang Q B, Xu Y, Zhao X H, et al. A Facile One-Step in situ Functionalization ofQuantum Dots with Preserved Photoluminescence for Bioconjugation. J. Am.Chem. Soc.2007,129(20):6380-6381
    [68] Wang Q B, Seo D-K. Preparation of Large Transparent Silica Monoliths withEmbedded Photoluminescent CdSe@ZnS Core/Shell Quantum Dots. Chem.Mater.,2005,17(19):4762-4764
    [69] Smith A M, Duan H W, Mohs A M, et al. Bioconjugated quantum dots for invivo molecular and cellular imaging. Advanced Drug Delivery ReV.2008,60(11):1226-1240
    [70] Kim S, Lim Y T, Soltesz E G, et al. Near-infrared fluorescent type II quantumdots for sentinel lymph node mapping. Nat. Biotechnol.,2004,22(1):93-97
    [71] Balet L P, Ivano S A, Piryatinski A, et al. Inverted Core/Shell NanocrystalsContinuously Tunable between Type-I and Type-II Localization Regimes. NanoLett.,2004,4(8):1485-1488
    [72] Blackman B, Battaglia D, Peng X G. Bright and Water-Soluble Near IR-EmittingCdSe/CdTe/ZnSe Type-II/Type-I Nanocrystals, Tuning the Efficiency andStability by Growth. Chem. Mater.,2008,20(15):4847-4853
    [73] Allen P M, Bawendi M G. Ternary I-III-VI Quantum Dots Luminescent in theRed to Near-Infrared. J. Am. Chem. Soc.2008,130(29):9240-9241
    [74] Novak P, Muller K, Santhanam K S V, et al. Electrochemically Active Polymersfor Rechargeable Batteries. Chem. Rev.,1997,97(1):207-282
    [75] Chu M Y. U.S. Patent. English,5,814,420,1998,9,29
    [76] Marian N, Joop S, Albert G. Nanocomposite Three-Dimensional Solar CellsObtained by Chemical Spray Deposition. Nano letters,2005,5(9):1716-1719
    [77] Ward J S, Ramanathan K, Hasoon F S, et al. A21.5%Efficient Cu(In,Ga)Se2Thin-Film Concentrator Solar Cell. Prog. Photovoltaics,2002,10:41-46
    [78] Ito K, Nakazawa T. Electrical and optical properties of stannite-type quaternarysemiconductor thin films. Janpanese journal of applied physics.1998,27:2094-2097
    [79] Ito K, Nakazawa T. Stannite-type photovoltaic Thin Films Cu2ZnSnS4.Photovataic Science&Engineering.1989,30341-30346
    [80] Nakayama N, Ito K. Sprayed films of stannite Cu2ZnSnS4. Applied surfacescience.1996,92:171-175
    [81] Katagiri H, Ishigaki N, Ishida T. Characterization of Cu2ZnSnS4Thin filmsPrepared by Vapor Phase Sulfurization. The Janpan Society of Applied Physics.2001,40:500-504
    [82]黄景兴,邵乐喜,付玉军. Cu2ZnSnS4薄膜的制备及其光电性质研究.湛江师范学院报.2007,28:59-62
    [83] Hironori K. Cu2ZnSnS4thin film solar cells. Thin Solid Films,2005,480-481:426-432
    [84] Yao K, Zhang Z Y, Liang X L,et a1.Effect of H2on theelectrical transportproperties of single Bi2S3nanowires. J. Phys. Chem. B,2006,110(43):21408-21411
    [85] Connor S T, Hsu C M, Weil B D, et al. Phase Transformation of BiphasicCu2S CuInS2to Monophasic CuInS2Nanorods. J. Am. Chem. Soc.,2009,131(13):4962-4966
    [86] Reddy K T R, Reddy P J. Polycrystalline CuGaSe2films for solar energyconversion. Materials Letters,1990,10(6):275-279
    [87] George M W, Mineral C. U.S. Geological Survey Report, U.S. GovernmentPrinting Office: Washington, DC,2005
    [88] Gerein N J, Haber J A. One-Step Synthesis and Optical and Electrical Propertiesof Thin Film Cu3BiS3for Use as a Solar Absorber in Photovoltaic Devices.Chem. Mater,2006,18:6297-6302
    [89] Estrella VO, Nair M T S, Nair P K. Semiconducting Cu3BiS3thin films formedby the solid-state reaction of CuS and bismuth thin films Semicond Sci Technol.2003,18:190-194
    [90] Kryukova G, Heuer M, Doering Th, et al. Micro-and nanowires ofiodine-containing Cu4Bi4S9. Journal of Crystal Growth,2007,306:212-216
    [91] Razmara M F, Henderson C M B, Pattrick R A D. The crystal chemistry of thesolid solution series between chalcostibite (CuSbS2) and emplectite(CuBiS2). J.Mater Res,1997,61:79-88
    [92] Tomeoka K, Ohmasa M, Sadanaga R. Crystal chemical studies on somecompounds in the Cu2S-Bi2S3system. Mineralogical Journal,1980, l0:57-70
    [93] Tomeoka K. The modulated structures in the system of Cu2S-Bi2S3. Tokyo:University of Tokyo, Doctoral thesis,1980
    [94] Torneoka K. The modulated structure of cubic Cu9BiS6. American Mineralogist.1982,67:360-372
    [95] Ohmasa M, Tomeoka K, Sadanaga R. The modulated structure of Cu3Bi5S9. AIPConference Proceedings,1979, No.53:355-357
    [96] Ohmasa M, Nowacki W. The crystal structure of synthetic CuBi5S8. Zeitschriftfür Kristallographie,1973,137:422-432
    [97] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid Nanorod-Polymer Solar Cells.Science,2002,295:2425-2427
    [98] Gou X L, Cheng F Y, Shi Y H, et al. Shape-Controlled Synthesis of TernaryChalcogenide ZnIn2S4and CuIn(S,Se)2Nano-/Microstructures via FacileSolution Route. J. Am Chem Soc.2006;128:7222-7229
    [99]进藤,大辅,平贺等,刘安生译.材料评价的高分辨电子显微方法.冶金工业出版社.北京,2002,146-148
    [100] Liu Z P, Peng S, Qian Y T, et al. Large-scale synthesis of ulrealong Bi2S3nanoribbons via a solvothermal process. Advanced materials,2003,15(11):936-939
    [101] Li H, Zhang Q, Pan A, et al. Single-Crystalline Cu4Bi4S9Nanoribbons: FacileSynthesis, Growth Mechanism, and Surface Photovoltaic Properties. Chem.Mater.,2011,23:1299-1305
    [102] Kryukova G, Heuer M, Bente K, et al. Micro-and nanowires of iodine-containingCu4Bi4S9. Joural of crystal,2007,306:212-216
    [103] Kyono A, Kimata M. Crystal structures of chalcostibite (CuSbS2) and emplectite(CuBiS2): Structural relationship of stereochemical activity betweenchalcostibite and emplectite. American Mineralogist,2005,90:162-165
    [104] Kocman B V, Nuffield E W. The crystal structure of wittichenite, Cu3BiS3.ActaCryst B,1973,29:2528-2535
    [105] Ozawa T, Nowacki W. The crystal structure of, and the bismuth-copperdistribution in synthetic cuprobisrauthite. Zeitschrift für Kristallographie-Crystalline Materials,1975,142:161-176
    [106] Mariolacos K, Kup ik V, Ohmasa M, et al. The crystal structure of Cu4Bi5S10and its relation to the structures of hodrushite and cuprobismutite. ActaCrystallographica,1975, B31:703-708.
    [107] Armatas G S, Kanatzidis M G. Size Dependence in Hexagonal MesoporousGermanium: Pore Wall Thickness versus Energy Gap and Photoluminescence.Nano Lett.,2010,10:3330-3336.
    [108] Qu B, Zhang M, Lei D, et al. Facile solvothermal synthesis of mesoporousCu2SnS3spheres and their application in lithium-ion batteries. Nanoscale,2011,3:3646-3651
    [109] Yang P, Zhao D, Margolese D I, et al. Generalized syntheses of large-poremesoporous metal oxides with semicrystalline frameworks Nature.1998,396:152-155
    [110] Wang G, Liu H, Liu J, et al. Mesoporous LiFePO4/C Nanocomposite CathodeMaterials for High Power Lithium Ion Batteries with Superior Performance. Adv.Mater.,2010,22:4944-4948
    [111] Ren Y, Armstrong A R, Jiao F, et al. Influence of Size on the Rate of MesoporousElectrodes for Lithium Batteries. J. Am. Chem. Soc.,2010,132:996-1004
    [112] Panthani M G, Akhavan V, Goodfellow B, et al. Synthesis of CuInS2, CuInSe2,and Cu(InxGa1-x)Se2(CIGS) Nanocrystal “Inks” for Printable Photovoltaics. J.Am. Chem. Soc.,2008,130:16770-16777
    [113] Das K, Datta A, Chaudhuri S. CuInS2Flower Vaselike Nanostructure Arrays ona Cu Tape Substrate by the Copper Indium Sulfide on Cu-Tape (CISCuT) Method:Growth and Characterization. Cryst. Growth Des.,2007,7:1547-1552
    [114] Mesa F, Gordillo G, Dittrich Th, et al. Transient surface photovoltage of p-typeCu3BiS3. Appl. Phys. Lett.,2010,96:082113
    [115] Sonawane P S, Wani P A, Patil L A, et al. Growth of CuBiS2thin films bychemical bath deposition technique from an acidic bath. Mater. Chem. Phys.,2004,84:221-227
    [116] Guo Q, Ford G M, Yang W C, et al. Hillhouse and R. Agrawal, Fabrication of7.2%Efficient CZTSSe Solar Cells Using CZTS Nanocrystals. J. Am. Chem.Soc.,2010,132:17384-17386
    [117] Zou C, Zhang L, Lin D, et al. Facile synthesis of Cu2ZnSnS4nanocrystals.CrystEngComm,2011,13:3310-3313
    [118] Zhang A, Ma Q, Lu M, et al. Copper-Indium Sulfide Hollow NanospheresSynthesized by a Facile Solution-Chemical Method. Cryst. Growth Des.,2008,8:2402-2405
    [119] Ford G M, Guo Q, Agrawal R, et al. Earth Abundant ElementCu2Zn(Sn1xGex)S4Nanocrystals for Tunable Band Gap Solar Cells:6.8%Efficient Device Fabrication. Chem. Mater.,2011,23:2626-2629
    [120] Riha S C, J Fredrick S, Sambur J B, et al. Photoelectrochemical Characterizationof Nanocrystalline Thin-Film Cu2ZnSnS4Photocathodes. ACS Appl. Mater.Interfaces,2011,3:58-66
    [121] Villars P, Prince A, Okamoto H. Handbook of Ternary Alloy Phase Diagrams,(OH: ASM International),1994,5:6148
    [122] Li H, Zhang Q, Pan A, et al. Single-Crystalline Cu4Bi4S9Nanoribbons: FacileSynthesis, Growth Mechanism, and Surface Photovoltaic Properties. Chem.Mater.,2011,23:1299-1305
    [123] Gerein N J, Haber J A. Synthesis of Cu3BiS3Thin Films by Heating Metal andMetal Sulfide Precursor Films under Hydrogen Sulfide. Chem. Mater.,2006,18:6289-6296
    [124] Gerein N J, Haber J A. One-Step Synthesis and Optical and Electrical Propertiesof Thin Film Cu3BiS3for Use as a Solar Absorber in Photovoltaic Devices.Chem. Mater.,2006,18:6297-6302
    [125] Nair P K, Huang L, Nair M T S, et al. Formation of p-type Cu3BiS3absorberthin films by annealing chemically deposited Bi2S3-CuS thin films. J. Mater.Res.,1997,12:651-656
    [126] Chen D, Shen G, Tang K, et al. The synthesis of Cu3BiS3nanorods via a simpleethanol-thermal route. J. Cryst. Growth,2003,253:512-516
    [127] Zeng Y, Li H, Xiang B, et al. Synthesis and characterization of phase-purityCu9BiS6nanoplates. Mater. Lett.,2010,64:1091–1094
    [128] Chung J S, Sohn H J. Electrochemical behaviors of CuS as a cathode material forlithium secondary batteries. J. Power Sources,2002,108:226-231
    [129] Bonino F, Lazzari M, Rivolta B, et al. Electrochemical Behavior of SolidCathode Materials in Organic Electrolyte Lithium Batteries: Copper Sulfides. J.Electrochem. Soc.,1984,131,1498-1502
    [130] Zhou H, Xiong S, Wei L, et al. Acetylacetone-Directed Controllable Synthesis ofBi2S3Nanostructures with Tunable Morphology. Cryst. Growth Des.,2009,9:3862-3867
    [131] Jung H, Park C M, Sohn H J. Bismuth sulfide and its carbon nanocomposite forrechargeable lithium-ion batteries. Electrochim. Acta,2011,56:2135-2139
    [132] Park J C, Kim J, Kwon H, et al. Gram-Scale Synthesis of Cu2O Nanocubes andSubsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion BatteryAnode Materials. Adv. Mater.,2009,21:803-807
    [133] Chen L B, Lu N, Xu C M, et al. Electrochemical performance of polycrystallineCuO nanowires as anode material for Li ion batteries. Electrochim. Acta,2009,54:4198-4201
    [134] Ma J, Zhang J, Wang S, et al. Ionic liquids-assisted synthesis andelectrochemical properties of Bi2S3nanostructures. CrystEngComm,2011,13:3072-3079
    [135] A simple mathematical calculation about the angle between (h1k1l1) and (h2k2l2)lattice planes in orthorhombic Cu3BiS3structure is as follows:for (131) and (102) planes, cosφ=0.538, φ=57.4o.
    [136] Reisman S E, Doyle A G, Jacobsen E N. Geometric and Electronic StructureStudies of the Binuclear Nonheme Ferrous Active Site ofToluene-4-monooxygenase: Parallels with Methane Monooxygenase and Insightinto the Role of the Effector Proteins in O2Activation. J. Am. Chem. Soc.,2008,130:7198-7199
    [137] Zhang B, Ye X, Hou W, et al. Biomolecule-Assisted Synthesis andElectrochemical Hydrogen Storage of Bi2S3Flowerlike Patterns withWell-Aligned Nanorods. J. Phys. Chem. B,2006,110:8978-8985
    [138] Li Y D, H Liao W, Ding Y, et al. Solvothermal Elemental Direct Reaction to CdE(E=S, Se, Te) Semiconductor Nanorod. Inorg. Chem.,1999,38:1382-1387
    [139] Kocman B V, Nuffield E W. The crystal structure of wittichenite, Cu3BiS3. ActaCrystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.,1973,29:2528-2535
    [140] Burda C, Chen X B, Narayanan R, et al. Chemistry and Properties ofNanocrystals of Different Shapes. Chem. Rev.,2005,105:1025
    [141] Zhong L S, Hu J S, Liang H P, et al. Self-Assembled3D Flowerlike Iron OxideNanostructures and Their Application in Water Treatment. Adv. Mater.,2006,18:2426-2431
    [142] Kitaev G E, Sokolva T P. General synthesis of metal sulfides nanocrystallinesvia a si mple polyol route. J. Russ, Inorg. Chem.,1970,15:167-169
    [143] Ostrovskaya I K, Kitaev G A, Velijanov A A, Optical Nonlinearities in One-Dimensional-Conjugated Polymer Crystals. Russ. J. Phys. Chem.,1976,50:943-956
    [144] V Estrella, M Nair, P K Nair. Semiconducting Cu3BiS3thin films formed by thesolid-state reaction of CuS and bismuth thin films. Semicond. Sci. Technol.,2003,18:190-194
    [145] Li Y, Liu J, Huang X, et al. Hydrothermal Synthesis of Bi2WO6UniformHierarchical Microspheres. Cryst. Growth Des.,2007,7:1350-1355
    [146] Ward J S, Ramanathan K, Hasoon F S, et al. A21.5%efficient Cu(In, Ga)Se2thin film concentrator solar cell. R. Noufi, Prog. Photovoltaics.2002,10:41-46
    [147] Guo Q J, Hillhouse H W, Agrawal R. Synthesis of Cu2ZnSnS4Nanocrystal Inkand Its Use for Solar Cells. J. Am. Chem. Soc.,2009,131:11672-11673
    [148] Chen S, Gong X G, Walsh A, et al. Crystal and electronic band structureof Cu2ZnSnX4(X=S and Se) photovoltaic absorbers: First-principles insights.Appl. Phys. Lett.,2009,94:041903
    [149] Chen S Y, Gong X G, Walsh A, et al. Defect physics of the kesterite thin-filmsolar cell absorber Cu2ZnSnS4. Appl. Phys. Lett.,2010,96:021902.
    [150] Guo Q J, Ford G M, Yang W C, et al. Fabrication of7.2%Efficient CZTSSeSolar Cells Using CZTS Nanocrystals. J. Am. Chem. Soc.2010,132:17384-17386
    [151] Haas W, Rath T, Pein A, et al. The stoichiometry of singlenanoparticles of copper zinc tin selenide. Chem. Comm.2011,47:2050-2052
    [152] Gunawan O, Todorov T K, Mitzi D B. Loss mechanisms in hydrazine-processedCu2ZnSn(Se,S)4solar cells. Appl. Phys. Lett.2010,97:233506
    [153] Steinhagen C, Panthani M G, Akhavan V, et al. Synthesis ofCu2ZnSnS4Nanocrystals for Use in Low-Cost Photovoltaics. J. Am. Chem. Soc.,2009,131:12554
    [154]张清林.瞬态表面光伏测试系统的建立及其在功能材料光生电荷性质研究中的应用.吉林大学:吉林大学图书馆,2006,6
    [155] Xie T F, Wang D J, Zhu L J, et al, Application of surface photovotage techniqueto the determination of condition types of azo pigment film. J. Phys. Chem. B.,2000,104:8177-8181
    [156] Kronik L, Shapira Y. Surface photovoltage spectroscopy of semiconductorstructures: at the crossroads of physics, chemistry and electrical engineering.Surf. Interface Anal.2001,31:954-965
    [157] Lin Y H, Wang D J, Zhao Q D, et al. A study of quantum confinement propertiesof photogenerated charges in ZnO nanoparticles by surface photovoltagespectroscopy. J. Phys. Chem. B,2004,108:3202-3206
    [158] Shikler R, Rosenwaks Y. Near-field surface photovoltage. Appl. Phys. Lett.2000,77:836.
    [159] Zhang J, Wang D J, Shi T S, et al. Photovoltaic properties of porphyrin solidfilms with electric-field induction. Thin solid films,1996,284/285:596-599
    [160] Zhang J, Wang D J, Chen Y M, et al. A new type of organic-inorganic multilayer:fabrication and photoelectric properties. Thin solid films,1997,300:208-212
    [161] Fischereder A, Rath T, Haas W, et al. Investigation of Cu2ZnSnS4Formationfrom Metal Salts and Thioacetamide. Chem. Mater.,2010,22:3399-3406
    [162] Fiechter S, Martinez M, Schmidt G, et al. Phase relations and optical propertiesof semiconducting ternary sulfides in the system Cu-Sn-S. Journal of Physicsand Chemistry of Solids,2003,64:1859-1862
    [163] Zhang Y, Xie T F, Jiang T F, et al. Surface photovoltage characterization of aZnO nanowire array/CdS quantum dot heterogeneous film and its application forphotovoltaic devices. Nanotechnology,2009,20:155707
    [164] Cheng K, He Y P, Miao Y M, et al. Quantum Size Effect on Surface PhotovoltageSpectra: Alpha-Fe2O3Nanocrystals on the Surface of Monodispersed SilicaMicrosphere. J. Phys. Chem. B,2006,110:7259-7264
    [165] Dember H. über eine photoelektromotorische kupferoxydul-kristallen. Physik.Zeitschr.,1931,32:554
    [166] Duzhko V, Koch F, Dittrich Th. Transient photovoltage and dielectric relaxationtime in porous silicon. J. Appl. Phys.,2002:9432
    [167] Riha S C, Fredrick S J, Sambur J B, et al. Photoelectrochemical characterizationof nanocrystalline thin-Film Cu2ZnSnS4photocathodes. Applied materials andinterface,2011,3:58-66
    [168] Singh N, Yan C Y, Lee P S, et al. Sensing properties of different classes of gasesbased on the nanowire-electrode junction barrier modulation. Nanoscale,2011,3:1760-1765
    [169] Das R, Srinives B K, Mulchandani S, et al. ZnS nanocrystals decoratedsingle-walled carbon nanotube based chemiresistive label-free DNA sensor. Appl.Phys. Lett.2011,98:013701
    [170] M nch W. Electronic properties of semiconductor interfaces, Springer: Berlin,2004.
    [171] Mukhopadhyay S C, Gupta G S, Huan R Y M g. Recent Advances in SensingTechnology, Springer: Berlin,2009
    [172] Tohmyoh H, Fukui S. Self-completed Joule heat welding of ultrathin Pt wires.Phys. Rev. B,2009,80:155403
    [173] Jin C H, Wang J Y, Chen Q, et al. In Situ Fabrication and Graphitization ofAmorphous Carbon Nanowires and Their Electrical Properties. J. Phys. Chem. B,2006,110:5423-5428
    [174] Liu E S, Jain N, Varahramyan K M, et al. Role of Metal–Semiconductor Contactin Nanowire Field-Effect Transistors. IEEE Trans. Nanotech.2010,9(2):237-242
    [175] Lin Y C, Lu K C, Wu W W, et al. Single Crystalline PtSi Nanowires,PtSi/Si/PtSi Nanowire Heterostructures, and Nanodevices. Nano Lett.2008,8(3):913-918
    [176] Wang Y G, Zou B S, Wang T H, et al. I-V characteristics of Schottky contacts ofsemiconducting ZnSe nanowires and gold electrodes. Nanotech.,2006,17:2420-2423
    [177] Pop E.2009Proc.3rd Energy Nanotechnology International Conference.Jacksonville, FL10-14August,2008,129
    [178] Tarun A, Hayazawa N, Kawata S. Site-Selective Cutting of Carbon Nanotubes byLaser Heated Silicon Tip. Jap. J. Appl. Phys.2010,49:025003
    [179] Kaye G W C, Laby T H.1995Tables of Physical an Chemical Constants, London:Longman,1995
    [180] Massalski (ed.)T B. Binary Alloy Phase Diagrams. ASM. Metals Park, OH.2ndedn..1990
    [181] Schmid-Fetzer R, Schwarz R, Molle M, et al. Experimental study of ternaryM-Zn-Se (M=W, Au, In, Ti) phase equilibria. J. Alloy Compd.1997,247:158-163
    [182] Brillson L J. Transition in Schottky Barrier Formation with Chemical Reactivity.Phys. Rev. Lett.,1978,40:260-263
    [183] Kubashewski O, Alcock C B, Spencer P J, in: Materials Thermochemistry,6th ed.Pergammon, New York,1993
    [184] Rabenau A, Schulz H. The crystal structures of α-AuSe and β-AuSe. J.Less-Commun. Met.1976,48:89-101
    [185] Huang Y, Duan X, Cui Y, et al. Logic Gates and Computation from AssembledNanowire Building Blocks. Science,2001,294:1313-1317
    [186] Law M, Greene L, Johnson J, et al. Nanowire dye-sensitized solar cells. Nat.Mater.,2005,4:455-459
    [187] Wang K, Chen J, Zhou W, et al. Direct Growth of Highly Mismatched Type IIZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting OxideSubstrates for Solar Cell Applications Adv. Mater.,2008,20:3248-3252
    [188] Huang Y, Duan X, Lieber C. Nanowires for Integrated Multicolor Nanophotonics.Small,2005,1:142-147
    [189] Zheng G, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancermarkers with nanowire sensor arrays. Nat. Biotechnol.,2005,23:1294-1301
    [190] Sun Y K, Thompson S E, Nishida T. Strain Effect in Semicondutors Springer,London,2010,51–135
    [191] Tuma C, Curioni A. Large scale computer simulations of strain distribution andelectron effective masses in silicon100nanowires. Appl. Phys. Lett.,2010,96:193106
    [192] Pistol M E, Gerling M, Hessman D, et al. Properties of thin strained layers ofGaAs grown on InP. Phys. Rev. B,1992,45:3628-3635
    [193] Pistol M E, Pryor C P. Band structure of segmented semiconductor nanowires.Phys. Rev. B,2009,80:035316
    [194] Xiang J, Lu W, Hu Y, et al. Si nanowire heterostructures as high-performancefield-effect transistors. Nature,2006,441:489-493
    [195] Wang X D, Zhou J, Song J H, et al. Piezoelectric Field Effect Transistor andNanoforce Sensor Based on a Single ZnO Nanowire. Nano Lett.,2006,6:2768-2772
    [196] Chen J N, Conache G, Pistol M E, et al. Probing Strain in Bent SemiconductorNanowires with Raman Spectroscopy. Nano Lett.,2010,10:1280-1286
    [197] Chan Y F, Duan X F, Chan S K, et al. ZnSe nanowires epitaxially grown onGaP(111) substrates by molecular-beam epitaxy. Appl. Phys. Lett.,2003,83,2665
    [198] Xiang H J, Wei S H, Silva J D, et al. Strain relaxation and band-gap tunability internary InxGa1-xN nanowires. Phys. Rev. B,2008,78:193301
    [199] Thomas G, Goringe M J. Transmission Electron Microscopy of Materials, Wiley,New York,1979,177-185
    [200] Wang Y G, Zhang Q L, Wang T H, et al. Improvement of electron transport in aZnSe nanowire by in situ strain. J. Phys. D: Appl. Phys.,2011,44:125301
    [201] Poncharal P, Wang Z L, Ugarte D, et al. Electrostatic Deflections andElectromechanical Resonances of Carbon Nanotubes. Science,1999,283:1513-1516
    [202] Jin C H, Wang J Y, Chen Q, et al. In Situ Fabrication and Graphitization ofAmorphous Carbon Nanowires and Their Electrical Properties. J. Phys. Chem. B,2006,110:5423-5428
    [203] Wang Y G, Xia M X, Zou B S, et al. Current-Voltage Characteristics of in SituGraphitization of Hydrocarbon Coated on ZnSe Nanowire. J. Phys. Chem. C,2010,114:12839-12849
    [204] Kaye G W C, Laby T h. Tables of Physical and Chemical Constants, Longman,London,1995,213
    [205] Kasap S, Capper P. Handbook of Electronic and Photonic Materials. Springer,Leipzig,2006,327
    [206] Yu P Y, Cardona M. Fundamentals of Semiconductors. Springer, Berlin,2005,203-225
    [207] Martienssen W, Warlimont H. Handbook of Condensed Matter and MaterialsData. Springer, Heidelberg,2005,669
    [208] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas,illustrations and CASTEP code. J. Phys.: Condens. Matter,2002,14:2717
    [209] Himpsel F J, Hollinger G, Pollak R A. Determination of the Fermi-level pinningposition at Si(111) surfaces. Phys. Rev. B,1983,28:7014-7018
    [210] Viernow J, Henzler M, O’Brien W L, et al. Unoccupied surface states onSi(111)√3×√3-Ag. Phys. Rev. B,1998,57:2321-2326
    [211] Lim J, Thompson S E, Fossum J G. Comparison of Threshold-Voltage Shifts forUniaxial and Biaxial Tensile-Stressed n-MOSFETs. IEEE Electron Device Lett.,2004,25(11):731-733
    [212] Abramson A R, Tien C L, Majumdar A. Interface and Strain Effects on theThermal Conductivity of Heterostructures: A Molecular Dynamics Study. J. HeatTransfer,2002,124(5):963-970
    [213] Swartz E T, Pohl R O. Thermal boundary resistance. Rev. Mod. Phys.,1989,61:605-668

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700