圆截面非晶细丝复合材料微波噪声抑制特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子产品向高频化、数字化及小型化、便携化、集成化的方向发展,电子产品的工作频率已达GHz以上,其元器件密度也越来越高,带来严重的电磁干扰问题,使用噪声抑制材料是解决电子产品中电磁干扰的重要措施之一。高电磁损耗和高电阻率是噪声抑制片的基本要求。含玻璃包覆丝的复合材料在微波范围内不仅具有自然铁磁共振特性,同时还具有介电损耗特性。玻璃包覆非晶丝相对于金属较高的电阻率及外层的绝缘玻璃层使其可以制备高电阻率的复合材料。因此,玻璃包覆非晶丝是优良的噪声抑制材料吸波剂。本论文的目的是研究含圆截面非晶细丝(玻璃包覆非晶丝)复合材料的微波噪声抑制特性,开发高功率损耗、宽频带的新型噪声抑制材料。具体内容如下:
     1、研究了丝材长度、丝材含量、丝材取向、样品尺寸等丝材分布特性指标对含随机分布和含平行分布丝材复合膜噪声抑制特性的影响,找出了最优的丝材长度、丝材含量及丝材取向。结果还表明,样品垂直于微带线方向的尺寸大于等于50mm时,样品尺寸对噪声抑制特性的影响不大。
     2、研究了去除玻璃层、热处理和丝材成分对含圆截面非晶细丝复合膜噪声抑制特性的影响,结果表明去除玻璃层和热处理可以改善复合膜的噪声抑制特性。含Fe基丝材复合膜与含CoFe基丝材复合膜,受随机分布丝材长度、平行分布丝材间隔等指标影响的规律相同。
     3、由含量为30根/cm2、长l0mm随机分布的去除玻璃层后Fe基丝材开发出新型宽频噪声抑制材料,其功率损耗比在1.5GHz至8.5GHz频率范围内功率损耗比大于80%,对噪声的反射在4.8%以下,具有重要的实用价值。
     4、研究了含玻璃包覆丝的“三明治”噪声抑制片的噪声抑制特性,发现添加随机分布丝材使复合噪声抑制片的高功率损耗频带宽度显著增大,此方法有调节和改善传统金属颗粒噪声抑制片性能的应用价值。
     5、由间隔为lmm平行分布制备态Fe基丝材制备出具有高功率损耗特性的复合膜样品,功率损耗比在2.4GHz至8.5GHz频率范围内均大于92%,对噪声的反射在3%以下。
     6、研究了磁场作用对含圆截面非晶细丝复合膜噪声抑制特性的影响,结果表明磁场对某些样品具有显著的影响,且磁场对大部分样品的影响规律相同:施加磁场后产生新的衰减峰,对应的频率随着磁场增大而线性或近似线性地增大。
With development of electronic products towards high-frequency, digital and miniature, portable, multifunctional, the operative frequency of many electronic products has got above GHz. The component density increases continually too, which incur serious electromagnetic interference. Using noise suppression sheet is an important countermeasure for the interference. High electromagnetic loss and high resistivity are primary requirements of noise suppression sheet. The composite containing glass-covered wires show both nature ferromagnetic resonance and dielectric loss in microwave frequency range. The glass-covered amorphous wires could be used to made composites with high resistivity for its high resistivity and insulating glass outlet. So the glass-covered amorphous wires are good candidate materials for noise suppression.
     The goals of this thesis are to investigate noise suppression effect of composites containing circular cross-section amorphous microwires (glass-covered amorphous wires) and to develop novel broadband noise suppression materials. The thesis is organized as follow:
     1、 The influence of distribution characteristics of the wires on the noise suppression effect of the composites containing random distributed or parallel distributed wires were investigated, in where the distribution characteristics include wire length, wire content, wire direction and sample size. The optical wire length, wire content and wire direction are founded out. The results show that the sample size influence noise suppression effect faintly when the sample size perpendicular to the microstrip is not less than50mm.
     2、 The influence of glass-removal, anneal and the composition of the wire on the noise suppression effect of the composite films containing circular cross-section amorphous microwires was investigated. The results show that glass-removal and anneal may improve the noise suppression effect of the composite films. The composite film containing Fe-based wires depends on the length of random distributed wires and on the row distance between parallel distributed wires in the same way as the composite film containing CoFe-based wires.
     3、 A novel broadband noise suppression material with important practical value was developed with random distributed Fe-base wires after glass-removal with the content of30pieces/cm2and with the length of10mm, which power loss was great than80%from1.5GHz to8.5GHz.The noise reflection due to the sample is below4.8%.
     4、 The noise suppression effect of the "sandwich" noise suppression sheet containing glass-covered wires was investigated. It's shown that adding the random distributed wires led to obvious increase of the frequency band with high power loss. This method posse practical value for to adjust and to improve the performance of the traditional metal granular noise suppression sheet.
     5、 A composite film with advantage of high power loss was fabricated with parallel distributed Fe-base wires with the row distance of lmm, which power loss was great than92%from2.4GHz to8.5GHz.The noise reflection due to the sample is below3%.
     6、 The influence of magnetic field on noise suppression effect of the composites containing circular cross-section amorphous microwires was investigated. The results shown that the magnetic field may affect some samples significantly, and the influence obeys the same law for most the samples. A new attenuation peak appears with applied magnetic field, and the frequency of the attenuation peak increases linearly with the increase of the applied field.
引文
1 Taylor G F. A method of drawing metallic filaments and a discussion of their properties and a discussion of their properties and uses. Phys. Rev.,1924,23:655-660
    2 Ulitovsky A V, Prekory T E, Tech. Eksper.,1957,3:115.
    3 Wagner H, J. Wire,1961,6:871.
    4 Wiesner H, Schneider J. Magnetic properties of amorphous Fe-P alloys containing Ga, Ge and As. Phys. Stat. Sol.,1974,26(A):71-75
    5 Gorynin, et al. Method of casting amorphous and microcrystalline microwires, U. S. Pat., US005240066,1993-8-31
    6 Chiriac H, Pop Q Barariu F, et al., J. Appl. Phys.,1994,75:6949.
    7 Chiriac H and Ovari T A, Prog. Mater. Sci.,1996,40:333.
    8 Davis LA, Metallic Glasses, American Society for Metals,1978:190.
    9 Goto T, Trans. Jpn. Inst. Met,1980,21:219.
    10 Chiriac H, Ovari T A, Gh.Pop, Phys. Rev., B 52 (1995) 10104.
    11 Chiriac H, Ovari T A, Marinescu S C, Nagacevschi V, IEEE Trans. Magn.,32 (1996) 4755.
    12 Chiriac H, Ovari T A, J. Magn. Magn. Mater.,249 (2002) 46.
    13 Gonzalez J, Murillo N, Larin V, Barandiaran J M, Vazquez M, Hernando A, Sensors and Actuators A 1997,59:97.
    14 Vazquez M, Zhukov A P, J. Magn. Magn. Mater.,160 (1996) 222.
    15 Cobeno A F, Blanco J M, Zhukov A, Gonzalez J, J. Magn. Magn. Mater,2002, 249:402.
    16 Baranov S A, Larin V S, Torkunov A V, Zhukov A P and Vazquez M, in: Nanocrystalline and Non-crystalline Materials, World Scientific, Singapore,1995: 567.
    17 HumphreyFB, Mohri K, Yamadaki J, Kawamura H, Malmhall R, and Ogasawara J, in Magnetic properties of Amorphous Metals, edited by A. Hernando et al. (Elservier, Amsterdam,1987).
    18 Zhukov A P, Vazquez M, Velazquez J, Chiriac H, and Larin V. J. Magn. Magn. Mater., 1995,151(1-2):132-138
    19 Zhukova V, Usov N A, Zhukov A, and Gonzalez J, Length effect in a Co-rich amorphous wire. Phys, Rev. B,2002,65(13):1344071-7
    20 Mohri K, Kohsawa T, Kawashima K, Yoshida H, Panina L V. Magneto-inductive effect (MI effect) in amorphous wires. IEEE Tran. Magn.,1992,28(5):3150-3152
    21 Shen L P, Uchiyama T, Mohri K, Kita E, and Bushida K. Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire. IEEE Trans. Mag.,1997,33 (5): 3355-3357
    22 Panina L V, Mohri K, Bushida K, and Noda R. Giant magneto-impedance and magneto-inductive effects in amorphous alloys. J. Appl. Phys.,1994,76(10): 6198-6203
    23 Jackson J D. Classical electrodynamics. New York:Wiley,1975,63.
    24 Landau L D, and Lifshitz E M. Electrodynamics of Continuous media. Oxford: Pergamon Press,1975,195-196
    25 Knobel M. Giant magneto-impedance in soft magnetic amorphous and nanocrystalline materials. J. Phys.,1998,8(2):213-220
    26 Makhnovskiy D P, Panina L V. Field dependent permittivity of composite materials containing ferromagnetic wires. J. Appl. Phys.2003,93 (7):4120-4129
    27 Panina L V, Sandacci S I, and Makhnovskiy D P. Stress effect on magnetoimpedance in amorphous wires at gigahertz frequencies and application to stress-tunable microwave composite materials. J. Appl. Phys.,2005,97:013701 1-6
    28 Menard D, Britel M, Ciureanu P, and Yelon A. Giant magnetoimpedance in a cylindrical magnetic conductor. J Appl. Phys.,1998,84 (5):2805-2814
    29 Garcia C, Zhukova V, Ipatov M, Gonzalez J, Blanco J M, Zhukov A. High-frequency GMI effect in glass-coated amorphous wires. J. Allo. Comp.,2009,488:9-12
    30 Vazquez M, Adenot-Engelvin A L. Glass-coated amorphous ferromagnetic microwires at microwave frequencies. J. Magn. Magn. Mater.,2009,321:2066-2073
    31廖绍彬,铁磁学(下册),北京:科学出版社,1998.
    32 Zuberek R, Szymczak H, Gutowski M, Zhukov A, Zhukova V, Usov N A, Garcia K, Vazquez M. Internal stress influence on FMR in amorphous glass-coated microwires. J. Magn. Magn. Mater.,2007,316:e890-e892
    33 Zhukov A, Cobeno A F, and Gonzalez J. Ferromagnetic resonance, magnetic behaviour and structure of Fe-based glass-coated microwires. J Magn. Magn. Mater.,1999,203: 238-240.
    34 Marin P, Cortina D, and Hernando A. High-frequencybehavior of amorphous microwires and its applications. J Magn. Magn. Mater.,2005,290-291:1597-1600.
    35 Baranov S A. Use of a microconductor with natural ferromagneticresonance for radio-absorbing materials. Tech. Phys. Lett.,1998,24 (7):549-550.
    36邸永江,江建军,别少伟,玻璃包覆磁性合金微丝性能研究进展,电子元件与材料,2008,27(1):8-12
    37 Ciureanu P, Akyel C, Britel M, Menard D, and Yelon A. Permeability spectra of permalloy wires at microwave frequencies. Asia Pacific Microwave Conference,1997. 5A01-7
    38 Ciureanu P, Akyel C, Britel M R, Menard D, Melo L G C, Yelon A, Valenzuela R, and Rudkowski P. Study of the complex permeability of amorphous wires using microwave impedance spectroscopy.1999 Asia Pacific Microwave Conference.Piscataway, NJ, USB:1999,876-879
    39 Brunetti L, Coisson M, Tiberto P, Vinai F. Magneto-impedance measurements in amorphous Co-based magnetic wires at high frequency. J. Magn. Magn. Mater.,2002, 249:310-314
    40 Coisson M, Tiberto P, Vinai F, Kane S N. Effect of thermal treatments on the high-frequency magnetic permeability of glass-covered Co83.2Mn17.6Si5.9B3.3 wires. Mater. Sci. Eng. A,2004,375-377:1036-1039
    41 Malliavin M J, Acher O, Boscher C, Bertin F, Larin V S. High-frequency permeability of thin amorphous wires with various anisotropic fields. J. Magn. Magn. Mater.,1999, 196-197:420-422
    42 Deprot S, Adenot A L, Bertin F, Herve E, and Acher O. High Frequency Losses of Ferromagnetic Wires Near the Gyromagnetic Resonance. IEEE Trans. Magn.,2001, 37(4):2404-2406
    43 Deprot S, Adenot A L, Bertin F, Acher O. Frequency response engineering of CoFeNiBSi microwires in the gigahertz range. J. Magn. Magn. Mater.,2002,242-245: 247-250
    44 Malliavin M J, Acher O, Bertin F, Larin V S. High-frequency permeability of thin amorphous wires under an external field. J Magn. Magn. Mater.,2000,215-216: 811-812
    45 Starostenko S N, Rozanov K N, and Osipov A V. Microwave properties of composites with glass coated amorphous magnetic microwires. J. Magn. Magn. Mater.,2006,298: 56-64
    46 Acher O, Adenot A L, and Deprot S. Parallel permeability of ferromagnetic wires up to GHz frequencies. J. Magn. Magn. Mater.,2002,249:264-268
    47刘顺华,电磁波屏蔽及吸波材料,化学工业出版社,2006,北京
    48刘云杰,铁纤维吸波材料等效电磁参数的预测和实验研究,硕士学位论文,电子科技大学,2005
    49刘述章,邱才明,含涂层椭球粒子随机混合媒质的等效电磁参数的计算,应用科学学报,1996,114(1):67-73
    50 Lagarkov A N and Sarychev A K. Electromagnetic properties of composites containing elongated conducting inclusions. Phys. Rev. B,1996,53(10):6318-6336
    51 Lagarkov A N, Matytsin S M, Rozanov K N, and Sarychev A K. Dielectric properties of fiber-filled composites. J. Appl. Phys.,1998,84(7):3806-3814
    52 Liu L, Matitsine S M, and Gan Y B. Effective Permittivity of Planar Composites With Randomly or Periodically Distributed Conducting Fibers. J Appl. Phys.,2005,98: 0635121-7
    53 Reynet O, Adenot A L, Deprot S, and Acher O. Effect of the magnetic properties of the inclusions on the high-frequency dielectric response of diluted composites. Phys. Rev. B,2002,66:094412 1-9
    54 Panina L V. Magnetoimpedance (MI) in amorphous wires:new materials and applications. Phys. Status Solidi. A,2009,206(4):656-662
    55赵爱军,微波频率下薄膜复介电常数和复磁导率的测量方法研究,硕士学位论文,华中科技大学,2003
    56 Agilent Technologies, Agilent Basics of Measuring the Dielectric Properties of Materials, Application Note 5989-2589EN, Jun 2006
    57 Di Y J, Jiang J J, Du G, Tian B, Bie S W, He H H. Magnetic and microwave properties of glass-coated amorphous ferromagnetic microwires. Trans. Nonferrous Met. Soc. China,2007,17:1352-1357
    58邸永江,江建军,别少伟,杜刚,何华辉,玻璃包覆磁性合金微丝复合媒质的微波介电性能,功能材料,2007增刊,38:2981-2983.
    59 Baranov S A. Use of a microconductor with natural ferromagnetic resonance for radio-absorbing materials. Tech. Phys. Lett,1998,24 (7):549-550
    60何璞祯,王自东,张鸿,林国标,Fe基玻璃包覆微丝的吸波性能研究,功能材料,2007增刊,38:2975-2977
    61何璞祯,王自东,王护利,张鸿,李向明,王宪军,侯志坚,玻璃包覆铁基微丝的微波电磁特性,纳米技术与精密工程,2009,7(2):114-118
    62何璞祯,王自东,林国标,张鸿,王宪军,钻基玻璃包覆微丝的电磁性能,磁性 材料与器件,2008,39(1):24-27
    63王春玲,王自东,Ni基玻璃包覆合金微丝的组织与电磁性能分析,磁性材料与器件,2005,36(1):23-31
    64邓联文,江建军,邸永江,何华辉,玻璃包覆铁基合金微丝的微结构与吸波性能,2007,38(7):1179-1181
    65江建军,吴挺华,邸永江,何华辉,玻璃包覆Fe基非晶微丝制备及其微波电磁特性,华中科技大学学报(自然科学版),2007,35(4):57-59
    66 http://arxiv.org/ftp/cond-mat/papers/0312/0312552.pdf
    67 IEC 62333-2:2006(E), Noise suppression sheet for digital devices and equipment-part 2:measuring methods. Geneva, Switzland:International Electrotechnical Commission,2006.
    68 Jabbar M A, Rahman M A. Radio Frequency Interference of Electric Motors and Associated Controls. IEEE Trans. Indu. Appl.,1991,27(1):27-31
    69 MakinoO, Ninqrum E S, Puspitorini O, Siswandari N A, Sesulihatien W T, Shimoshio Y, Tokuda M. Common Mode Current Characteristics in Transmission Line with Common Mode Choke Represented by Two-port Chain Matrix. Proceedings. APCCAS. Asia-Pacific Conference on Circuits and Systems. Piscataway, NJ, USA: IEEE,2002,105-8
    70 Tilley, Frank J. Reducing Radiated Emissions on High Speed! Signal Lines using Common Mode Choke Coils. IEEE International Symposium on Electromagnetic Compatibility. Piscataway, NJ, USA:IEEE,1995,435-43
    71 Giqliotti O V. Ferrite beads, the noise fighters. R. F. Design,1983,6(4):38-46
    72周荷琴,冯雷,郭永刚,用屏蔽珠抑制高频电磁干扰,电子技术应用,1999,(1):46-47
    73 Yoshida S, Sato M, Suqawara E, Shimada Y. Permeability and EMI characteristics of Fe-Si-AI alloy flakes/polymer composite, Journal of the Japan Institute of Metals, 1999,63(2):237-242
    74 Yoshida S, Sato M, Sugawara E, and Shimada Y. Permeability and electromagnetic-interference characteristics of Fe-Si-Al alloy flakes-polymer composite. J. Appl. Phys.,1999,85(8):4636-4638
    75 Ailloor S K, Taniguchi T, Kondo K, Tada M, Nakagawa T, Abe M, Yoshimura M, and Matsushita N. Coupling of MnZn-ferrite films onto electronic components by a novel solution process for high frequency applications. J. Mater. Chem.,2009,19(31): 5510-5517
    76 Ono H, Ito T, Yoshida S, Takase Y, Hashimoto O, and Shimada Y Noble magnetic films for effective electromagnetic noise absorption in the gigahertz frequency range. IEEE Trans. Magn.,2004,40(4):2853-2857
    77王添文,李子森,电磁干扰噪声抑制片应用介绍,装备环境工程,2008,5(1):92-94.
    78 Kuanr B K, Marson R, Mishra S R, Kuanr A V, Camley R E, and Celinski Z J. Gigahertz frequency tunable noise suppressor using nickel nanorod arrays and Permalloy films. J. Appl. Phys.,2009,105:07A520 1-3
    79 Kim K H, Yu J H, Lee S B, Lee S K, Choa Y H, Oh S T, and Kim J. RF conduction in-Line noise suppression effects for Fe and NiFe magnetic nanocomposite. IEEE Trans. Magn.,2008,44(11):3805-3808
    80 Kim S W, Lee J H, Kim Y B, and Lee K S. Attenuation characteristics of near-field electromagnetic noise through microstrip line for magnetic absorbers with different levels of conductivity. J. Appl. Phys.,2008,103:07E733 1-3
    81 Sohn J, Han S H, Yamaguchi M, and Lim S H. Tunable electromagnetic noise suppressor integrated with a magnetic thin film. Appl. Phys. Lett.,2006,89:103501 1-3
    82 Kim S T, Ryu G B, and Kim S S. Conduction noise attenuation by Fe3O4 thin films attached on microstrip line. J. Appl. Phys.,2006,99:08M919 1-3
    83 Sohn J. Han S H, Kim K H, Yamaguchi M, Lim S H. A non-integrated type noise suppressor incorporated with a highly suppressor incorporated with a highly resistive Co-Fe-Al-O thin film on a coplanar waveguide transmission line. J. Magn. Magn. Mater.,2007,311:708-713
    84 Lu G D, Zhang H W, Tang X L. Soft magnetic thin films FeCoHffO for high-frequency noise suppression Applications. Chin. Phys. Lett.,2010,27(9):097501 1-4
    85 Nam B, Choa Y H, Oh S T, Lee S K, and Kim K H. Broadband RF noise suppression by magnetic nanowire-filled composite films. IEEE Trans. Magn.,2009,45(6): 2777-2780
    86 http://multimedia.3m.com/mws/mediawebserver?66666UuZicFSLXTtNxf 5XMXEVuQEcuZgVs 6EVs6E666666--
    87 http://www.nec-tokin.com/english/product/pdf_dl/flex.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700