四针状氧化锌晶须雷达吸波涂层的优化设计与机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息的获取和反获取已成为现代战争中的主要焦点,武器装备隐身化可以显著提高军事效益。雷达吸波材料是隐身材料中发展最快、应用最为广泛的材料,在武器装备外形不改变的情况下,涂敷雷达吸波材料是实现雷达隐身最经济和最有效的方法。因此,雷达吸波材料的优化设计及其吸波机理的分析对于隐身与反隐身技术具有重要意义。
     新型四针状氧化锌晶须(Tetrapod-shaped Zinc Oxide Whisker,简称ZnOw)雷达吸波材料具有附着力强、重量轻、宽频带和吸收强等特点。特殊结构和多种功能的组合,不仅赋予了该材料良好的微波吸收性能,而且使材料表现出优异的综合性能,因此优化设计和吸波机理研究可以直接用于指导该类吸波材料的设计和制备。
     通过对单层雷达吸波涂层的分析可知,吸波材料一般很难在整个频带上满足匹配条件,实际的吸波涂层所要求的宽频带、强吸收,重量轻和厚度薄之间又存在相互矛盾,必须综合考虑设计,才能得到最佳的效果。单层吸波涂层的吸波效果是有限的,对吸波材料的要求相对较严格,对于限定吸波涂层厚度的应用领域很难选择匹配的吸波材料。采用多层雷达吸波涂层将是改善吸波效果,充分利用现有吸波材料资源的一种方法。
     本文采用微遗传算法对以ZnOw为主要成分的多层雷达吸波涂层进行优化设计。在给定最大厚度的情况下,在2~18GHz频率范围内,对于不同频段给定不同吸收率的方案,对多层吸波涂层建立了快速优化设计方法。讨论了吸波涂层的厚度、层数和约束条件对吸收效果的影响。此外,对于不同频段改变给定的吸收率,分析其对于优化结果的影响。
     针对多层雷达吸波涂层的结构特点,提出蚁群算法结合微遗传算法的全新融合算法优化设计方案。在2~18GHz频率范围内,在相同的要求条件下,对多层雷达吸波涂层进行了优化设计。计算结果表明,融合算法获得的解比微遗传算法更为精确。这种融合算法为求解类似的组合约束优化问题提供了一种新的方法。
     全面总结了现有对ZnOw雷达吸波材料的吸波机理的解释,分别在宏观和微观两方面对ZnOw雷达吸波材料的吸波机理的分析提出一些试探性方法,以量子势阱理论解释其在2~18GHz频率范围内对电磁波的吸波机理。
     此外,多层雷达吸波涂层的性能与各层材料的电磁参数及厚度紧密相关。本文针对所得的优化结果,讨论了各层材料电磁参数及厚度误差对于优化结果的影响,特别详细分析了靠近金属衬底的介质层的电磁参数及厚度误差对优化结果的影响。
     最后,简要地介绍了一些目前常用的测量材料电磁参数和吸波涂层性能的实验方法。
     通过本文的研究工作,获得了ZnOw多层雷达吸波涂层的优化设计方法,得到了一些优化结果,同时对其吸波机理也做了相应的分析,这些结果将可用来指导实际雷达吸波涂层的研究与制备。
In the modern warfare, the information capture and the counter-capture have become a main focus, and the stealth of weapon is able to increase the military benefit significantly. The radar absorbing materials (RAM) are growing quickly, and used widely as a stealth material. Without changing the shape of the weaponry, the coating of RAM is the most economical and efficient way to realize the stealth of radar subjects. Therefore, the optimization design of RAM and the analysis of absorbing mechanism have the vital significance for the stealth and anti-stealth techniques.
     A new radar absorbing material (Tetrapod-shaped zinc oxide whisker, or called ZnOw) has many good performances, such as the strong adhesion, the light weight, the broadband, and the strong capacity of absorbing electromagnetic waves. Since the special structure and the multiple functions, ZnOw is not only endowed with good absorbing characteristic in microwave band, but also demonstrated excellent overall performance. Consequently, the optimization of the material and the study of the absorbing mechanism will be help to design and prepare this material.
     Based on the analysis of single-layered radar absorbing coating, we know that it is usually very difficult to satisfy the matched conditions within a frequency band for the RAM. There exist many internal contradictories among the requirements, such as the wideband, the strong absorbing performance, the light weight, and the thin thickness for the actual absorbing coating. In order to obtain the optimal effect, an integrated design is required. The absorbing performance of a single-layered RAM is not good, and the requirements of the RAM are relatively critical. It is very difficult to select a matched RAM for the radar absorbing coating with a limited thickness. Therefore, a multi-layered RAM will be a good choice in order to improve the absorbing effect and to use fully the existing RAM resources.
     In this dissertation, an optimization design is presented for the multi-layered RAM made of ZnOw based on the microgenetic algorithm (MGA). A fast optimization procedure is designed for a given maximum thickness and the different obsorbing performances for several frequency bands within the range of 2~18GHz. The effects of the thickness, the number of layers, and the restrained conditions on the absorbing performance are discussed in detail. In addition, the different obsorptances are specified for the different bands, and the effect on the optimization is analyzed.
     A new optimization procedure combining the ant colony algorithm and the microgenetic algorithm is presented for the multi-layered RAM. The optimization procedure is designed in the several frequency bands from 2GHz to 18GHz for the same requirement. The computed results show that this new hybrid algorithm can obtain a solution being better than that of the microgenetic algorithm, and provides a new approach to solve the similar combinatorial constrained optimization problems.
     The existing theories of the ZnOw RAM's absorbing mechanism are completely summarized, and some exploratory methods analyzing the absorbing mechanism are proposed by the macroscopic and the microscopic respects. The quantum well theory is employed to explain its absorbing mechanism in the several frequency bands from 2GHz to 18GHz.
     Furthermore, the performance of the multi-layered RAM is strongly related to the thickness and the electromagnetic property of the coatings. In this dissertation, the effects of the errors in the electromagnetic parameters and the thickness of the coatings on the absorbing performance of RAM are discussed based on the optimal results, and especially for the dielectric layer nearby the perfect electric conductor bottom.
     Finally, some general experimental techniques to measure the electromagnetic parameters of the material and the performance of the radar absorbing coating are introduced briefly.
     Based on the research work of this dissertation, the optimization technique to design the multi-layered RAM and some optimal results are obtained, and the absorbing mechanism is analyzed as well. All of these results will be a correct guidance for the investigation and preparation of the actual RAM.
引文
[1]邢丽英等.隐身材料[M].北京:化学工业出版社,2004:1-10,43-46,81,176-180.
    [2]胡传忻.隐身涂层技术[M].北京:化学工业出版社,2004:1-30.
    [3]David Lynch Jr.Introduction to RF Stealth[M].SciTech Publishing Inc,2004.
    [4]阮颖铮.雷达截面与隐身技木[M].北京:国防工业出版社,1998.
    [5]王为,程杰,高俊丽,刘学雷.雷达吸波材料的研究现状[J].雷达与对抗.1999,1:30-33.
    [6]王海.雷达吸波材料的研究现状和发展方向[J].上海航天.1999,1:55-59.
    [7]陈益邻,张红霞.新一代隐身飞机用隐身材料[J].中国化学会第二届隐身功能材料学术研讨会论文集,山东,2004.
    [8]Zhou Z,Liu J,Hu C.Studies on the Kinetics Process of ZnO Whiskers' Growth[J].J.Crystal Growth.2005,276:317-320.
    [9]Zhou Z,Chu L,Hu C.Microwave Absorption behaviors of tetra-needle like ZnO whiskers[J].Materials Science &EngineeringB.2006,126(1):93-96.
    [10]Stonier R A.Stealth aircraft & technology from world war Ⅱ to the Gulf[J].SAMPLE Journal.1991.
    [11]陈恩霖.雷达吸波材料与吸波结构[J].现代雷达.1996,18(4):95-104.
    [12]周克省,黄可龙,孔德明,李志光.吸波材料的物理机制及其设计[J].中南工业大学学报.2001,32(6):617-621.
    [13]布文博,徐洁,丘泰.吸波材料基础理论的探讨及展望[J].江苏陶瓷.2001,34(2):1-4.
    [14]Chambers B,Tennant A.Active Dallenbach radar absorber[J].Antennas and Propagation Society International Symposium 2006,IEEE,2006:381-384.
    [15]高正平,董恩昌,华宝家,张立中.电路模拟多层雷达吸波材料的设计[J].宇航材料工艺.1996,3:20-23.
    [16]饶克谨,赵伯琳,高正平.电路模拟吸收材料--原理、特性及设计方法[J].电子科技大学学报.1995,24(2):164-170.
    [17]邢丽英,刘俊能.电阻渐变型结构吸波材料的研究与发展[J].航空材料学报.2000,20(3):187-191.
    [18]Chambers B,Tennant A.Design of wideband Jaumann radar absorbers with optimum oblique incidence performance[J].Electronics Letters.1994,30(18):1530-1532.
    [19]李凡.Jaumann吸波结构的研究[J].航天电子对抗.1994,1:38-40,56.
    [20]Chambers B,Tennant A.Optimised design of Jaumann radar absorbing materials using a genetic algorithm[J].IEE Proc.-Radar,SonarNuvig..1996,143(Ⅰ):23-30.
    [21]吕述平,刘顺华,赵彦波.谐振型吸波材料的理论分析与实验研究[J].材料科学与工程学报.2006,24(1):135-138.
    [22]何华辉,吴明忠,赵振声.多晶铁纤维吸收剂微波电磁参数的各向异性研究[J].物理学报.1999,48增刊:138-143.
    [23]贾宝富,刘述章,林为干.复合铁氧体吸波材料电磁特性的研究[J].电子学报.1991,19(6):99-101.
    [24]赵伯琳,王卓,饶克谨.多向定向铁纤维吸波材料的雷达反射特性研究[J].电波科学学报.2004,19(3):280-285.
    [25]邓联文,江建军,赵振声,何华辉.片状纳米晶微粉的制备及微波吸收特性[J].功能材料与器件学报.2002,8(3):271-275.
    [26]刘顺华,刘军民,董星龙等.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2007.
    [27]张树华.新型雷达吸波材料的发展与应用[J].国防科技.2004,12:25-27.
    [28]彭军,鞠智芹.反雷达隐身技术概述[J].光电技术应用.2003,73(5):18-21.
    [29]贾玉红.飞机隐身技术和隐身材料[J].航空科学技术.1 998,: 20,21,31.
    [30]张卫东,冯小云,孟秀兰.国外隐身材料研究进展[J].宇航材料工艺.2000,3:1-4,10.
    [31]邓雪萍,周瑜芬,熊国宣.导电聚合物与磁性粒子复合吸波材料的研究进展[J].化工新型材料.2007,35(6):5-7.
    [32]Krishna Naishadham.Shielding effectiveness of conductive polymers[J].IEEE Transactions on Electromagnetic Compatibility.1992,34(1):47-50.
    [33]王科伟,许波.新型雷达波吸收材料导电聚合物的研究[J].光电技术应用.2006,21(1):24-27.
    [34]Wong P.T.C,Chambers B,Anderson A.P,Wright P.V.Large area conducting polymer composites and their use in microwave absorbing material[J].Electronics Letters.1992,28(17):1651-1653.
    [35]张卫东,吴伶芝,冯小云,刘剑锋,孟秀兰.纳米雷达隐身材料研究进展[J].宇航材料工艺.2001,3:1-3.
    [36]胡晶磊,汪蓉,周东山,薛奇.左手材料与负折射[J].化学进展.2007,19(5):813-819.
    [37]Mariotte F,retyakov S.A,Sauviac B.Modeling effective properties of chiral composites[J].IEEE Antennas and Propagation Magazine.1996,38(2):22-32.
    [38]徐国亮,罗洁,刘波,蒋刚,朱正和.碳团簇型雷达隐身涂料环境稳定性研究[J].原子与分子物理学报.2003,20(1):103-106.
    [39]周祚万,彭卫明,客绍瑛.ZnO晶须及其树脂基复合材料的研究进展[J].材料导报.1999,13(3):57-59.
    [40]周祚万,胡书春.晶须的特点及其产业化前景分析[J].新材料产业.2002,103(6):18-20,28.
    [41]楚珑晟,周祚万.氧化锌晶须毫米波隐身涂料的研制[J].功能材料.2001,32增刊:836-838.
    [42]朱立群,古璟.薄型多层雷达吸波材料结构设计与发展[J].表 面技术.2007,36(3):49-52,73.
    [43]赵伯琳,饶克谨.展宽雷达涂层吸波材料频带的新方法[J].电子科技大学学报.1994,23(3):264-268.
    [44]李艳,邹黎明,王依民.隐身材料的研究现状与发展趋势[J].合成纤维.2002,31(5):16-18,28.
    [45]Pitman K.C,Lindley M.W,Simkin D,Cooper J.F.Radar absorbers:better by design[J].IEE Proceedings-F,1991,138(3):223-228.
    [46]John,Wallace L.Broadband magnetic microwave absorbers fundamental limitations[J].IEEE Transctions on Magnetics.1993,29(6):4209-4214.
    [47]Bondeson A,Yang Y,Weinerfelt P.Optimization of radar cross section by a gradient method[J].IEEE Transctions on Magnetics.2004,40(2):1260-1263.
    [48]彭智慧,曹茂盛,袁杰,肖钢.雷达吸波材料设计理论与方法研究进展[J].航空材料学报.2003,23(3):58-63.
    [49]吴明忠,刘怀忠.雷达吸波材料的吸波性能预测[J].上海航天.1998,1:21-24.33.
    [50]马东立,武哲.金属目标表面涂覆吸波材料减缩雷达散射截面的研究[J].系统工程与电子技术.1996,18(8):72-76.
    [51]杨尚林,王俊,郑卫,李庆芬.结构吸波材料的设计与性能预报[J].哈尔滨工程大学学报.2003,24(5):544-547.
    [52]夏新仁.雷达吸波材料的隐身效果分析[J].电子对抗技术.2003,18(5):37-40,29.
    [53]甘治平.高效薄层微波吸收涂层材料的计算机优化设计[D].武汉理工大学,硕士学位论文.2002:1-10.
    [54]肖刚.多层吸波材料计算设计及优化研究[D].哈尔滨工程大学,硕士学位论文.2003:1-15.
    [55]曹义,程海峰,周永江,李永清,才鸿年.一种新型结构吸波材料的制备[J].国防科技大学学报.2005,27(1):44-46.
    [56]贾宝富,刘述章,林为干.涂敷型吸波材料电磁特性的预测[J].应用科学学报.1991,9(1):49-54.
    [57]邹田春,赵乃勤,师春生,李家俊.吸波材料吸波性能的计算及其优化设计[J].功能材料.2005,36(7):988-991,995.
    [58]同武勤,凌永顺,蒋金水.雷达材料隐身及效果测试技术分析[J].舰船电子对抗.2005,28(1):25-28.
    [59]王相元,钱鉴,伍瑞新,朱航飞,万和平.微波吸收材料的分块设计方法[J].南京大学学报(自然科学).2001,37(5):625-629.
    [60]程杰,王为.吸波材料的计算机辅助设计[J].雷达与对抗.2000,2:18-25.
    [61]俞集辉,唐翠峰,黄键.用FD-TD法计算吸波涂层的电磁波散射[J].重庆大学学报(自然科学版).1998,21(6):35-40.
    [62]John H.Holland.Genetic Algorithms and Classifier Systems:Foundations and Future Directions[J].Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application,1987:82-89.
    [63]John H.Holland.Genetic Algorithms and the Optimal Allocation of Trials[J].SIAM Journal of Computing.1973,2(2):88-105.
    [64]Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[J].Proceedings of the 1st European Conference on Artificial Life,1991:134-142.
    [65]Dorigo M,Maniezzo V,Colorni A.Ant system:Optimization by a colony of cooperating agents[J].IEEE Transaction on Systems,Man,and Cybernetics-Part B.1996,26(1):29-41.
    [66]Dorigo M,Birattari M,Stutzle T.Ant colony optimization[J].IEEE Computational Intelligence Magazine.2006,1(4):28-39.
    [67]周克省,黄可龙,孔德明,李志光.吸波材料的物理机制及其设计[J].中南工业大学学报.2001,32(6):617-621.
    [68]布文博,徐洁,丘泰.吸波材料基础理论的探讨及展望[J].江苏陶瓷.2001,34(2):1-4.
    [69]高正娟,曹茂盛,朱静.复合吸波材料等效电磁参数计算的研究进展[J].宇航材料工艺.2004,4:12-15.
    [70]葛副鼎,朱静,陈利民.吸收剂颗粒形状对吸波材料性能的影响[J].宇航材料工艺.1996,5:42-49.
    [71]Yoshinaka M,Miyoshil,Askara E,et al.Method of producing zinc oxide whiskers[P].EP,1990,37:89-95.
    [72]Yoshinaka M,et al.Radio wave absorbing material[P].US:5310598,1994.
    [73]Yoshieraka M,Asakurae,Misaki T,et al.Zincoxide whisker shaving ate tetrapod crystalline form and method for making the same[P].EP,1989,32:57-97.
    [74]Motoi K,Takeshi H,Sachiko M.Growth of large tetrapod-like ZnO crystals I experimental considerations on kinetics of growth [J].J.Cryst Growth.1990,102:956-973.
    [75]IwanangaH,FujiiM,TakenchiS.Growth model of tetrapod zinc oxide particle[J].J.Cryst Growth.1993,134:275-280.
    [76]占君,王汉功,查柏林,王国虎.四针状氧化锌_T_ZnO_晶须的研究进展[J].科技进展.2006,7:10-13.
    [77]皮锦红,王章忠.四针状氧化锌晶须的研究现状及应用[J].南京工程学院学报(自然科学版).2004,2(3):1-6.
    [78]周祚万,楚珑晟,雷强.氧化锌晶须在树脂基复合材料中的应用[J].化工新型材料.2001,29(9):45-47,53.
    [79]税安泽,王书媚,刘平安,曾令可,王慧,程小苏.氧化锌晶须的制备及生长机理研究[J].材料导报.2006,20(Ⅶ):124-126.
    [80]曹茂盛,王彪,袁杰,秦世明,崔照霞.单涂层微波吸收材料参量的匹配机制分析[J].纺织高校基础科学学报.1 999,12(2):150-152,180.
    [81]曹莹,丁桂甫.计算机辅助设计在雷达吸波材料中的应用[J].电子工艺技术.2003,24(1):24-26.
    [82]李承祖,陈健华,赵凤章.单层和多层结构电磁波吸收材料电磁参数的优化设计[J].宇航材料工艺.1989,4(5):85-91.
    [83]周永江,程海峰,曹义,陈朝辉,才鸿年.单层雷达吸波材料研 究[J].材料工程.2006,4:8-11.
    [84]王智永,熊克敏,刘俊能,任淑芳,邢丽英,邓龙江.单层薄型双波段雷达吸收涂层的研制[J].航空材料学报.1998,18(1):51-55.
    [85]李承祖,陈健华,赵凤章.电磁波吸收材料电磁参数优化设计中目标函数的构造[J].宇航材料工艺.1989,4(5):91-97.
    [86]王小平,曹立明.遗传算法..理论.应用与软件实现[M].西安:西安交通大学出版社,2002.
    [87]Michalewicz z.演化程序.遗传算法和数据编码的结合[M].周家驹,何险峰译.北京:科学出版社,1999.
    [88]Johnson J.M,Rahmat-Samii Y.Genetic algorithms in engineering electromagnetics[J].IEEE Antennas and Propagation Magazine.1997,39:7-21.
    [89]Weile D.S,Michielssen E.Genetic algorithm optimization applied to electromagnetics:a review[J].IEEE Trans.Antennas Propag..1997,45:343-353.
    [90]Chakravarty S,Mittra R,Williams N.R.Application of a microgenetic algorithm to the dedsign of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics[J].IEEE Trans.Antenna Propag..2002,50:284-296.
    [91]Harik G.R,Lobo F.G,Goldberg D.E.The Compact Genetic Algorithm[J].IEEE Transcations on evolutionary computation.1999,3(4):287-297.
    [92]Chakravarty S.Synthesis of spatial filters and broadband microwave absorbers using micro-genetic algorithms[D].The Pennsylvania State University,Doctor of philosophy.2001.
    [93]Mittra R,Chakravarty S,Yeo J.Application of Micro-Genetic Algorithm(MGA) to a Class of Electromagnetic Analysis and Synthesis Problems[J].IEEE Antennas and Propagation Society International Symposium,2002,1:306-309.
    [94]Chakravarty S,Mittra R.Application of the micro-genetic algorithm to the design of spatial filters with frequency-selective surfaces embedded in dielectric media[J].IEEE Transactions on Electromagnetic Compatibility.2002,44(2):338-346.
    [95]ChakravartyS,MittraR,WilliamsN.R.On the application of the microgenetic algorithm to the design of broad-band microwave absorbers comprising frequency-selective surfaces embedded in multilayered dielectric media[J].IEEE Transactions on Microwave Theory and Techniques.2001,49(6):1050-1059.
    [96]杨儒贵.电磁场与电磁波[M].北京:高等教育出版社,2003.
    [97]甘治平,官建国,邓惠勇,袁润章.用遗传算法设计宽带薄层微波吸收材料[J].电子学报.2003,31(6):918-920.
    [98]Michielssen E,Sajer J.M,Ranjithan S,Mittra R.Design of lightweight,broadband microwave absorbers using genetic algorithms[J].IEEE Trans.Microwave Theory Tech.1993,41:1024-1031.
    [99]Mosallaei H,Rahmat-Samii Y.RCS reduction in planar,cylindrical,and spherical structures by composite coatings using genetic algorithms[J].IEEE Antennas and Propagation Society International Symposium,1999,1:438-441.
    [100]Mosallaei H,Rahmat-Samii Y.RCS reduction of canonical targets using genetic algorithm synthesized RAM[J].IEEE Transactions on Antennas and Propagation.2000,48(10):1594-1606.
    [101]BajwaA,Williams T,StuchlyM.A.Design of broadband radar absorbers with genetic algorithm[J].IEEE Antennas and Propagation Society International Symposium,2001:672-675.
    [102]Hosung Choo,Hao Ling,Charles S.Liang.Shape Optimization of Corrugated Coatings Under Grazing Incidence Using a Genetic Algorithm[J].IEEE Transactions on Antennas and Propagation.2003,51(11):3080-3087.
    [103]Weile D.S,Michielssen E,Goldberg D.E.Genetic Algorithm Design of Pareto Optimal Broadband Microwave Absorbers[J].IEEE Transactions on Electromagnetic Compatibility.1996,38(3):518-525.
    [104]袁杰,肖刚,曹茂盛.用遗传算法计算设计多薄层雷达吸波材料的程序实现技术[J].材料工程.2005,6:13-16,40.
    [105]李士勇.蚁群算法及其应用[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [106]段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2005.
    [107]段海滨,王道波,于秀芬.蚁群算法的研究进展评述[J].自然杂志.2006,2 8(2):102-105.
    [108]张纪会,徐心和.一种新的进化算法--蚁群算法[J].系统工程理论与实践.1999,19(3):84-87.
    [109]Dorigo M,Gambardella L.M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation.1997,1(1):53-66.
    [110]杨剑峰,蒋静坪.蚁群算法及其在组合优化问题中的应用[J].科技通报.2006,22(4):553-556.
    [11]段海滨,王道波.一种快速全局优化的改进蚁群算法及仿真[J].信息与控制.2004,33(2):241-244.
    [112]薛莉,戴居丰,魏志成.双信息素蚁群算法及其在TSP中的应用研究[J].计算机仿真.2007,24(8):167-170,181.
    [113]颜晨阳,张友鹏,熊伟清.一种新的蚁群优化算法信息素更新策略及其性能分析[J].计算机应用研究.2007,24(7):86-91.
    [114]Bonabeau E,Dorigo M,Theraulaz G.Inspiration for optimization from social insect behavior[J].Nature.2000,406(6):39-42.
    [115]Michael J.B.K,Jean-Bernard B,Laurent K.Ant-like task and recruitment in cooperative robots[J].Nature.2000,406(31):992-995.
    [116]Gutjahr W.J.generalized convergence result for the graph based ant system[J].Technical Report 99-09.Dept.of Statistics and Decision Support Systems.University of Vienna,Austria,1999.
    [117]Gutjahr W.J.A graph-based ant system and its convergence[J].Future Generation Computer Systems.2000,16(8):873-888.
    [118]St(u|¨)tzle T,Hoos H.The MAX-MIN ant system and local search for the traveling salesman problem[J].Proc.IEEE International Conference on Evolutionary Computation.1997,309-314.
    [119]段海滨,马冠军,王道波,于秀芬.一种求解连续空间优化问题的改进蚁群算法[J].系统仿真学报.2007,19(5):974-977.
    [120]陈烨.用于连续函数优化的蚁群算法[J].四川大学学报(工程科学版).2004,36(6):117-120.
    [121]陈烨.变尺度混沌蚁群优化算法[J].计算机工程与应用.2007,43(3):68-70.
    [122]寇晓丽,刘三阳,张建科.一种随机蚁群算法求解连续空间优化问题[J].系统工程与电子技术.2006,28(12):1909-1911.
    [123]余玲,刘康,李开世.蚁群算法的连续空间算法研究[J].机械设计与研究.2006,22f2):6-8,12.
    [124]杨勇,宋晓峰,王建飞,胡上序.蚁群算法求解连续空间优化问题[J].控制与决策.2003,18(5):573-576.
    [125]杜呈欣,陈小强,熊伟清.用于求解函数优化的蚁群算法设计[J].计算机工程与应用.2007,43(2 5):57-59,158.
    [126]Bilchev G.A,Parmee I.C.The ant colony metaphor for searching continuous design spaces[J].Lecture Notes in Computer Science.1995,993:25-39.
    [127]高尚,钟娟,莫述军.连续优化问题的蚁群算法研究[J].微机发展.2003,13(1):21-22.
    [128]Pourtakdoust S.H,Nobahari H.An Extension of Ant Colony System to Continuous Optimization Problems[J].ANTS Workshop.2004:294-301.
    [129]张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策.2005,2:51-54,59.
    [130]段海滨,王道波,于秀芬.蚁群算法的研究现状及其展望[J].中国工程科学.2007,9(2):98-102.
    [131]张志民,张小娟,李明华,胡小兵.一种引入奖励与惩罚机制的蚁群算法[J].计算机仿真.2006,23(7):161-163.
    [132]段海滨,王道波.蚁群算法的全局收敛性研究及改进[J].系统工程与电子技术.2004,26(10):1506-1509.
    [133]黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报.2007,30(8):1344-1353.
    [134]詹士昌,徐婕.用于多维函数优化的蚁群算法[J].应用基础与工程科学学报.2003,11(3):223-229.
    [135]Dorigo M,Bonabeau E,Theraulaz G.Ant algorithms and stigmergy[J].Future Generation Computer Systems.2000,16(8):851-871.
    [136]St(u|¨)ezle T,DorigoM.A short convergence proof for a class of ant colony optimization algorithms[J].IEEE Transactions on Evolutionary Computation.2002,6(4):358-365.
    [137]Yoo J.H,LaR.J,MakowskiA.M.Convergence results for ant routing[J].Technical Report CSHCN 2003-46.Institute for Systems Research,University of Maryland,2003.
    [138]殷之文.电介质物理学[M].第二版.北京:科学出版社,2003.
    [139]周祚万,楚珑晟,刘世楷,顾利霞.四针状ZnOw的微波吸收及微波-热转换特性研究[J].功能材料.2002,33(1):55-59.
    [140]黄婉霞,陈家钊,毛健,涂铭旌.氧化锌形态及含量对ZnONi-Zn 铁氧体复合材料电磁特性的影响[J].功能材料与器件学报.1997,3(4):259-262.
    [141]楚珑晟,周祚万.氧化锌晶须电磁波吸收性能研究[J].功能材料.2006,37(1):47-49,53.
    [142]刘建华,孙杰,李松梅,陈冬梅.四脚状氧化锌晶须的微波电磁性能[J].复合材料学报.2003,20(6):121-124.
    [143]周祚万,刘世楷,顾利霞.四针状ZnOw/树脂基复合材料导电性能的研究[J].功能材料.2001,32(5):492-495.
    [144]李黎明,徐政.吸波材料的微波损耗机理及结构设计.现代技术陶瓷.2004,2:31-34.
    [145]赵灵智,胡社军,李伟善,何琴玉,陈俊芳,汝强.吸波材料的吸波原理及其研究进展[J].现代防御技术.2007,35(1):27-31,48.
    [146]杨儒贵主编.高等电磁理论[M].北京:高等教育出版社,2008
    [147]Sihvola A.H,KONG J.A.Effective permittivity of dielectric mixtures[J].IEEE Transactions on Geoscience and Remote Sensing.1988,26(4):420-429.
    [148]Christian B,Philippe T.Effective Permittivity of Nanocomposite Powder Compacts[J].IEEE Transactions on Dielectrics and Electrical Insulation.2004,11(5):819-832.
    [149]Viktor M.C,Christian B.Effective Permittivity of Random Inhomogeneous Media[J].2004 International Conference on Solid Dielectrics,Toulouse,Fronce,2004.
    [150]K(a|¨)rkk(a|¨)inen K.K,Sihvola A.H,Nikoskinen K.I.Effective Permittivity of Mixtures:Numerical Validation.by the FDTD Method[J].IEEE Trans.Geosci.Remote Sensing.2000,38..1303-1308.
    [151]K(a|¨)rkk(a|¨)inen K.K,Sihvola A.H,Nikoskinen K.I.Analysis of a Three-dimensional Dielectric Mixture with Finite Difference Method[J].IEEE Trans.Geosci.Remote Sensing.2001,39:1013-1018.
    [152]刘述章,邱才明,林为干.羰基铁类随机混合吸波材料等效电磁参数的计算[J].电子学报.1994,22(9):104-107.
    [153]刘述章,邱才明.含涂层椭球粒子随机混合媒质的等效电磁参数的计算[J].应用科学学报.1996,14(1):67-72.
    [154]邱才明,刘述章,林为干.含强散射体的随机混合媒质的等效电磁参数[J].电子学报.1993,21(6):6-13.
    [155]饶克谨,赵伯琳,高正平.吸波纤维层板的等效电磁参数研究 [J].隐身技术.1999,3:2-5.
    [156]贾宝富.强扰动随机媒质的等效介电常数和等效导磁率[J].电波科学学报.1990,5(2):28-34.
    [157]赵凤章,李承祖.导体颗粒与电介质混合物等效介电常数的近似理论[J].宇航材料工艺.1992,3:20-28.
    [158]刘云杰.铁纤维吸波材料等效电磁参数的预测和实验研究[J].电子科技大学,硕士论文.2005:5,6.
    [159]Maxwell-Garnett J.C.Colours in metal glasses and metal films [J].Trans.of theRoyal Society.1904,CCIII:385-420.
    [160]Bruggeman D.A.G.Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,I[J].Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen.Annalen der Physik.1935,24:636-664.
    [161]黄志洵.电磁场的量子化及有关科学问题[J].自然杂志.1999,21(5):252-257.
    [162]杨泽森.高等量子力学[M].第三版.北京:北京大学出版社,2007.
    [163]张永德等.物理学大题典量子力学[M].北京:科学出版社,2005:355-356.
    [164]Weir W.B.Automatic measurement of complex dielectric constant and permeability at microwave frequencies[J].Proceedings of the IEEE.1974,62:33-36.
    [165]李金海.误差理论与测量不确定度评定[M].北京:中国计量出版社,2007.
    [166]BennettJ.C,ChambersB.Criteria for testing the performance of microwave absorbing materials[J].Advances in the Direct Measurement of Antenna Radiation Characteristics in Indoor Environments,IEE Colloquiumon.1989:8/1-8/3.
    [167]Walter B.A Broad-Band,Automated,Stripline Technique for the Simultaneous Measurement of Complex Permittivity and Permeability[J].IEEE Transactions on Microwave Theory and Techniques.1986,34(1):80-84.
    [168]Munoz J,Rojo M,Parreno A,Margineda J.Automatic measurement of permittivity and permeability at microwave frequencies using normal and oblique free-wave incidence with focused beam[J].IEEE Transactions on Instrumentation and Measurement.1998,47(4):886-892.
    [169]甘路洋,华伟,黄卡玛,张国俊.基于GA和开槽同轴线的溶液复介电系数测量方法研究[J].四川大学学报(自然科学版).2007,44(3):573-577.
    [170]Tantot O,Chatard-Moulin M,Guillon P.Measurement of complex permittivity and permeability and thickness of multilayered medium by an open-ended waveguide method[J].IEEE Transactions on Instrumentation and Measurement.1997,46(2):519-522.
    [171]KamareiM,DaoudN,SalazarR,BouthinonM.Measurement of complex permittivity and permeability of dielectric materials placed on a substrate[J].Electronics Letters.1991,27(1):68-70.
    [172]赵常青,李世智.电磁材料和复介电常数和复磁层率的空间标量测量方法[J].微波学报.1997,13(1):26-32.
    [173]卢荣润.复介电常数与导磁率的自动扫频测量[J].宇航计测技术.1991,3:23-28.
    [174]赵爱军,张秀成,张凌,何华辉.波导法测量有衬底介质复介电常数和复磁导率[J].华中科技大学学报(自然科学版).2002,30(11):41,42,68.
    [175]吴明忠,姚熹,张良莹.同轴探头法测量片状介质材料的微波介电常数[J].压电与声光.2001,23(1):63-67,84.
    [176]郭权国.射频吸波材料拱形法测试系统的研制[D].东南大学,硕士论文.2005.
    [177]郭芳,胡楚锋,李南京.雷达吸波材料反射率远场测试方法研 究[J].计算机测量与控制.2007,15(7):931-932.
    [178]程启炜,张麟兮.吸波材料特性的测试及其改进[J].电子测量技术.2007,30(9):25-27,86.
    [179]景莘彗,蒋全兴.电波暗室用吸波材料反射系数的测试方法[J].测试与测量.2002,5:1-4.
    [180]娄国伟,李兴国,汪敏.毫米波涂层隐身材料吸波性能的测试研究[J].红外与毫米波学报.2000,19(4):318-320.
    [181]赵京城,薛明华,王振荣.暗室用吸波材料大入射角吸波特性测试方法研究[J].微波学报.2001,17(4):72-75,91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700