高强水泥基复合材料雷达波吸收性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达探测技术的进步,促使军事领域对高质、宽频且低成本的雷达吸波材料的需求不断增加。军事掩体、公路、大桥等建筑为重点的军事防护对象,采用高强、价格低廉的水泥基复合吸波材料,使上述建筑对雷达隐身,对军事防护工程具有重要意义。为此,本文从材料的电磁性能、微观结构、理论计算及结构设计等方面开展了对高强水泥基复合吸波材料的研究。
     针对目前水泥基复合吸波材料强度较低的情况,本文首先研制了剔除粗骨料的高强水泥基材料。以紧密堆积理论计算为基础,结合力学性能试验,确定高强水泥基材料的基本配合比并成型试件。采用四电极法测量试件电阻率,得到该材料导电性属于半导体的范围。为掌握该水泥基材料对雷达波反射率的基本规律,分别研究了不同水胶比、厚度对试件的雷达波(2~18GHz)反射率的影响。结果得到:水胶比改变,对材料雷达波反射率的影响不大;厚度增加,材料雷达波反射率降低。为更深入了解水泥基材料吸波原理,根据水泥基材料的电磁参数,采用单层吸波材料雷达波反射率公式,模拟不同厚度水泥基材料的吸波性能并与实测值进行对比。
     采用电损耗吸波材料(如超细钢纤维、石墨)和磁损耗吸波材料(如铁氧体)分别与水泥基材复合,研究各种吸波材料的掺量和厚度对水泥基复合材料雷达波吸收性能的影响。试验表明:电损耗吸波材料有利于提高水泥基材高频段吸波性能,磁损耗材料有利于改善水泥基材料低频段吸波性能,但水泥基复合材料存在厚度和阻抗相匹配的问题。为进一步明确水泥基复合材料的吸波机理,通过预设水泥基复合材料在S~Ku(2~18GHz)的全频段内吸波值,进行优化水泥基复合材料电磁参数的计算。计算结果表明:吸波值越大,复合材料的介电常数的虚部值与磁导率虚部值应越大,且电损耗角正切值与磁损耗角正切值越接近。
     通过分析谐振材料的吸波原理,选取适合掺入水泥基材,具有孔穴、空腔结构的沸石粉、粉煤灰漂珠及闭孔珍珠岩(玻化微珠)作为谐振材料与水泥基材复合,研究复合材料的雷达波吸收规律。在此基础上,采用石墨、铁氧体分别与漂珠、珍珠岩以混掺和表面涂挂的方式复合,比较两种方法对水泥基材料吸波性能的改善效果。结果得到:铁氧体涂挂珍珠岩的复合方式在S~Ku(2~18GHz)内均提高了水泥基复合材料的吸波性能,且-8dB的频段宽达14GHz。微观结构研究表明闭孔珍珠岩是连续釉化面与特殊蜂窝结构的相间分布的类球型颗粒、内部含有大量空腔。与吸波材料涂挂复合时,吸波材料在珍珠岩表面及空腔内均匀分散,形成了性能良好的谐振吸波体。该谐振体与水泥基材料复合,可有效的拓宽水泥基材料的吸波带宽。
     综合上述研究,本文最后设计不同功能层,可形成整体组合结构的3层结构水泥基复合材料。根据“透、吸、散”的原则,确定分别以钢纤维、铁氧体水泥基复合材料为底层的2类3层结构。改变面层和中间层的吸波材料种类,研究各组试件的雷达波反射率。试验得到:沸石粉+水泥基材料/石墨涂挂珍珠岩+水泥基材料/钢纤维+水泥基材料的3层组合结构在X~Ku波段,吸波值均在10dB以上,即该结构的水泥基复合材料对X~Ku整个波段均具有隐身作用。
With advances in the radar detection technology, demand for high quality, broadband and low-cost radar absorbing materials has been increasing in the military field. Military bunkers, roads, bridges and so on, are the key military to-be protected objects. It is of great significance to defense protection works that the above-mentioned infrastructures were made stealth using high-strength and low price cement-based radar absorbing composites. Therefore, high strength cement-based absorbing composites are studied regarding with electromagnetic properties, microstructure, theoretic calculation and structural design and so on in this paper.
     In view of the lower strength of cement-based absorbing composite, high strength cement-based materials excluding coarse aggregate were first prepared in the paper. The basic mix proportion of the high strength cement-based materials were determined based on the dense packing theoretical calculations and mechanical property test, and then the specimen was prepared according to the mix proportion. The conductivity belonging to the semiconductor scope of the specimen was obtained by a four-electrode measurement. In order to master the basic law of reflectivity of the cement-based materials, the influence of different water-binder ratio and thickness on the specimen radar (2~18GHz) reflectivity was investigated respectively. The results show that the change of water-binder ratio has little effect on the reflectivity of radar, but the radar reflectivity reduces as the thickness of specimen increases. To further investigate the absorbing principle of cement-based materials, the absorbing properties of cement-based materials, based on their electromagnetic parameters, were simulated by using radar reflection formula of single-layer absorbing materials and then were compared with the measured values.
     Using electrical loss absorbing materials (such as ultra-fine steel fiber, graphite) and magnetic loss absorbing materials (such as ferrite) compound with the cement-based materials respectively, the effect of dosage of the absorbing materials and thickness on absorption performance of cement-based composites was investigated respectively. The test results indicate that the electrical loss absorbing materials are beneficial to improve the absorbing properties of the cement matrix in high frequency bands and the magnetic materials are beneficial to improve ones in low frequency bands, but there exist the matching problems of thickness and impedance for the cement-based composites. To further clarify the absorbing mechanism of the cement-based composites, their electromagnetic parameters were optimized through presetting the absorbing value of the cement-based composites in S~Ku(2~18GHz). The results suggest that the larger the absorbing value is, the greater the required imaginary part of dielectric permittivity and magnetic permeability are, and the closer electric loss tangent and magnetic loss tangent are.
     Through analyzing absorbing mechanism, the materials with cavity structure such as zeolit powder, fly ash floating beads and closed cell perlite (vitrified microsphere),were selected as resonant materials to mix into the cement-based materials and then the law of radar absorption of the composites was studied. On this basis, fly ash floating beads and closed cell perlite were combined, respectively, with graphite and ferrite by mixing and coating ways, and then it was compared of the improvement effect on radar absorbing of cement-based materials of the two approaches. Results show that the way of coating perilte with ferrite increases absorption of the composites in the frequency rang of S~Ku (2~18GHz) and the bandwidth of -8dB of the composites reaches 14GHz. Microstructure studies show that the perlite is the similar spherical-type particle in which continuous glaze surface and special honeycomb structures distribute alternately and contains a large number of cavity. When using the absorbing materials to coat the perlite, the absorbing materials distributed uniformly on its surface and in its cavity, formed the good performance resonant absorber, and broadened the absorbing bandwidth of cement-based materials effectively after being mixed into the cement-based materials.
     Summarizing the above studies, three-layer structure, which can be combined to form the unitary structure, of cement-based composites including the different functional layers was designed in the paper at last. According to the principle of“Transmission, absorption and scattering”, the ultra-fine steel fiber or ferrite cement-based composite was used as the bottom of three-layer structures, the absorbing material types in the surface layer and middle layer were changed, and then the reflectivity of the three-layer structure composite was researched. It shows that the absorbing value of the composite of three-layer structure, namely zeolit powder + cement-based material/perlite coated by graphite + cement-based material/steel + cement-based material, are more than 10dB in the frequency range of X~Ku. Therefore, the composites with three-layer structure have stealth role in the whole frequency range of X~Ku.
引文
1李侠.现代雷达技术.北京兵器工业出版社. 2000:1~13
    2孟超,高燕,于淼.城市电磁波辐射污染的产生与危害.安全. 2005,(5):30~33
    3张波,葛强胜.桥梁的雷达隐身和模拟方法探讨.国防交通工程与技术. 2005,(4):20~23
    4张云龙,卢春兰,曹宜森.军用计算机电磁信息安全与防护.装备环境工程. 2008,5(1):69~72
    5贾治勇.新时代的发展需要屏蔽混凝土电磁防护混凝土之一屏蔽混凝土.中国建材科技. 2001, 5:40-41
    6王韬,任超西,谷京朝.民用雷达实现的桥梁防撞系统设计.现代电子技术. 2003,165(8):39~42
    7邱荣钦.雷达技术的发展.中国电子科学研究院学报. 2005:(3)1~6
    8保铮,邢孟道,王彤.雷达成像技术.电子工业出版社, 2005:45~47
    9杨红娟.雷达隐身与反隐身技术的发展与现状.火控雷达技术. 2002,31 (6):67~72
    10阮颖铮.雷达散射截面.电子工业出版社, 1988:2~3
    11赵清荣.雷达隐身涂料的发展现状.雷达与对抗. 2001,(3):20
    12 Nedkow I, Petrov A. Microwave absorption in SC and CoTi substituted Ba hexaferrite powders. IEEE Transactions on magnetic. 1990,26:1483
    13 Varadan V K .et al. Measurement of electromagnetic of chiral composite materials in the rage 8-40GHz rang. Radio Science. 1994,29(1):9~12
    14刘焕松.探索军品隐身包装.中国包装. 2000,5:67~70
    15 David A., Lockheed matins touts JSF stealth improvements. Aviation & Space Technology Week. 2001,38(8):27
    16王小漠,张光义.雷达与探测.国防工业出版社. 2000:18
    17 Schurig D, Mock J J, Justice B J, et a1. Metal material electromagnetic cloak at microwave frequencies. Science. 2006,314(12):977~980
    18张卫东,冯小云,孟秀兰.国外隐身材料研究进展.宇航材料工艺. 2000, 3:2~3
    19张卫东,冯小云,孟秀兰.国外隐身材料研究进展.宇航材料工艺. 2000,3:1~4
    20阎鑫,胡小玲,岳红,等.雷达波吸收剂的研究进展.材料导报. 2001,(1):62~64
    21 Cao M S, Qin R, Qiu C J, Zhu J. Matching design and mismatching analysis towardsradar absorbing coatings based on conducting plate. Material and Design. 2003, 24(5):391~396
    22扬春.国外火炮定位雷达的现状和发展趋势.现代防御技术. 2005,(2):52~57
    23阳曙光,张林,王东祁.国外机载地面监视系统的现状及发展趋势.飞航导弹. 2006,(12):12~16
    24李峥.机载雷达告警技术发展趋势.电子信息对抗技术. 2008,23(5):51~56
    25 Amano M, Kotsuka Y. A method of affective use of ferrite for microwave absorbers.IEEE Trans. Microwave Theory. 2003,51(1):238~245
    26张树华.新型雷达吸波材料的研究与应用.军事技术. 2004,15(12):24~27
    27孟新强.国外雷达隐身和红外隐身技术的发展动向与分析.飞航导弹. 2005,12(7):8
    28 Hirata A, Matsuyama S, Shiozawa T. Temperature rises in the human eye exposed to EM waves in the frequency range 0.6-6 GHz. IEEE Trans. on Electromagnetic Compatibility. 2000,42(4): 386~92
    29韩磊,王自荣.雷达隐身与反隐身技术.雷达隐身与反隐身技术. 2006,29(2):34~39
    30陈新能.美空军远程打击能力的发展.航空杂志. 2006,23(6):61~64
    31刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料.化学工业出版社, 2007:24~78
    32范黎明,朱莹. F-35飞机电子装备技术浅析.空军装备. 2006,(10):59
    33江山.英国的机载地面监视雷达系统飞机.国际航空. 2002,(6):10~15
    34常明,何青,李贤明.美军航空装备发展一瞥.空军装备. 2006,34(10):61~62
    35周梁.隐身技术的发展趋势.国外科技动态. 2001,2:28
    36果海林.雷达在气象、卫星、探地领域中的应用.雷达与对抗. 1993,(2):23~25
    37付伟.雷达无源干扰技术及其应用.空载雷达. 2002,(1):5~9
    38熊国宣,邓敏,徐玲玲.隐身材料和隐身混凝土的研究现状与趋势.功能材料与器件学报. 2003,9(4):486~487
    39朱红绊,王茂林,王敬.抗等离子体隐身的探讨.雷达与对抗. 2003,(2):56
    40邢丽英.隐身材料.化学工业出版社, 2004,5:3~105
    41杨晓蓉,杨立明,戴国宪.从F-117A看雷达截面外形隐身技术.光电技术应用. 2004,7(1):7~9
    42黄小忠,冯春祥,李效东,等.一种新型的Ba-M型铁氧体磁性涂层吸波碳纤维研制.新型碳材料. 1999,14(4):72
    43 Vladimir B. Bregar. Advantages of ferromagnetic nanoparticle composites inmicrowave absorbers. IEEE Transactions on Magnetics. 2004,40(3):1679~1684.
    44梁百川.有源隐身技术研究.舰船电子对抗. 2004,27(1):3~8
    45陈珂.雷达隐身材料技术研究.现代防御技术. 2005,(2):58-61
    46孟新强.国外雷达隐身和红外隐身技术的发展动向与分析.飞航导弹. 2005,12(7):8
    47孟新强.国外雷达隐身和红外隐身技术的发展动向与分析.飞航导弹. 2005,12(7):8
    48邢丽英,刘俊能,任淑芳.短碳纤维电磁特性及其在吸波材料中的应用研究.材料工程. 1998,(1):19
    49王海泉.钛化物复合纤维的制备及其在吸波材料中的应用.华侨大学.硕士学位论文. 2004:33~40
    50郭伟凯,李家俊,赵乃勤,等.纤维型雷达隐身吸波材料的研究进展.宇航材料工艺. 2003,(6):12
    51赵东林,沈曾民,迟伟东.炭纤维及其复合材料的吸波性能和吸波机理新型炭材料. 2001,(16):66
    52李湘洲,王伟.碳纤维增强混凝土的现状与趋势.混凝土. 2000,10(8):31~33
    53吴明忠.多晶铁纤维吸收剂微波复磁导率和复介电常数的理论计算.功能材料. 1999,30(1):91~93
    54张晏清.纳米钡铁氧体的柠檬酸盐法制备与吸波性能.同济大学学报. 2004, 32(4):208~212
    55方以坤,汪忠柱,方庆清.纳米级六角晶系M型铁氧体微波吸收性的研究.功能材料. 2001,32(4):370
    56方以坤,汪忠柱,方庆清.纳米级六角晶系M型铁氧体微波吸收性的研究.功能材料. 2001,32(4):370
    57 Sun G C, Yao K L, Liao H X, et al. Microwave absorption characteristics of chiral materials with Fe3O4-polyaniline composite matrix. INT J Electronics. 2000,97(6):735~740
    58 Tennant A, Chambers B.A. Single-Layer tuneable microwave absorber using an active FSS. IEEE Microwave and Wireless Letters. 2004,14(1):46~47
    59 Zhao L C et al. The interface structure and stability of deformation-induced marten site in Ni-Ti-Nb alloy with wide hysteresis displace phase transformations and their applications in materials engineering. The Minerals Metal & Materials Society. 1998:93~100
    60许卫东,张豹山,史莹冰,等.铁氧体水泥基微波吸收复合材料的初步研究.兵器材料科学与工程. 2003,26(6):6~9
    61 Sun G C, Yao K L, Liao H X, et al. Microwave absorption characteristics of chiral materials with Fe3O4-polyaniline composite matrix. INT J Electronics. 2000,97(6):735~740
    62康青.新型微波吸收材料.科学出版社, 2006:34~207
    63郭树旭,范薇,宋宁华.双涂层纳米复合材料的微波吸收性能.光电对抗与无源干扰. 1999,(2):13~15
    64张增富,罗国华,范壮军.不同结构碳纳米管的电磁波吸收性能研究.物理化学学报. 2006,22(3):296~300
    65康青.手性吸波混凝土研制与展望.材料导报. 2005,19(4):74~7
    66 Djermoun A, de Lustrac A, Gadot F, et al. Design and characterization of a controllable left-handed material at microwave frequencies. European Microwave Conference. 2005:917~920
    67 Charfes B E, Eric J B, et al. Microwave Absorber Employing Acicular Magnetic Metallic Filaments. Us. Patent, No.5085931, 1992
    68 Tennant A, Chambers B. Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface. Smart Material Structure. 2004,13(12):122~125
    69 Wu L Z, Ding J, Jiang H B, et al. Particle size influence to the microwave properties of iron based magnetic particulate composites. Magnetic Materials. 2005,285(2):233~239
    70毛倩瑾,于彩霞,葛凯勇,等.粉煤灰空心微珠的改性及其吸波特性.清华大学学报(自然科学版). 2005,45(12):1672~1676
    71张晏清.纳米钡铁氧体的柠檬酸盐法制备与吸波性能.同济大学学报. 2004, 32(4):208~212
    72周馨我.功能材料学.北京理工大学出版社, 2002:240~242
    73曾祥云,李家俊,师春生.碳纤维在电磁功能复合材料中的应用.材料导报. 1998,(2):64
    74 Dhawan S K, Singh N, Rodrigues D. Electromagnetic shielding behaviour of conducting polyaniline composites. Science and Technology of Advanced Materials. 2003,(4):105~113
    75高焕方,陈农,张捷等.吸波涂料的研究现状.表面技术. 2003,32(5):1~3
    76邢丽英,刘俊能,任淑芳.短碳纤维电磁特性及其在吸波材料中的应用研究.材料工程. 1998,(1):19
    77吴键,牟启初,李兵.吸波结构材料研究试验分析.表面技术. 2003,32(6):68
    78葛副鼎,朱静,陈利民.单层及双层手性吸波材料的计算机辅助设计.功能材料. 1996,27(2):143
    79 Park K Y, Lee S E , Kim C G. Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Composites Science and Technology. 2005,66:576~584
    80娄明连,阚涛.铁氧体多层结构电波吸收体的研究.安徽大学学报. 1999, 23(2):34~38
    81 Kimura K, Hashimoto O. Three-layer wave absorber using common building material for wireless LAN. Electronics Letters. 2004,40(21):1323~1324
    82赵振声,张秀成,聂彦,何华辉.多晶铁纤维吸波材料的微波磁性研究.磁性材料及器件. 2000,31(1):18
    83 Vladimir B B. Advantage of ferromagnetic nanoparticle composites in microwave absorbers. IEEE Trans. Magnetic. 2004,40(3):1679~1684
    84 Varadan V K .et al. On the possibility of designing antireflection coatings using chiral composites. Wave-Material Interaction. 1987,2(1):71~81
    85 Zhang B S, Lu G, Feng Y, et al. Electromagnetic and micro-wave absorption properties of alnico powder composites. Magnetic Materials. 2006,299(1):205~210
    86葛俊祥,李玉星.大型微波暗室电磁特性的理论分析与设计.电子学报. 1996, 24(12):4
    87窦丹若.建筑空间的电磁辐射和建筑吸波材料.中国非金属矿工业导刊. 2004,43(5):21~24
    88张雄,习志臻.建筑吸波材料及其开发利用前景.建筑材料学报. 2003,6(1):72~76
    89赵清荣.电磁屏蔽混凝土与人防工程建设.人防科研. 2003,(1):5~7
    90江家京,王春芳,孟海乐,等.吸波建筑材料的研究及应用进展.科技情报开发与经济. 2005,5(1):132~33
    91高雪松.纤维混凝土的微波吸收性能实验与分析.哈尔滨工业大学.硕士研究生毕业论文. 2005:44~50
    92黄婉霞,陈家钊,毛健.纳米级Fe304对电磁波的吸收效能研究.功能材料. 1999,30(1):105
    93 Shi Z Q, Chung D D L. Concrete for magnetic shielding. Cement and Concrete Research. 1995,25(5):939~944
    94熊国宣,徐玲玲,邓敏等.掺杂TiO2水泥的吸波性能与力学性能研究.功能材料与器件学报. 2005,11(1):87~92
    95李旭,康青,周从直.铁晶矿砂水泥基复合材料电磁波吸收特性研究.功能材料. 2004,35(S):854~857
    96吕述平,刘顺华,赵彦波.珍珠岩填充空心砖建筑吸波材料的研究.微波学报. 2006,22(6):199~202
    97杨海燕,李劲,叶齐政,张秀成.钢纤维混凝土的吸波性能研究.功能材料. 2002,13:341
    98关新春,韩宝国,欧进萍.碳纤维在水泥浆体中的分散性研究.混凝土与水泥制品. 2002,(2):36
    99李旭,康青,周从直. 3mm波段混凝土屏蔽材料的研究.后勤工程学院学报. 2004,(1):26~30
    100午丽娟,沈国柱等.掺铁氧体和Sic纤维水泥基复合材料的吸波性能.硅酸盐学报. 2007,35(7):904~908
    101王一平,郭宏福.电磁波传输-辐射-传播.西安电子科技大学出版社, 2006:4~34
    102沈俐娜.电磁场与电磁波.华中科技大学出版社, 2009:5~20
    103李黎明,徐政.吸波材料的微波损耗机理及结构设计.现代技术陶瓷. 2004(2):31~34
    104何山.雷达吸波材料性能测试.材料工程. 2003,6:25~26
    105韩宝国,关新春,欧进萍.纳米水泥石导电性与压敏性的试验研究.硅酸盐通报. 2004,23(6):87~93
    106巴恒静,国爱丽,陶琦.活性粉末水泥基复合材料电阻率及吸波性能.功能材料. 2008,39(S):345~350
    107覃维祖,曹峰.一种高性能混凝土—活性粉末混凝土.工业建筑. 1999, 29(4):16~18
    108曹征良,邢锋,黄利东.配合比因素对活性粉末混凝土强度及流动度的影响.混凝土. 2004(3):5~7
    109唐明,孙亚东,巴恒静.高性能混凝土粉体颗粒群分形密集效应的评价.沈阳建筑大学学报(自然科学版). 2005,21(6):680~683
    110 Ba H J, Guo A L. Mix proportion optimization and shrinking of new developed reactive powder concrete. Key Engineering Materials. 2009,405:37~43
    111侯云芬.水热合成C-S-H凝胶所用硅质原料的特性研究.硅酸盐学报. 2000,28 (2):111~115
    112 Ya H. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures. Build Environment.2007,42:2083~2091
    113陈毅卓,阎贵平.常规搅拌工艺条件下活性粉末混凝土抗压强度影响因素的研究.铁道建筑. 2003,(3):44~48
    114吴炎海,何雁斌,杨幼华等.活性粉末混凝土(RPC)的力学性能.福州大学学报(自然科学版). 2003,31(5):598~602
    115李忠,黄利东.钢纤维活性粉末混凝土耐久性能的研究.混凝土与水泥制品. 2005,3(3):42~44
    116 Chan Y W, Chu S H. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cement and Concrete Research. 2004,34(1):1167~1172
    117 Pierre R, Maecel C. Compostion of reactive powder concretes. Cement and Concrete Research. 1995,25(7):1501~1511
    118何真,王信刚等.水泥基材料电特性的研究进展.建筑材料学报. 2004,7 (3):46~50
    119 Fu X. and Chung D D L. Radio-wave-reflecting concrete for Lateral guidance In automatic highways. Cement and Concrete Research, 1998(28):795~801
    120周巧琴,蔡传容,何雁斌.活性粉末混凝土(RPC)微观结构和强度.电子显微学报. 2003,22 (6):594~595
    121 Cao J Y, Chung D D L. Use fly ash as an admixture for electromagnetic interference shielding . Cememt Concrete Research. 2004,34(10):1889 ~1892
    122刘得利.石英陶瓷电气绝缘材料.佛山陶瓷. 2002,12(11):33~34
    123关振铎,张中太.无机材料物理性能.清华大学出版社, 1992: 208-227
    124刘学观,郭辉萍,殷红成,等.任意吸波材料层反射传输特性与媒质参数关系.微波学报. 2003,19(4):5~13
    125龙广成,谢友均,陈瑜.养护条件对活性粉末砼(RPC200)强度的影响.混凝土与水泥制品. 2001,(3):15~16
    126赵彦波,刘顺华,管洪涛.水泥基多孔复合材料吸波性能.硅酸盐学报. 2006,34(2):225~229
    127 Li K Z, Wang C, Li H J. Effect of chemical vapor infiltration treatment on the wave-absorbing performance of carbon fiber/cement composites. Journal of University of Science and Technology Beijing. 2008,15(6):808~816
    128 Fu X Z, Chung D D L. Submicron carbon filament cement-Matrix composites for electromagnetic interference shielding. Cement and Concrete Research. 1996, 26(10):1467~1472
    129廖海军,张超灿,赵清荣.防电磁辐射水泥基复合材料的性能及应用.2004,(2):5~8
    130李丹,董发勤,沈刚.钢纤维石墨导电混凝土在路面除冰雪中的应用研究.新型建筑材料. 2004,(11):61~64
    131沈刚,董发勤.碳纤维致热混凝土的阻温特性研究.武汉理工大学学报. 2004,26(8):26~29
    132吴献,李秀梅,吴勃.石墨混凝土导电性能的试验研究.建筑技术开发. 2004,31(10):56~59
    133 Wen S H, Chung D D L. Electromagnetic interference shielding reaching 70dB in steel fiber cement. Cement and Concrete Research. 2004,34(3):329~332
    134 Chung D D L. Cement-matrix Composites for smart structures. Smart Material and Structure. 2000,77(2):401~402
    135熊皓.电磁波传播与空间环境.电子工业出版社, 2004:11~33
    136国爱丽,赵福君,巴恒静等.活性粉末混凝土配比优化及收缩性能研究.武汉理工大学学报. 2009,31(2):20~25
    137李湘洲,王伟.碳纤维增强混凝土的现状与趋势.混凝土. 2000,10(8): 31~33
    138 Neo C P, Varadan V K. Optimization of carbon fiber composite for microwave absorber. IEEE Trans. Electromagnetic Compate. 2004,46(1):102~106
    139康青,姜双斌.电磁屏蔽石墨混凝土电导率实验研究.后勤工程学院学报. 2006,25(4):25~29
    140徐荣华,同嘉旺,黄世峰,等.碳纤维-水泥基导电复合材料导电性能的研究.济南大学学报(自然科学版). 2004,18(2):103~105
    141张亚彬,王秀峰.混凝土与碳纤维混凝土材料的电阻率变化研究.硅酸盐通报. 2006,25(4):63~65
    142熊国宣,徐玲玲,邓敏,等.水泥基复合材料的吸波能.硅酸盐学报. 2004,32(10):1281~1285
    143 Guan H, Liu S, Duan Y, et al. Cement based electromagnetic shielding and absorbing building materials. Cement and Concrete Composites. 2006,28(5):468~74
    144 Chung D D L. Cement-matrix composites for smart structures. Smart Material and Structure. 2000,9(3):389~401
    145黄爱萍,冯则坤,聂建华.干涉型多层吸波材料研究.材料导报. 2003,17(4):21~24
    146杨文麟.电磁波吸收材料的研制及发展动向.电子质量. 2005,5:54~72
    147刘云芳,沈增民,于建民.活化碳纳米管的孔结构及微波吸收性能的研究.炭素. 2005,(1):3~6
    148 Meshrama M, Nawal K. Agrawala, Bharoti Sinha, et al. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. Journal of Magnetism and Magnetic Materials. 2004,271:207~214
    149 Hong C R, Buyukozturk Oral. Electro-magnetic properties of concrete at microwave frequency range. ACI Materials Journal. 1998,95(3):262
    150 Giannakopoulou L. Kompotiatis A. Kontogeorgakos, et al. Microwave behavior of ferrites prepared via sol-gel method. Journal of Magnetism and Magnetic Materials. 2002,246:60~65
    151 Simms S, Fusco V. Thin radar absorber using artificial magnetic ground plane. Electronics Letters. 2005,41(24):1311~1313
    152 Alexandre R. Bueno. Microwave-absorbing properties of ferrite-wax composite in X-band frequencies. Journal of Magnetism and Magnetic Materials. 2007,21(2):7~9
    153 Zheng Q S, Chung D D L. Concrete for magnetic shielding. Cement and Concrete Research. 1999,79(4):525
    154韩宝国.压敏碳纤维水泥石性能、传感器制品与结构.哈尔滨工业大学.博士研究生论. 2005:65~77
    155同武勤,凌永顺,蒋金水.雷达材料隐身及效果测试技术分析.舰船电子对抗. 2005,28(1):27~31
    156罗志勇,秦汝虎.楔体周期结构电磁波衰减的理论计算及数值模拟.微波学报. 2006,22(1):14~19
    157 Oh J H, Oh K S, Kim C G. Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Composites. 2003,(8):1~8
    158 Semchenko I V, Khakhomov S A, Tretyakov S A, et al. Electromagnetic waves in artificial chiral structures with dielectric and magnetic properties. Electromagnetics / electromagnetics society. 2001,21(5):401~414
    159 Shukla S, Seal S, Rahaman Z, et al. Electroless copper coating of cenopheres using silver nitrate activator. Materials Letter. 2002,57(1):151~156
    160吕述平.谐振型吸波材料的理论分析与实验研究.材料科学与工程学报. 2006,24(1):135~139
    161葛凯勇,王群,毛倩瑾.空心微珠表面改性及其吸波特性.功能材料与器件学报. 2001,(1):25~27
    162曾爱香,熊惟浩,王采芳.溶胶-凝胶法制备空心微珠表面钡铁氧体包覆层的研究. 2004,37(9):19~20
    163 Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics. 1996,127(2):363~37
    164崔晓冬,刘顺华,管洪涛.双层吸波材料吸波特性研究. 2006,24(5):725~730
    165 Kim P C, Lee D G. Composite sandwich constructions for absorbing the electromagnetic waves. Composite Structures. 2009,87(7):161~167
    166 Park K Y, Lee S E, Kim C G. Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Composites Science and Technology. 2005,66:576~584
    167何燕飞,龚荣洲,李享成,等.多层复合吸波材料的制备及其吸波性能.无机材料学报. 2006,21(6):1449~1554
    168 Cao J Y. Electrical behavior of structural cement-based materials. Science and Applications. State University of New York at Buffalo. Ph.D.dissertation. 2004:23~44
    169刘列,张明雪,胡连成等.薄、轻、宽吸波涂层的优化设计.宇航材料工艺. 1996,(4):8~11
    170杨尚林,王俊,郑卫.结构吸波材料的设计与性能预报.哈尔滨工程大学学报. 2003,24(10):544~549
    171何燕飞,龚荣洲,王鲜.蜂窝结构吸波材料等效电磁参数和吸波特性研究.物理学报. 2008,57(8):5261~5267
    172 Zhang H T, Zhang J S, Zhang H Y. Electromagnetic properties of silicon carbide foams and their composites with silicon dioxide as matrix in X-band. Composites. 2006,14(2):602~609
    173 Cao M S, Qin R H, Qiu C. Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate. Material and Design. 2003,26(5):391
    174 Oh J H, Oh K S, Kim C G, et al. Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Composites Part B: Engineering. 2004,35(1):49~55
    175 Liu S H, Lv S P, Zhao Y B. Study of the resonant absorber based of carbon coated EPS. Materials Technology. 2005,20(3):145~148
    176 Oka H, Kataokaa Y, Osada H. Experimental study on electromagnetic wave absorbing control of coating-type magnetic wood using a grooving process. Journal of Magnetism and Magnetic Materials. 2007,310:28~29
    177薛向欣,刘欣,张瑜.泡沫铝基多孔金属复合材料吸波性能.中国有色金属学报. 2007,117(11):27~33
    178邢丽英,刘俊能.电阻渐变型结构吸波材料的研究与发展.航空材料学报. 2000,20(3):187~192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700