用户名: 密码: 验证码:
微纳米结构氧化铝粉体合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米结构的γ-Al2O3和-Al2O3因为微观上保持了纳米材料的特性,宏观上又克服了纳米材料的不足,而应用于吸附剂、发光材料和催化等领域,因此,其制备方法受到研究者的广泛关注。本论文通过沉淀法制备了形貌规则的六角片状-Al2O3,同时,采用水热法制备了球形、棒状和三维花状的γ-Al2O3和-Al2O3,并研究了其在吸附、发光和导热领域的应用。
     沉淀法是常用的制备纳米氧化铝粉体的方法,但是在低温下制备形貌规则的六角片状微纳米结构的-Al2O3仍然存在困难。本论文采用沉淀法首先制备出纳米级不同形貌的碳酸铝铵(AACH)前驱体。实验表明-Al2O3的形貌和相转变点的温度与制备前驱体的形貌和颗粒大小等密切相关,而反应温度和反应体系影响着前驱体的形貌和颗粒大小。将0.2mol/L的硫酸铝铵(AAS)溶液缓慢地滴加到2.0mol/L的碳酸氢铵(AHC)溶液中,同时,控制去离子水反应体系的pH值为9~10,温度为5°C~50°C,并加入PEG2000作为分散剂,可以得到纳米尺寸的颗粒、一维纤维、和三维簇状结构的AACH前驱体。但是当以醇水混合溶液作为反应体系时,可以得到纳米颗粒和束状纤维的AACH前驱体。
     为了在低温下制备微纳米结构的片状-Al2O3,本文以一定浓度的HF作酸化剂。通过改变HF的浓度和AACH前驱体在HF中的酸化时间,经煅烧,在低温下制备出直径约为1μm六角片状-Al2O3。实验结果显示,在酸化处理过程中,当HF的浓度为5wt%,酸化处理时间为6h,生成了新物质(NH4)AlF6,形貌呈片状,经700°C煅烧后,转化为棱角分明的规则六角片状θ-Al2O3,当煅烧温度升高至850°C时,前驱体完全转化为菱角圆滑的片状-Al2O3。
     氧化铝的应用与其形貌密切相关,为了得到均匀分散,形貌可控的微纳米氧化铝粉体,本论文采用水热法制备微纳米氧化铝粉体。实验结果发现水热温度是前驱体形貌生长的内在控制因素。当水热温度为90°C时AlOOH前驱体形貌为球形;在120°C时,其形貌变为一维纤维状;当温度升高至150°C时,前驱体形貌演变成三维花状结构。基于此,我们提出了γ-AlOOH前驱体形貌生长机理模拟图。同时分析了水热时间对于前驱体相组成的影响,研究发现当水热温度为120°C时,水热时间延长至24h后,经XRD和FT-IR测试结果显示,前驱体的晶型为AACH,但是SEM观察结果显示,前驱体的形貌并未随着时间的延长而改变。此方法确定了以AAS和尿素为原料制备AlOOH前驱体的生长机理,为控制-Al2O3和γ-Al2O3的形貌提供了方向。
     本论文还研究了微纳米结构的-Al2O3和γ-Al2O3的应用。研究了六角片状-Al2O3和纤维状-Al2O3,作为环氧树脂的填料在导热材料中的应用。实验结果表明:当填充60wt%的氧化铝粉体时,环氧树脂的导热系数达到最大值,填充了六角片状-Al2O3的环氧树脂导热系数达到了0.81W/m K,而填充了纤维状-Al2O3的环氧树脂的导热系数是0.72W/m K,说明了以六角片状的-Al2O3作填料时的导热性优于纤维状-Al2O3。
     此外,还讨论了水热法制备的微纳米γ-Al2O3粉体在吸附和光致发光领域的应用。以刚果红作为被吸附溶液,通过紫外结果显示三维花状结构的微纳米γ-Al2O3的吸附性能优异。光致发光谱分析结果发现,随着煅烧温度的升高,光致发光谱的相对强度减弱,然而800°C煅烧得到的γ-Al2O3样品,发光强度最大,发光谱在410cm-1和460cm-1处。这是因为γ-Al2O3本身存在的缺陷,促使它的晶体场发生变化,从而影响了电子的跃迁。
The micro/nanostructured alumina has been widely used as adsorbent, luminescence andcatalyst etc, due to its excellent advantages of nano and micro structure. In this dissertation,plate-like-Al2O3is prepared by precipitation method, and the micro/nanostructuredspherical, fiber-like and3dimensional (3D) flower-like alumina are obtained successfully byhydrothermal method. Besides, the applications in the fields of adsorption, luminescent andthe thermal conduction are investigated.
     The precipitation is most common method to prepared nano-alumina powder, but it isstill a challenge for obtain the micro/nanostructured alumina at a lower temperature. In thisresearch, the nano-sized-Al2O3with different morphologies is synthesized bydecomposition of AACH precursor. The results present that the morphology andtransformation temperature of-Al2O3is determined by the morphology and grain size of theprecursor which are affected by the reaction temperature and the reaction system. In thedeionized water system, nano-sized pherical, fiber-like and3D flower-like AACH precursoris synthesized by adjusting reaction temperature in the range of5~50°C. While in ethanol-water system, the micro-sized spherical and fiber bundle-like AACH are obtained bycontrolling reaction temperature.
     In order to prepare micro/nanostructured and plate-like-Al2O3at a lower temperature,hydrofluoric acid (HF) is used as acidifier. In this work, micro/nanostructured and plate-like
     -Al2O3is sythesized at850°C by decomposition of AACH precursor treated in the HFsolution. The results indicate that (NH4)AlF6with plate-like morphology is obtained when theprecursor is treated in20mL HF solution with5wt%for6h. In the following decompositionprocess, the plate-like θ-Al2O3with sharp edges is prepared at700°C, and the plate-like-Al2O3with smooth edges is synthesized at850°C.
     As the applications of alumina have a close relationship with its morphology and grainsize, the hydrothermal method is induced to prepare micro/nanostructured alumina withcontrollable morphology. The results illustrate that the hydrothermal temperature determinesthe morphology of precursor. AlOOH microspheres, microfibers and3D hierarchical structureare synthesized at hydrothermal temperature of90°C,120°C and150°C, respectively. AlOOHtransforms to γ-Al2O3with unobvious morphology change and volume shrinkage at800°C,and the mesopores are distributed evenly in γ-Al2O3structure, and γ-Al2O3is transformedcompletely to-Al2O3with morphology inherited at1150°C. Based on the experimentalresults, the temperature-dependent formation mechanism is proposed. In addition, we also find that the AlOOH precursor is tranfomed to AACH with no morphology change byprolonging the hydrothermal time. The research above makes contributions to preparingmicro/nanostructured alumina with controlling morphology.
     Besides, the applications of γ-Al2O3and-Al2O3are introduced. The plate-like-Al2O3obtained by precipitation method and fiber-like-Al2O3obtained by hydrothermal method areused as thermal conductive fillers. The results indicate that the conductivity coefficient ofEpoxy with plate-like alumina is0.81W/m K when the stuffing fraction is60wt%, while theconductivity coefficient of Epoxy with fiber-like alumina is0.72W/m K, which illustratesthat plate-like alumina is a potential candidate material of thermal conductivity filler.
     Meanwhile, the applications of γ-Al2O3used as absorbent and luminecent material areinvestigated. Experimental results present that hierarchically structured γ-Al2O3as absorbentcan remove about99%of Congo red for a while, which inllusrates that the obtainedhierarchically structured γ-Al2O3presents excellent adsorption property in the potentialapplication of waste water treatment. The PL spectrums of γ-Al2O3calcined at800°C presenta strong wide emission bands centred at410cm-1and460cm-1, due to the electron transition,which indicates that γ-Al2O3is a kind of excellent luminecent material.
引文
[1]朱洪法,催化剂载体制备及应用技术,石油工业出版社2002.
    [2] T. Tsukada, H. Segawa, A. Yasumori, K. Okada, Crystallinity of boehmite and its effecton the phase transition temperature of alumina, J. Mater. Chem.,1999,9(2):549-553.
    [3] J.T. Trawczynski, Effect of aluminum hydroxide precipitation conditions on the aluminasurface acidity, Ind. Eng. Chem. Res.,1996,35(1):241-244.
    [4]逸泰,结晶化学导论,中国科学技术大学出版社2005.
    [5] W.H. Gitzen, Alumina as a Ceramic Material, ed. and comp.)1970.
    [6]连增,晶体学,晶体生长基础,中国科学技术大学出版社1995.
    [7]朱洪法,催化剂载体制备及应用技术(Preparation and Application Techniques ofCatalyst Carriers),北京:石油工业出版社(Beijing: Petroleum Industry Press)2002.
    [8] J. McHale, A. Navrotsky, A. Perrotta, Effects of increased surface area and chemisorbedH2O on the relative stability of nanocrystalline γ-Al2O3and-Al2O3The Journal of PhysicalChemistry B,1997,101(4):603-613.
    [9] X.Y. Chen, Z.J. Zhang, X.L. Li, S.W. Lee, Controlled hydrothermal synthesis of colloidalboehmite (γ-AlOOH) nanorods and nanoflakes and their conversion into γ-Al2O3nanocrystals,Solid State Commun.,2008,145(7):368-373.
    [10] X. Yu, J. Yu, B. Cheng, M. Jaroniec, Synthesis of hierarchical flower-like AlOOH andTiO2/AlOOH superstructures and their enhanced photocatalytic properties, The Journal ofPhysical Chemistry C,2009,113(40):17527-17535.
    [11] Y. Feng, W. Lu, L. Zhang, X. Bao, B. Yue, Y. lv, X. Shang, One-step synthesis ofhierarchical cantaloupe-like AlOOH superstructures via a hydrothermal route, Cryst. GrowthDes.,2008,8(4):1426-1429.
    [12] L. Zhang, Y.-J. Zhu, Microwave-Assisted Solvothermal Synthesis of AlOOHHierarchically Nanostructured Microspheres and Their Transformation to γ-Al2O3withSimilar Morphologies, The Journal of Physical Chemistry C,2008,112(43):16764-16768.
    [13] T.-Z. Ren, Z.-Y. Yuan, B.-L. Su, Microwave-assisted preparation of hierarchicalmesoporous-macroporous boehmite AlOOH and γ-Al2O3, Langmuir,2004,20(4):1531-1534.
    [14] T. Kim, H. Li, J. Lian, H. Jin, J. Ma, X. Duan, G. Yao, W. Zheng, Ionic liquid‐assistedhydrothermal synthesis of γ‐Al2O3hierarchical nanostructures, Cryst. Res. Technol.,2010,45(7):767-770.
    [15]张明海,叶岗,薄水铝石与拟薄水铝石差异的研究,石油学报(石油加工),1999,15(2):29-33.
    [16]史建公,几种氢氧化铝的物性,结构及其胶溶性初探,石化技术,1994,2(113-116.
    [17] X. Krokidis, P. Raybaud, A.-E. Gobichon, B. Rebours, P. Euzen, H. Toulhoat,Theoretical study of the dehydration process of boehmite to γ-alumina, The Journal ofPhysical Chemistry B,2001,105(22):5121-5130.
    [18] B. Lippens, J. Steggerda, B. Linsen, M. Fortuin, C. Okkersee, Physical and ChemicalAspects of Adsorbents and Catalysts, Acad, Press, London-New York,1970.
    [19] P. Nortier, P. Fourre, A. Saad, O. Saur, J. Lavalley, Effects of crystallinity andmorphology on the surface properties ofalumina, Applied Catalysis,1990,61(1):141-160.
    [20] A. Ionescu, A. Allouche, J.-P. Aycard, M. Rajzmann, F. Hutschka, Study of γ-aluminasurface reactivity: Adsorption of water and hydrogen sulfide on octahedral aluminum sites,The Journal of Physical Chemistry B,2002,106(36):9359-9366.
    [21] K. Wefers, C. Misra, Oxides and Hydroxides of Aluminum.(Report), AluminumCompany of America,92,1987,1987.
    [22] Y.G. Wang, P.M. Bronsveld, J.T.M. DeHosson, B. Djuri i, D. McGarry, S. Pickering,Ordering of octahedral vacancies in transition aluminas, J. Am. Ceram. Soc.,1998,81(6):1655-1660.
    [23] T.C. Chou, T.G. Nieh, Nucleation and Concurrent Anomalous Grain Growth of‐Al2O3During γ‐Phase Transformation, J. Am. Ceram. Soc.,1991,74(9):2270-2279.
    [24]臧希文,汤卡罗,无机化学丛书(第二卷),北京:科学出版社1998.
    [25] R.B. Bagwell, G.L. Messing, Effect of Seeding and Water Vapor on the Nucleation andGrowth of‐Al2O3from γ‐Al2O3, J. Am. Ceram. Soc.,1999,82(4):825-832.
    [26] H.C. Kao, W.C. Wei, Kinetics and Microstructural Evolution of HeterogeneousTransformation of θ‐Alumina to‐Alumina, J. Am. Ceram. Soc.,2000,83(2):362-368.
    [27] F.W. Dynys, J.W. Halloran, Alpha Alumina Formation in Alum‐Derived GammaAlumina, J. Am. Ceram. Soc.,1982,65(9):442-448.
    [28]尹衍升,材料学,张景德,山东大学材料科学工程学院副教授,氧化铝陶瓷及其复合材料,化学工业出版社2001.
    [29]温树林,材料结构科学,科学出版社1988.
    [30]李世普,特种陶瓷工艺学,武汉工业大学出版社1990.
    [31]王零森,特种陶瓷,中南大学出版社2005.
    [32]田明原,施尔畏,纳米陶瓷与纳米陶瓷粉末,无机材料学报,1998,13(2):129-137.
    [33]何巨龙,于栋利,刁玉强,田永君,李东春, γ-Al2O3纳米粉对氧化铝,碳化硅陶瓷纤维烧结特性的影响,复合材料学报,2000,4(017.
    [34]何巨龙,于栋利,刁玉强,田永君,李东春, Χ-Al2O3纳米粉对氧化铝,碳化硅陶瓷纤维烧结特性的影响,复合材料学报,2000,17(4).
    [35]张凯锋,陈国清,王国峰,骆俊廷,氧化铝基纳米复相陶瓷的制备及超塑成形,中国机械工程,2004,15(10):925-927.
    [36] R. Venkatesh, S.R. Ramanan, Effect of organic additives on the properties of sol-gelspun alumina fibres, J. Eur. Ceram. Soc.,2000,20(14):2543-2549.
    [37]吴俊辉,邹建平,朱青,鲍希茂,硅衬底阳极氧化铝膜的荧光发射研究,发光学报,2000,21(1):53-56.
    [38]翟翔,赵世华,朱彦华,杨雷, Al2O3微米树的制备及其发光性能研究,湖南大学学报:自然科学版,2009,37(3):62-65.
    [39]杨阳,基于硅基多孔氧化铝模板的硅基纳米发光材料和结构的研究,南京大学2002.
    [40]李志宏,夏晓风,詹欲生,陶瓷刚玉磨料制造及应用进展,金刚石与磨料磨具工程,2000,3(117):37-18.
    [41]李海峰,95氧化铝陶瓷在密封领域的应用,陶瓷工程,2000,34(4):37-38.
    [42]楚雪田,吴秋玲,王晓阳, Al2O3含量和气孔率及温度对耐火材料热导率的影响[J],国外耐火材料,2004,29(1):53-56.
    [43]霍炜,孙向阳,高强度刚玉质自流浇注料在呼炼CO焚烧炉中的应用,内蒙古石油化工,1999,25(3):107-109.
    [44]焦武军,张亮辰,高强耐磨自流浇注料的研制与应用,工业锅炉,2002,4(011.
    [45]王铀,田伟,刘刚,热喷涂纳米结构Al2O3/TiO2涂层及其应用[J],材料科学与工艺,2006,14(3):254-257.
    [46]王铀,杨勇,热喷涂纳米结构涂层的研究进展及在外军舰艇上的应用,中国表面工程,2008,21(1):7-15.
    [47]王东生,田宗军,沈理达,刘志东,黄因慧,等离子喷涂纳米复合陶瓷涂层的组织结构及其形成机理[J],中国有色金属学报,2009,19(1):77-83.
    [48]徐平坤,刚玉耐火材料,冶金工业出版社2007.
    [49]彭西高,孙加林,李福燊,吴学真,郭腾飞,冲击参数对氧化铝基耐火材料常温耐磨性的影响,耐火材料,2008,42(3):178-183.
    [50]于景坤,戴文斌,氧化铝微粉对镁钙系耐火材料性能的影响,东北大学学报:自然科学版,2003,24(11):1068-1070.
    [51]张敬强,荣守范,宋晓刚,稀土氧化物对氧化铝复相陶瓷显微结构和力学性能的影响,佳木斯大学学报,2006,24(1):16-16.
    [52]温波,黄颖,徐勇忠,氧化铝生物陶瓷骨细胞相容性研究,吉林大学学报:医学版,2003,29(2):158-160.
    [53] Y. Itakura, A. Kosugi, H. Sudo, S. Yamamoto, M. Kumegawa, Development of a newsystem for evaluating the biocompatibility of implant materials using an osteogenic cell line(MC3T3‐E1), J. Biomed. Mater. Res.,1988,22(7):613-622.
    [54]赵克,杨世源,巢永烈,王军霞,牙科纳米氧化铝陶瓷粉体的制备,华西口腔医学杂志,2002,20(1):58-61.
    [55] T. Hooshmand, R. Daw, R. Van Noort, R. Short, XPS analysis of the surface of leucite-reinforced feldspathic ceramics, Dent. Mater.,2001,17(1):1-6.
    [56] Y. Kurokawa, T. Ishizaka, T. Ikoma, S. Tero-Kubota, Photo-properties of rare earth ion(Er3+, Eu3+and Sm3+)-doped alumina films prepared by the sol–gel method, Chem. Phys. Lett.,1998,287(5):737-741.
    [57]张贤利,李福生,方道腴,荧光粉层-氧化铝保护膜层光学特性的研究,照明工程学报,2001,12(1):8-11.
    [58]邹建平,吴俊辉,朱青,濮林,朱健民,鲍希茂,硅基底电子束蒸发铝膜阳极氧化特性,半导体学报,2000,21(3):255-259.
    [59]巩运兰,王为,高俊丽,程杰,郭鹤桐,氧化铝多孔膜红外吸波性能的研究,材料工程,1999,6(26-26.
    [60] Z. Zhu, H. Sun, H. Liu, D. Yang, PEG-directed hydrothermal synthesis of aluminananorods with mesoporous structure via AACH nanorod precursors, J. Mater. Sci.,2010,45(1):46-50.
    [61] G. Li, Y. Liu, D. Liu, L. Liu, C. Liu, Synthesis of flower-like Boehmite (AlOOH) via asimple solvothermal process without surfactant, Mater. Res. Bull.,2010,45(10):1487-1491.
    [62]陆光伟,杨琪,邓意达,胡文彬,水热法制备一维纳米γ-AlOOH的形态结构,无机材料学报,2009,24(3):463-468.
    [63]姚楠,熊国兴,盛世善,何鸣元,杨维慎,溶胶凝胶法制备中孔分布集中的氧化铝催化材料,燃料化学学报,2001,29(1):80-82.
    [64]吴志鸿,纳米氧化铝的制备及其在催化领域的应用,工业催化,2004,12(2):35-39.
    [65]杨玉旺,李凯荣,杨祖润,马群,石芳,活性氧化铝载体的扩孔研究,石油化工,2002,31(11):913-916.
    [66]施尔畏,仲维卓,栾怀顺,王爱民,冯楚德,水热法制备-Al2O3微粉中氢氧化铝转变成氧化铝的过程,无机材料学报,1992,3(007.
    [67] L. Zhang, Y.-L. Yao, Y.-X. Che, J.-M. Zheng, Hydrothermal synthesis of a series ofinterpenetrated Metal Organic Frameworks based on long multicarboxylate and longheterocyclic aromatic ligands, Crystal Growth&Design,2010,10(2):528-533.
    [68] J.-H. Son, J. Wei, D. Cobden, G. Cao, Y. Xia, Hydrothermal synthesis of monoclinicVO2micro-and nanocrystals in one step and their use in fabricating inverse opals, Chem.Mater.,2010,22(10):3043-3050.
    [69] S. Milo evi, I. Stojkovi, S. Kurko, J.G. Novakovi, N. Cvjeti anin, The simple one-step solvothermal synthesis of nanostructurated VO2(B), Ceram. Int.,2012,38(3):2313-2317.
    [70] F. He, P. Yang, D. Wang, N. Niu, S. Gai, X. Li, Self-Assembled β-NaGdF4Microcrystals: Hydrothermal Synthesis, Morphology Evolution, and Luminescence Properties,Inorg. Chem.,2011,50(9):4116-4124.
    [71] D. Sarkar, C.K. Ghosh, K.K. Chattopadhyay, Morphology control of rutile TiO2hierarchical architectures and their excellent field emission properties, CrystEngComm,2012,14(8):2683-2690.
    [72] Y. Fang, D. Gu, Y. Zou, Z. Wu, F. Li, R. Che, Y. Deng, B. Tu, D. Zhao, A Low‐Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous CarbonNanospheres with Tunable and Uniform Size, Angew. Chem. Int. Ed.,2010,49(43):7987-7991.
    [73] N. Baccile, M. Antonietti, M.M. Titirici, One‐Step Hydrothermal Synthesis ofNitrogen‐Doped Nanocarbons: Albumine Directing the Carbonization of Glucose,ChemSusChem,2010,3(2):246-253.
    [74]施尔畏,夏长泰,水热法的应用与发展,无机材料学报,1996,11(2):193-206.
    [75]仲维卓,王步国,水热条件下纳米晶的形成机理,人工晶体学报,1997,26(3):194-194.
    [76] R. Yu, D. Wang, M. TAKANO, N. Kumada, N. Kinomura, Crystallization of ZirconiumPhosphates from Organic Media with Hydrothermal Technique: Effects of SynthesisConditions, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi(Journal of the CeramicSociety of Japan),2004,112(1305).
    [77] R. Tadi, Y.-I. Kim, S.-O. Kang, K.-S. Ryu, C. Kim, Synthesis of Barium TitanateNanorods Using Hydrothermal Reaction of Potassium Titanate Nanostructures,,2007,22-22.
    [78] P.E. Meskin, V.K. Ivanov, A.E. Barantchikov, B.R. Churagulov, Y.D. Tretyakov,Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4andNiO.5ZnO.5Fe2O4powders, Ultrason. Sonochem.,2006,13(1):47-53.
    [79]郝保红,方克明,向兰,饱和度对纳米AlOOH水热结晶形貌的影响,新技术新工艺,2009,11):109-111.
    [80]苗鸿雁,罗宏杰,低压条件下纳米氧化锆的水热结晶合成,陶瓷工程,1998,32(5):1-4.
    [81]赖琼钰,卢集政,水热氧化法制备γ-Mn2O,应用化学,1999,16(2):56-59.
    [82] C.W. Krichbaum, Magnetically controlled liquid transfer system, Google Patents1999.
    [83] S. Sankar, K.G. Warrier, R. Komban, High surface area neodymium phosphate nanoparticles by modified aqueous sol–gel method, Mater. Res. Bull.,2011,46(12):2373-2377.
    [84] S. Sarkar, P.K. Biswas, S. Jana, Nano silver coated patterned silica thin film by sol–gelbased soft lithography technique, J. Sol-Gel Sci. Technol.,2012,61(3):577-584.
    [85] K. Farhadi, R. Maleki, R. Tahmasebi, Preparation of Al2O3/TiO2composite sol–gel fiberfor headspace solid‐phase microextraction of chlorinated organic solvents from urine, J. Sep.Sci.,2011,34(14):1669-1674.
    [86] J. Liu, C. Gong, G. Fan, Preparation and properties of barium-ferrite-containing glassceramic fibers via an electrospinning/sol–gel process, J. Sol-Gel Sci. Technol.,2012,61(1):185-191.
    [87]李继光,孙旭东,碱式碳酸铝铵热分解制备-Al2O3超细粉,无机材料学报,1998,13(6):803-807.
    [88]任岳荣,朱自康,硫酸铝铵热分解法制备高纯氧化铝的研究,无机盐工业,1991,6):21-25.
    [89]杨晔,吴玉程,李勇,崔平,碱式碳酸铝铵低温热分解制备-Al2O3超细粉末,过程工程学报,2002,4(008.
    [90]李继光,孙旭东,茹红强,宋丹,孙祥云,李晓东,郝士明,湿化学法合成-Al2O3纳米粉,材料研究学报,2009,12(1):105-107.
    [91]陈志刚,陈彩凤,刘苏,超声场中湿法制备Al2O3纳米粉工艺研究[J],硅酸盐学报,2003,31(2):213-217.
    [92] K. Morinaga, T. Torikai, K. Nakagawa, S. Fujino, Fabrication of fine-alumina powdersby thermal decomposition of ammonium aluminum carbonate hydroxide (AACH), ActaMater.,2000,48(18):4735-4741.
    [93] A. Evans, A method for evaluating the time-dependent failure characteristics of brittlematerials—and its application to polycrystalline alumina, J. Mater. Sci.,1972,7(10):1137-1146.
    [94] S. Alami-Younssi, A. Larbot, M. Persin, J. Sarrazin, L. Cot, Rejection of mineral salts ona gamma alumina nanofiltration membrane Application to environmental process, J.Membrane. Sci.,1995,102(123-129.
    [95] V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and characterization of alumina-coatedcarbon nanotubes and their application for lead removal, J. Hazard. Mater.,2011,185(1):17-23.
    [96] X. Meyza, D. Goeuriot, C. Guerret-Piécourt, D. Tréheux, H.-J. Fitting, Secondaryelectron emission and self-consistent charge transport and storage in bulk insulators:Application to alumina, J. Appl. Phys.,2003,94(8):5384-5392.
    [97] S. Chevalier, B. Lesage, C. Legros, G. Borchardt, G. Strehl, M. Kilo, Oxygen Diffusionin Alumina. Application to Synthetic and Thermally Grown Al2O3, Defect. Diffus. Forum.,Trans Tech Publ2005, pp.899-910.
    [98] H. Arai, M. Machida, Thermal stabilization of catalyst supports and their application tohigh-temperature catalytic combustion, Appl. Catal., A,1996,138(2):161-176.
    [99] B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of50nm, J. Am. Chem. Soc.,2003,125(15):4430-4431.
    [100] H. Cheng, J. Ma, Z. Zhao, L. Qi, Hydrothermal preparation of uniform nanosize rutileand anatase particles, Chem. Mater.,1995,7(4):663-671.
    [101] H.R. Pruppacher, J.D. Klett, P.K. Wang, Microphysics of clouds and precipitation,1998.
    [102] A.E. Nielsen, Kinetics of precipitation, Pergamon Press;[distributed in the WesternHemisphere by Macmillan, New York]1964.
    [103] G. Li, L. Hu, J.M. Hill, Comparison of reducibility and stability of alumina-supportedNi catalysts prepared by impregnation and co-precipitation, Appl. Catal., A,2006,301(1):16-24.
    [104] H. Potdar, K.-W. Jun, J.W. Bae, S.-M. Kim, Y.-J. Lee, Synthesis of nano-sized porousγ-alumina powder via a precipitation/digestion route, Appl. Catal., A,2007,321(2):109-116.
    [105] K. Parida, A.C. Pradhan, J. Das, N. Sahu, Synthesis and characterization of nano-sizedporous gamma-alumina by control precipitation method, Mater. Chem. Phys.,2009,113(1):244-248.
    [106]周曦亚,欧阳世翕,程吉平,液相共沉淀法制Al2O3超细粉过程及防团聚措施,华南理工大学学报:自然科学版,1996,7).
    [107]刘志强,李杏英,高纯超细氧化铝粉末的制备(Ⅲ)——团聚消除的研究,轻金属,2005,6(002.
    [108]刘志强,李杏英,高纯超细氧化铝粉末的制备(Ⅲ),轻金属,2005,6):10-12.
    [109]廖树帜,张邦维,合成方法对超纯纳米Al2O3粉末的影响研究,湖南教育学院学报,1998,16(2):69-72.
    [110] X. Sun, J. Li, F. Zhang, X. Qin, Z. Xiu, H. Ru, J. You, Synthesis of Nanocrystalline‐Al2O3Powders from Nanometric Ammonium Aluminum Carbonate Hydroxide, J. Am.Ceram. Soc.,2003,86(8):1321-1325.
    [111]刘东亮,邓建国,金永中,邢怀勇,低成本纳米γ-Al2O3的制备,化工时刊,2007,21(3):1-4.
    [112]武小满,郭丽丽,韩培林, pH对化学沉淀法制备纳米Al2O3粉体的影响,中国粉体技术,2013,19(1).
    [113] Z. Wu, Y. Shen, Y. Dong, J. Jiang, Study on the morphology of-Al2O3precursorprepared by precipitation method, J. Alloys Compd.,2009,467(1):600-604.
    [114] C.-x. HUO, L.-j. HE, The Preparation of Nano-sized γ-Al2O3Powders by Using Ureaas Precipitating Agent [J], Journal of Gansu Education College (Natural Science Edition),2004,4(013.
    [115] X. Wang, Y. Li, Selected-control hydrothermal synthesis of-and β-MnO2singlecrystal nanowires, J. Am. Chem. Soc.,2002,124(12):2880-2881.
    [116] R.L. Penn, J.F. Banfield, Morphology development and crystal growth innanocrystalline aggregates under hydrothermal conditions: Insights from titania, Geochim.Cosmochim. Acta,1999,63(10):1549-1557.
    [117] O. Yaghi, H. Li, Hydrothermal synthesis of a metal-organic framework containing largerectangular channels, J. Am. Chem. Soc.,1995,117(41):10401-10402.
    [118]蔡卫权,李会泉,张懿, Al3+浓度对水热法合成低密度薄水铝石性质的影响,功能材料,2004,35(6):779-784.
    [119] J. Li, W. Li, X. Nai, S. Bian, X. Liu, M. Wei, Synthesis and formation of aluminawhiskers from hydrothermal solution, J. Mater. Sci.,2010,45(1):177-181.
    [120] M. Abdullah, M. Mehmood, J. Ahmad, Single step hydrothermal synthesis of3D urchinlike structures of AACH and aluminum oxide with thin nano-spikes, Ceram. Int.,2012,38(5):3741-3745.
    [121] S.W. Kim, Y.M. Jung, Microwave-assisted combustion synthesis of-alumina andmagnesium aluminate spinel nanocomposite powders, Solid State Phenom.,2007,119(191-194.
    [122] X. He, G. Li, H. Liu, J. Li, Z. Zhu, R. Riman, Thermal Behavior of AluminaMicrofibers Precursor Prepared by Surfactant Assisted Microwave Hydrothermal, J. Am.Ceram. Soc.,2012,95(11):3638-3642.
    [123] S.W. Kim, D.C. Shin, Fabrication and synthesis of-alumina nanopowders by thermaldecomposition of ammonium aluminum carbonate hydroxide (AACH), Colloids Surf., A,2008,313(415-418.
    [124]林元华,张中太,黄传勇,唐子龙,陈清明,前驱体热解法制备高纯超细-Al2O3粉体,硅酸盐学报,2000,3(014.
    [125] W.-K. Burton, N. Cabrera, F. Frank, The growth of crystals and the equilibriumstructure of their surfaces, Philos. Trans. R. Soc. London, Ser. A,1951,299-358.
    [126] K. Nagahama, T. Ouchi, Y. Ohya, Temperature‐Induced Hydrogels Through Self‐Assembly of Cholesterol‐Substituted Star PEG‐b‐PLLA Copolymers: An InjectableScaffold for Tissue Engineering, Adv. Funct. Mater.,2008,18(8):1220-1231.
    [127] H. Zhi, C. Lü, Q. Zhang, J. Luo, A new PEG-1000-based dicationic ionic liquidexhibiting temperature-dependent phase behavior with toluene and its application in one-potsynthesis of benzopyrans, Chem. Commun.,2009,20):2878-2880.
    [128] Li Yanhui, Peng Cheng, Rao Pinggen, Self-assembled3D hierarchically structuredgamma alumina by hydrothermal method.pdf, J. Am. Ceram. Soc.,2013.
    [129] R. Tettenhorst, D.A. Hofmann, Crystal chemistry of boehmite, Clays Clay Miner.,1980,28(5):373.
    [130] C. Simon, R. Bredesen, H. Gr ndal, A. Hustoft, E. Tangstad, Synthesis andcharacterization of Al2O3catalyst carriers by sol-gel, J. Mater. Sci.,1995,30(21):5554-5560.
    [131] R. Rogojan, E. Andronescu, C. Ghitulica, B.S. Vasile, Synthesis and characterization ofalumina nano-powder obtained by sol-gel method, UPB Buletin Stiintific, Series B:Chemistry and Materials Science,2011,73(2):67-76.
    [132] H.-L. Wen, F.-S. Yen, Growth characteristics of boehmite-derived ultrafine theta andalpha-alumina particles during phase transformation, J. Cryst. Growth,2000,208(1):696-708.
    [133] M. Kumagai, G.L. Messing, Controlled Transformation and Sintering of a BoehmiteSol‐Gel by‐Alumina Seeding, J. Am. Ceram. Soc.,1985,68(9):500-505.
    [134] R.F. Hill, R. Danzer, R.T. Paine, Synthesis of aluminum oxide platelets, J. Am. Ceram.Soc.,2001,84(3):514-520.
    [135]李云,吴玉程,杨晔,李勇,崔平,前驱体碱式碳酸铝铵的制备及相变研究,合肥工业大学学报:自然科学版,2004,27(5):478-481.
    [136] C.-C. Ma, X.-X. Zhou, X. Xu, T. Zhu, Synthesis and thermal decomposition ofammonium aluminum carbonate hydroxide (AACH), Mater. Chem. Phys.,2001,72(3):374-379.
    [137]杨晔,吴玉程,李勇,碱式碳酸铝铵低温热分解制备-Al2O3超细粉末[J],过程工程学报,2002,2(4):325-329.
    [138] Z.-f. ZHU, H.-j. SUN, H. LIU, D. YANG, Surfactant Assisted Hydrothermal Synthesisof AACH Microfiber and Its Growth Mechanisim [J], Journal of Synthetic Crystals,2010,1(022.
    [139] X. Shi, C. Yang, L. Zhang, Z. Lu, Y. Zhu, D. Tang, C. Cui, H. Zeng, MesoporousAlumina Microfibers In Situ Transformation from AACH Fibers and the AdsorptionPerformance, Journal of Nanomaterials,2014,2014
    [140]张长拴,白玉白,纳米尺寸氧化铝的红外光谱研究,化学学报,1999,57(3):275-280.
    [141]朱振峰,孙洪军,刘辉,杨冬,表面活性剂辅助水热法制备碱式碳酸铝铵纤维及其生长机理初探[J],人工晶体学报,2010,39(1):110-114.
    [142]. Sahin, M. zdemir, M. Aslanoglu, ü.G. Beker, Calcination kinetics of ammoniumpentaborate using the Coats-Redfern and genetic algorithm method by thermal analysis, Ind.Eng. Chem. Res.,2001,40(6):1465-1470.
    [143] E. Urbanovici, C. Popescu, E. Segal, Improved iterative version of the Coats-Redfernmethod to evaluate non-isothermal kinetic parameters, J. Therm. Anal. Calorim.,1999,58(3):683-700.
    [144] R. Ebrahimi-Kahrizsangi, M. Abbasi, Evaluation of reliability of Coats-Redfern methodfor kinetic analysis of non-isothermal TGA, T. Nonferr. Metal Soc.,2008,18(1):217-221.
    [145] A. Kiss, G. Keresztury, L. Farkas, Raman and ir spectra and structure of boehmite (γ-AlOOH). Evidence for the recently discarded D172hspace group, Spectrochimica Acta Part A:Molecular Spectroscopy,1980,36(7):653-658.
    [146] H. Hou, Y. Xie, Q. Yang, Q. Guo, C. Tan, Preparation and characterization of γ-AlOOH nanotubes and nanorods, Nanotechnology,2005,16(6):741.
    [147] K. Axe, P. Persson, Time-dependent surface speciation of oxalate at the water-boehmite(γ-AlOOH) interface: implications for dissolution, Geochim. Cosmochim. Acta,2001,65(24):4481-4492.
    [148] J. Nordin, P. Persson, A. Nordin, S. Sj berg, Inner-sphere and outer-spherecomplexation of a polycarboxylic acid at the water-boehmite (γ-AlOOH) interface: acombined potentiometric and IR spectroscopic study, Langmuir,1998,14(13):3655-3662.
    [149] X.Y. Chen, H.S. Huh, S.W. Lee, Hydrothermal synthesis of boehmite (γ-AlOOH)nanoplatelets and nanowires: pH-controlled morphologies, Nanotechnology,2007,18(28):285608.
    [150] J. Zhang, S. Liu, J. Lin, H. Song, J. Luo, E. Elssfah, E. Ammar, Y. Huang, X. Ding, J.Gao, Self-assembly of flowerlike AlOOH (boehmite)3D nanoarchitectures, The Journal ofPhysical Chemistry B,2006,110(29):14249-14252.
    [151] C. Lu, J. Lv, L. Xu, X. Guo, W. Hou, Y. Hu, H. Huang, Crystalline nanotubes of γ-AlOOH and γ-Al2O3: hydrothermal synthesis, formation mechanism and catalyticperformance, Nanotechnology,2009,20(21):215604.
    [152] G. Ji, M. Li, G. Li, G. Gao, H. Zou, S. Gan, X. Xu, Hydrothermal synthesis ofhierarchical micron flower-like γ-AlOOH and γ-Al2O3superstructures from oil shale ash,Powder Technol.,2012,215(54-58.
    [153] P. Raybaud, M. Digne, R. Iftimie, W. Wellens, P. Euzen, H. Toulhoat, Morphology andsurface properties of boehmite (γ-AlOOH): A density functional theory study, J. Catal.,2001,201(2):236-246.
    [154] Z. Tang, Y. Liu, G. Li, X. Hu, C. Liu, Ionic liquid assisted hydrothermal fabrication ofhierarchically organized γ-AlOOH hollow sphere, Mater. Res. Bull.,2012,47(11):3177-3184.
    [155] Y. Zheng, S. Erwei, L. Wenjun, C. Zhizhan, Z. Weizhuo, H. Xingfang, Formation ofzirconia polymorphs under hydrothermal conditions, Sci. China Ser. E: Technol. Sci.,2002,45(3):273-281.
    [156] W. Gould, F. Cook, G. Webster, Factors affecting urea hydrolysis in several Albertasoils, Plant Soil,1973,38(2):393-401.
    [157] H.D. Liao, W.P. Zhang, X.M. Sun, J.Q. Meng, Y. Wei, J. Tang, Preparation andThermodynamic Study of Self-Dispersal Nano-AIOOH, Key Eng. Mater.,2012,512(100-105.
    [158]李莉娟,孙凤久,楼丹花,王闯,纳米氧化铝的晶型及粒度对其红外光谱的影响,功能材料,2008,38(3):479-481.
    [159]杜珊,杨护霞,纳米氧化铝粉体制备及红外吸收特性研究,保山学院学报,2012,31(2):7-10.
    [160]赵春芳,尹正勇,李波,型氧化铝的微观结构对红外光谱图的影响,光谱实验室,2007,24(3):341-344.
    [161]古堂生,林光明,非晶态和晶态纳米氧化铝粉的相变与红外光谱,无机材料学报,1997,12(6):840-844.
    [162]王玄玉,潘功配,何艳兰,几种纳米氧化铝的红外消光性能研究,含能材料,2006,13(5):312-315.
    [163] Y.F.Z. Y. Wu, X.X. Huang, J.K. Guo, Preparation of plate-like nano alpha aluminaparticles., Ceram. Int.,2001,27(265-268.
    [164] K. Niihara, Strength and toughness of brittle ceramic materials, Ceramics Japan,1990,25(1):17-18.
    [165] D. Bigg, Thermally conductive polymer compositions, Polym. Compos.,1986,7(3):125-140.
    [166] Wu. Y, Zhang. Y, Huang. X, Guo. J, Preparation of platelike nano alpha aluminaparticles, Ceram. Int.,2001,27(3):265-268.
    [167] X. LONG, W. CHEN, H.-q. YE, Preparation of lamellar aluminium oxide throughmolten salt synthesis, Materials Science and Engineering of Powder Metallurgy,2011,1(014.
    [168] A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, R.C. Haddon, Enhanced thermalconductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites,Adv. Mater.,2008,20(24):4740-4744.
    [169] G.-W. Lee, M. Park, J. Kim, J.I. Lee, H.G. Yoon, Enhanced thermal conductivity ofpolymer composites filled with hybrid filler, Composites Part A: Applied Science andManufacturing,2006,37(5):727-734.
    [170] A. Moisala, Q. Li, I. Kinloch, A. Windle, Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites, Compos. Sci. Technol.,2006,66(10):1285-1288.
    [171] S. Ganguli, A.K. Roy, D.P. Anderson, Improved thermal conductivity for chemicallyfunctionalized exfoliated graphite/epoxy composites, Carbon,2008,46(5):806-817.
    [172]王璞玉,胡旭晓,周洁,杨克己,聚合物基复合材料导热模型的研究现状及应用,材料导报,2010,24(9):108-112.
    [173] Y.P. Mamunya, V. Davydenko, P. Pissis, E. Lebedev, Electrical and thermalconductivity of polymers filled with metal powders, Eur. Polym. J.,2002,38(9):1887-1897.
    [174] Y. Agari, T. Uno, Thermal conductivity of polymer filled with carbon materials: effectof conductive particle chains on thermal conductivity, J. Appl. Polym. Sci.,1985,30(5):2225-2235.
    [175] R.F. Hill, P.H. Supancic, Thermal Conductivity of Platelet‐Filled Polymer Composites,J. Am. Ceram. Soc.,2002,85(4):851-857.
    [176] B. Weidenfeller, M. H fer, F.R. Schilling, Thermal conductivity, thermal diffusivity,and specific heat capacity of particle filled polypropylene, Composites Part A: AppliedScience and Manufacturing,2004,35(4):423-429.
    [177] S. Ghosh, K.P. Dey, M.K. Naskar, L. Pinckney, Synthesis of Nanofiber-likeMesoporous γ-Al2O3toward Its Adsorption Efficiency for Congo Red, J. Am. Ceram. Soc.,2013,96(1):28-31.
    [178] H. Liu, H. Sun, J. Li, X. He, Z. Zhu, pH-dependent formation of AACH fibers withtunable diameters and their in situ transformation to alumina nanocrystals with mesoporousstructure, Adv. Powder Technol.,2012,23(2):164-169.
    [179] L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, L.J. Wan, Self‐Assembled3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment, Adv.Mater.,2006,18(18):2426-2431.
    [180] S. Mochizuki, H. Araki, Reversible photoinduced spectral transition in Eu2O3–γ-Al2O3composites at room temperature, Physica B,2003,340(913-917.
    [181] Z. Zhu, D. Liu, H. Liu, X. Wang, L. Fu, D. Wang, Photoluminescence properties ofTb3+doped Al2O3microfibers via a hydrothermal route followed by heat treatment, Ceram.Int.,2012,38(5):4137-4141.
    [182] D. Liu, Z. Zhu, H. Liu, Z. Zhang, Y. Zhang, G. Li, Al2O3:Cr3+microfibers byhydrothermal route: Luminescence properties, Mater. Res. Bull.,2012,47(9):2332-2335.
    [183]刘世江,崔小敏, Tb3+共掺杂Al2O3: Eu粉体的结构及其光致发光研究, Journal ofHenan Institute of Science and Technology,2011.
    [184] X.-S. Fang, C.-H. Ye, X.-X. Xu, T. Xie, Y.-C. Wu, L.-D. Zhang, Synthesis andphotoluminescence of-Al2O3nanowires, J. Phys.: Condens. Matter,2004,16(23):4157.
    [185] X. Peng, L. Zhang, G. Meng, X. Wang, Y. Wang, C. Wang, G. Wu, Photoluminescenceand infrared properties of-Al2O3nanowires and nanobelts, The Journal of PhysicalChemistry B,2002,106(43):11163-11167.
    [186] N. Rakov, F.E. Ramos, G. Hirata, M. Xiao, Strong photoluminescence andcathodoluminescence due to f–f transitions in Eu3+doped Al2O3powders prepared by directcombustion synthesis and thin films deposited by laser ablation, Appl. Phys. Lett.,2003,83(2):272-274.
    [187] G. Van den Hoven, A. Polman, E. Alves, M. Da Silva, A. Melo, J. Soares, Lattice siteand photoluminescence of erbium implanted in-Al2O3, J. Mater. Res,1997,12(5):1401.
    [188] L. Oster, D. Weiss, N. Kristianpoller, A study of photostimulated thermoluminescencein C-doped-Al2O3crystals, J. Phys. D: Appl. Phys.,1994,27(8):1732.
    [189] Z.Q. Yu, D. Chang, C. Li, N. Zhang, Y.Y. Feng, Y.Y. Dai, Blue photoluminescentproperties of pure nanostructured γ–Al2O3, J. Mater. Res.,2001,16(07):1890-1893.
    [190] A. Esparza‐García, M. García‐Hipólito, M. Aguilar‐Frutis, C. Falcony,Cathodoluminescent and photoluminescent properties of Al2O3powders doped with Eu,physica status solidi (a),2002,193(1):117-124.
    [191] V. Skuratov, V.A. VA, S.A. AlAzm, Luminescence characterization of radiationdamage of Al2O3under1MeV/amu ion irradiation, J. Nucl. Mater,1996,233(237).
    [192] Q. Wen, D.M. Lipkin, D.R. Clarke, Luminescence Characterization of Chromium‐Containing theta‐Alumina, J. Am. Ceram. Soc.,1998,81(12):3345-3348.
    [193]江小雪,多孔氧化铝模板的制备及其光致发光性能[D],天津大学2006.
    [194]吴玉程,马杰,叶敏,解挺,杨友文,李广海,张立德,多孔阳极氧化铝模板的制备及其光学特性研究,功能材料与器件学报,2006,11(4):440-444.
    [195] Z. Zhu, H. Liu, H. Sun, D. Yang, PEG-directed hydrothermal synthesis of multilayeredalumina microfibers with mesoporous structures, Microporous Mesoporous Mater.,2009,123(1-3):39-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700