微颗粒表面磁控溅射镀膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在粉体颗粒表面镀薄膜可显著增强其应用功效。磁控溅射沉积作为一种高质量的镀膜方法,也逐渐被应用于粉体颗粒表面镀膜。本论文根据磁控溅射及粉体颗粒的特点,设计并研制了一套微颗粒磁控溅射镀膜设备;采用实验与理论分析相结合的方法,对在粉体颗粒表面磁控溅射镀金属薄膜和氧化物薄膜进行了系统的实验研究,并对粉体颗粒表面磁控溅射镀膜的机理进行了研究;同时还对微颗粒表面镀金属膜的应用进行了研究。主要研究工作包括如下五个方面:
     (1)根据微颗粒具有比表面积和表面能较大、颗粒之间易团聚、曲率半径小的特点,设计研制了一套微颗粒表面磁控溅射镀膜设备,该设备是在普通磁控溅射镀膜设备的基础上,增加了一个既可振动又可摇摆的样品台。实验结果表明,该设备能使微颗粒保持较好的分散性和流动性,使微颗粒可以等概率地暴露在溅射束流中,从而达到了在微颗粒表面高质量镀膜的目的。
     (2)利用磁控溅射方法,开展了在空心微珠表面镀金属Ag、Cu、Ni和Co膜的实验研究。通过光学显微镜(OM)、扫描电镜(SEM)、X射线能谱仪(EDS)、透射电镜(TEM)、电感耦合等离子体原子发射光谱仪(ICP)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)和原子力显微镜(AFM)等测试仪器,对空心微珠表面金属膜的表面形貌、表面成分、微结构及表面粗糙度进行了测试和分析。结果表明:所镀的空心微珠表面金属膜具有均匀性好、纯度高、致密性高及附着力强等特点。不同溅射条件对金属薄膜质量(表面形貌、厚度、表面粗糙度及结晶)有着直接的影响。溅射时间越长或溅射功率越大或装载量越少,薄膜的平均厚度越厚,薄膜表面越粗糙,金属薄膜的结晶度就越高。由于金属Ag、Cu、Ni和Co的溅射率的差异(YAg>YCu> YNi> YCo),在相同溅射条件下,制备的四种不同金属膜具有不同的厚度,其表面粗糙度也不同,它们的增长趋势与溅射率的增长相同。同时,用磁控溅射方法,也成功地在SiC微颗粒表面镀上了金属铜膜。
     (3)利用脉冲磁控溅射方法,开展了在空心微珠表面镀TiO2薄膜的实验研究。SEM结果表明,薄膜表面均匀致密;XPS结果表明,Ti元素主要以Ti4+存在,这说明空心微珠表面已成功地镀覆上了TiO2薄膜;XRD结果表明,溅射时间对TiO2薄膜的结晶有着重要的影响,溅射时间越长,TiO2薄膜越容易结晶。该方法所制备的二氧化钛薄膜有较高的均匀性和附着力。
     (4)开展了磁控溅射对空心微珠表面金属薄膜的沉积机理研究。研究结果表明:溅射原子不断变化的相对沉积角度,可以消除普通溅射镀膜所引起的物理阴影效应,同时可以促进均匀性好、致密性高、孔隙率低及粗糙度值小的薄膜的生成。薄膜的溅射条件及吸附原子的迁移特性决定了沉积岛的尺寸。在薄膜生长的最后阶段,由于各方面因素的综合影响,空心微珠表面获得了具有较低粗糙度的均匀金属膜,但其生长方式仍为三维岛状生长模式。
     (5)开展了对微颗粒表面镀金属薄膜的应用研究。提出了把表面镀金属膜的轻质微颗粒用于屏蔽和干扰电磁波的设想。利用微颗粒磁控溅射镀膜设备,在直径为1~3mm的发泡聚苯乙烯(EPS)颗粒和轻质擦镜纸表面镀金属铜、镍和银薄膜。把镀膜样品进行3mm电磁波的静态和动态衰减试验研究。静态衰减试验表明:镀金属膜EPS、镀金属膜擦镜纸及镀金属膜空心微珠,对3mm电磁波的静态衰减效果都要好于超薄导电片和箔条。动态衰减试验表明:在浓度相近的情况下,镀铜膜擦镜纸、镀铜膜EPS颗粒和镀镍膜EPS颗粒样品对3mm电磁波单位长度的衰减分贝数都要大于超薄导电片。
Coating thin films on powder particles can improve their application. As a kind of high quality coating method, magetron sputtering method was gradually applied to powder particles. A new magnetron sputtering equipment for coating microparticles was designed and fabricated according to the characteristic of the magnetron sputtering method and powder particles. The magnetron sputtering technology for coating metal films and metal oxide films on microparticles was systematically studied by adopting the method of combing experiment and theory, and growth mechanism of the metal film coated on particles using magnetron sputtering method was also studied in this thesis. At the same time, the applications of all kinds of metal-coated samples were investigated. This thesis mainly contains five points as follows:
     (1) According to the characteristic of microparticles high specific surface area and small dimensions, a new magnetron sputtering equipment for coating microparticles was designed. The sputtering equipment increases an ultrasonic vibration generator and an oscillational sample stage on the basis of the conventional direct current magnetron sputtering equipment. The experiments results showed that the equipment can keep the particles dispersing and tumbling in the deposited area during film growth and lead to each particle having the same probability of being coated. And all kinds of metal films and metal oxide films can successfully coated on various microparticles using the magnetron sputtering equipment.
     (2) Co, Ni, Cu and Ag films films coated on cenosphere particles using a magnetron sputtering deposition system were studied. The surface morphology, the chemical composition, the average grain size, the crystallization and the surface roughness of cenosphere particles were characterized by optical microscope (OM), field emission scanning electron microscope (FE-SEM), atomic forced microscope (AFM), inductively coupled plasma–atom emission spectrometer, x-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) analysis, respectively, before and after the plating process. The results indicate that the relatively uniform, compact and adhesive metal films were successfully deposited on cenospheres through controlling the motion mode of particles during the sputter deposition. With the increasing of sputtering time or the increasing of sputtering power or the decreasing of the particle loading amount, both crystallization and grain size of metal film were improved. Estimated from FE-SEM characterizations in backscattered mode, the film thicknesses for Co, Ni, Cu and Ag films were <10, 39, 50 and 134 nm, respectively, under the same sputtering deposition conditions. This can attribute to the difference in sputtering rate for the four metals. The RMS values derived from the AFM measurements were 1.94, 4.31, 10.92 and 18.33 nm for Co, Ni, Cu and Ag films, respectively, which ascribe to the different crystallization behaviors for the four metals. Metal copper films were successfully deposited on the surface of micrometer SiC using direct current magnetron sputtering method.
     (3) The titania films deposited on cenosphere particles by pulse magnetron sputtering were investigated. SEM results show that the film was uniform and compact; XRD results indicate that the film was titania film and sputtering time is a importance condition to influence the films crystal. With the increasing of sputtering time, the crystallization of the titania film was improved. The titania films coated on cenospheres using magnetron sputtering method were uniform, compact and adhesive.
     (4) The growth mechanism of the metal film coated on cenospheres using magnetron sputtering method was also studied. The unceasingly variational relatively growth angle can eliminate the physical shadowing effect of the sputtering and promote a rather smooth, adhesive and compact film. The adatom mobility characteristic of the material and deposition conditions determines the size of the isolated island. Due to the all-around effect, the final distribution of grains shows a rather smooth morphology with low roughness and the copper films growth is a three-dimensional island growth mode.
     (5) The application research of the metal-coated microparticles was also investigated. The lightweighted metal-coated microparticles were first applied in the fields of shielding electromagnetic. Cu, Ni and Ag films were coated on the surface of many light materials (expanded polystyrene particles, cenosphere and lens papers) using magnetron sputtering equipment The static and dynamic attenuation capability in 3 mm wave band of different metal coated samples were studied. The static attenuation capability results indicated that the attenuation capability was better than the ultrathin electric slice, foil and chaff while its concentration is less than the ultrathin electric slice, foil and chaff. The dynamic attenuation capability results indicated that the attenuation capability of the metal coated samples in unit length is bigger than the ultrathin electric slice.
引文
[1]曾凡,胡永平.矿物加工颗粒学[M].江苏:中国矿业大学出版社, 1995
    [2]曹茂盛.超微颗粒制备科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1998
    [3]陆厚根.粉体工程概论[M].上海:同济大学出版社, 1993
    [4]李凤生,杨毅.纳米/微米复合技术及应用[M].北京:国防工业出版社, 2002
    [5]洪若瑜,李春忠.超细颗粒流态化CVD包覆研究进展及面临的重要课题.自然科学进展一国家重点实验室通讯, 1996, 6(3): 276-281
    [6]张立德.超微粉体制备与应用技术[M].北京:中国石化出版社, 2001
    [7]李凤生.超细粉体技术[M].北京:国防工业出版社, 2000
    [8]小林敏胜.涂膜外形和和颜料分散[J].表面科学(日), 1995, 16(11): 705-709
    [9]陈均志,冯练享,赵艳娜.轻质碳酸钙的改性及其在造纸中的应用[J].纸和造纸, 2006, 25(2): 56-59
    [10]唐宏科,陈均志.重钙作为造纸填料的表面改性[J].广东造纸, 2000, 19(2): 24-27
    [11] Dubcek, P., Radic N., Milat O., et al. Grazing incidence small angle X-ray scattering investigation of tungsten-carbon films produced by reactive magnetron sputtering[J]. Surface and Coatings Technology, 2002, 151-152: 218-221.
    [12] Dirks, A.G., Wolters R.A.M., and De Veirman A.E.M. Columnar microstructures in magnetron-sputtered refractory metal thin films of tungsten, molybdenum and W-Ti-(N)[J]. Thin Solid Films, 1992. 208(2): 181-188.
    [13]王恩泽,郑燕青,鲍崇高等. Al2O3颗粒—耐热钢基复合材料的液相成型技术[J].铸造, 1998(3): 15-18
    [14]朱钧国,杨冰;张秉忠等.流化床化学气相沉积制备包覆燃料颗粒[J].过程工程学报, 2002, 2(增刊): 123-127
    [15]何宝平,杨家宽,杨述华等.具有药物缓释功能的新型热种子的研制[J].材料科学与工程学报, 2007, 25(5): 735-738
    [16]卢杜林,姚跃飞,陈建勇.丝素蛋白膜上5-氟尿嘧啶的固定及其释放性能研究[J].浙江工程学院学报, 1997, 14(4): 271-281
    [17]张辉,孙洁,沈兰萍.空心微珠化学镀银研究[J].电镀与涂饰, 2007, 26(1): 26-29
    [18]张振华,孟锦宏,曹晓晖.空心玻璃微珠表面金属化及电磁性能[J].表面技术, 2006, 36(5): 10-12
    [19] Yu X. Z., Xu Z., Shen Z. G. Metal copper films deposited on cenosphere particles by magnetron sputtering method[J]. J. Phys. D: Appl. Phys. 2007, 40: 2894–2898
    [20] Yu X. Z., Xu Z., Shen Z. G, et al. Fabrication and structural characterization of metal films coated on cenosphere particles by magnetron sputtering deposition[J]. Applied Surface Science, 2007, 253: 7082-7088
    [21] Yu X. Z., Xu Z., Shen Z. G. Preparation and characterization of Ag-coated cenospheres by magnetron sputtering method[J].Nuclear Inst. And Methods in Physics Research,B, 2007,265: 637-640
    [22]俞晓正,徐政,沈志刚.在空心微珠表面磁控溅射镀金属薄膜的研究[J].真空科学与技术学报,2006, 26(3): 247-250
    [23]沈志刚,俞晓正,徐政等.微颗粒表面磁控溅射镀金属膜实验[J].北京航空航天大学学报, 2006, 32(10): 1193-1198
    [24]俞晓正,徐政,沈志刚.微颗粒表面磁控溅射镀金属膜[J].过程工程学报, 2006, 6(S2); 173-178
    [25] Xu Z., Yu X. Z., Shen Z. G. Coating metals on the micropowders by magnetron sputtering method[J]. China Particuology,2007,5, 345-350
    [26] Cai C. J., Yu X. Z., Shen Z. G., et al. A comparison of two methods for metallizing fly-ash cenosphere particles: electroless plating and magnetron sputtering[J]. J. Phys. D: Appl. Phys. 2007, 19, 6026-6033
    [27]徐政,俞晓正,蔡楚江等.空心微珠表面磁控溅射和化学镀金属膜的特性比较[J].过程工程学报, 2006, 6(S2): 183-187
    [28]蔡楚江,俞晓正,沈志刚等.空心微珠表面金属化研究[J]. 2006, S1: 241-244
    [29]华彬,李春忠,韩今依等.流态化CVD制备超细复合粒子的过程机理[J].化工学报, 1994, 45(6): 723-728
    [30]熊隆荣,文玉华,易成等.聚乙二醇-4000包覆Fe3O4磁流体的制备及稳定性研究[J].材料导报, 2007, 21: 195-197
    [31]黄秋婷,黄惠华.微胶囊技术在功能性油脂生产中的应用[J].中国油脂, 2005, 30: 27-29
    [32] Milton Ohring. Materials Science of Thin Films[M]. New York, USA: Academic Press, 2002
    [33]田民波,刘德令.薄膜科学与技术手册[M].北京:机械工业出版社, 1991
    [34]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社, 2003
    [35]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社材料科学与工程出版中心, 2004
    [36]杨烈宇.材料表面薄膜技术[M].北京:人民交通出版社, 1991
    [37]关奎之,李云奇.圆形平面磁控溅射靶的设计[J].真空, 1986, (3): 37-44
    [38]关奎之,张世伟,慈连鳌等. JGP-600型磁控溅射薄膜沉积装置的研制[J].真空, 1997, (1), 30-33
    [39]王芳汀,江忠友,张友发等.同轴圆柱磁控溅射源的换热分析与冷却水参数选择[J].真空, 1997, (5): 21-25
    [40] Yong Y.J., Lee J.Y., Kim H.S., et al. High Resolution Transmission Electron Microscopy Study on the Microstructures of Aluminum Nitride and Hydrogenated Aluminum Nitride Films Prepared by Radio Frequency Reactive Sputtering[J]. Appl.Phys.Lett., 1997, 71(11): 1489-1492
    [41] A.A. Voevodin, P. Stevenson, C. Rebholz, et al. Active Process Control of Reactive Sputter Deposition.Vacuum, 1995, 46(7): 723-729
    [42]曲喜新.薄膜物理[M].上海:上海科学技术出版社, 1986
    [43]刘金声.离子束沉积薄膜技术及应用[M].北京:国防工业出版社, 2003
    [44]陈国平.薄膜物理与技术[M].南京:东南大学出版社, 1993
    [45]沃森J. L.,刘光诒译.薄膜加工工艺[M].北京:机械工业出版, 1987
    [47] R.V. Stuart.Vacuum technology, thin films, and sputtering:an introduction[M]. New York: Academic Press, 1983
    [48]薛增泉,吴全德,李浩.薄膜物理[M].北京:电子工业出版社, 1991
    [49]杨邦朝,王文生.薄膜物理与技术[M].成都:电子科技大学出版社, 1994
    [50] Choy K. L.. Chemical Vapour Deposition of Coatings[J]. Progress in Materials Science, 2003, 48(2): 57-170
    [51]孟广耀.化学气相淀积与无机新材料[M].北京:科学出版社, 1984
    [52] Wang Z. L., Liu Y., Zhang Z.. Handbook of Nanophase and Nanostructured Materials-Synthesis[M]. Beijing: Tsinghua University Press, 2002
    [53]匡洞庭,周桂江,刘广舜等.超微粒子制备方法进展[J].大庆石油学院学报, 2000, 24(2): 31-35
    [54]李春忠,韩今依,胡黎明等.氧化铝粒子化学气相包覆氧化钛的过程研究[J].化工学报, 1995, 46(2): 193-199
    [55]李大成,周大利,刘恒等.超微粉体的制备(二)[J].四川有色金属, 1999(3): 11-15
    [56]张燕红,邱向东,赵谢群等.超细(纳米级)颗粒材料的制备(二) [J].稀有金属, 1998, 22(1): 60-62
    [57]汪雷. ZnO薄膜生长技术的最新研究进展[J].材料导报, 2002, 16(9): 33-36
    [58] De Rosa H., Cardús G.; Broitman E., et al. Structural properties of AlSn thin films deposited by magnetron sputtering[J]. Journal of Materials Science Letters, 2001, 20(14): 1365-1367
    [59] Hu W, Guan H., Sun X., et al. Graded coatings prepared by plasma spraying with Ni-coated ZrO2 powders[J]. Surface & Coatings Technology, 1998, 105(1-2): 102-108
    [60] Kang B S , Won C. W., Chun B.S. et al. Preparation of nickel-coated alumina composite powder by an aqueous - phase reduction process [J]. Journal of Materials Science , 1995, 30(15): 3883-3887
    [61] Shi X. Liu Y, Li X, et al. Metallization of piezoelectric ceramic surface[J]. Plating and Surface Finishing, 1997, 84(3): 63-68
    [62] Lee W. Y., Bae Y. W., More K. L. et al. Synthesis of functionally graded metal-ceramics microstructure by CVD[J]. Journal of Materials Research, 1995, 10(12): 3000-3005 [63 ] Permyakov L N , Pirogov M. S., Potekhin V. D. et al. The structure of cermets manufactured by hot pressure impulse methods[J]. Advances in Powder Metallurgy & Particulate Materials, 1992, 8: 299-305
    [64]石磊,刘君武,王支相等. SiC颗粒表面改性对SiCp/Fe烧结及性能的影响[J].合肥工业大学学报(自然科学版), 2000, 23(2): 177-181
    [65] Kretz F., Gacsi Z., Kovacs J., et al.. The electroless deposition of nickel on SiC particles for aluminum matrix composites[J]. Surface and Coatings Technology, 2004, 575: 180-181
    [66]张晓宁,葛凯勇,王群等. SiC粉表面改性技术研究及其在电磁功能材料方面的应用[J].功能材料, 2001, 10(S): 1118-1121
    [67]葛凯勇,王群,张晓宁等.碳化硅吸波性能改进的研究[J].功能材料与器件学报, 2002, 8(3): 263-266
    [68] León C. A. and Drew R. A. L. Small punch testing for assessing the tensile strength of gradient Al/Ni–SiC composites[J]. Materials Letters, 2002, 56(5): 812-816
    [69] León C. A. and Drew R. A. L. Preparation of nickel-coated powders as precursors to reinforce MMCs[J]. Journal of Materials Science, 2000, 39(19): 4763-4768
    [70] Shu K. M. and Tu G. C. The microstructure and the thermal expansion characteristics of Cu/SiCp composites[J]. Materials Science and Engineering A, 2003, 349(1-2): 236-247
    [71]王玲.用化学镀实现陶瓷微粒表面金属化[J].材料保护, 1998, 31(7): 16-18
    [72]何志亮,邢建东,高义民.陶瓷颗粒化学镀镍工艺及设备[J].电镀与精饰, 2003, 25(3): 27-29
    [73]范启义,凌国平,郦剑.化学镀铜法制备纳米Cu-Al2O3复合粉体的研究[J].材料科学与工艺, 2002, 10(4): 357-361
    [74]刘远廷,凌国平,郦剑.纳米Al2O3p化学镀铜复合粉末的烧结致密化[J].中国有色金属学报, 2004, 14(3): 471-478
    [75]王疆,郦剑,凌国平等.纳米Cu-Al2O3复合材料的烧结法制备研究[J].材料科学与工程学报, 2004, 22(6): 893-895
    [76]黄磊,凌国平,郦剑.纳米Ag-Al2O3复合粉末的制备[J].浙江大学学报(工学版), 2003, 37(1): 65-69
    [77] Silvain J. F., Bobet J. L., Heintz J.M. Electroless deposition of copper onto alumina sub-micronic powders and sintering[J]. Composites Part A: Applied Science and Manufacturing. 2002, 33(10): 1387-1390
    [78] Shukla S., Seal S Electroless Copper Coating of Zirconia Utilizing Palladium Catalyst[J]. Journal of the American Ceramic Society, 2003, 86(2): 279-285
    [79]尹周澜,郭淑玲,周建.石墨粉末上化学镀镍研究[J].新型炭材料, 1998, 13(4): 46-49
    [80]尹周澜,郭淑玲,郭华军.镀镍石墨粉的电化学性质[J].中国有色金属学报, 2000, 10(3): 433-436
    [81]黄鑫,王贵青,贺子凯.石墨粉表面化学镀铜工艺研究[J].机械工程材料, 2002, 26(11): 33-35
    [82]屈战民.石墨粉末化学镀镍及化学镀银工艺[J].电镀与精饰, 2007, 29(6): 24-27
    [83]屈战民.用于电磁屏蔽与吸收材料的镀镍石墨粉的研究[J].电镀与环保, 2007, 27(4): 29-31
    [84]屈战民.石墨粉末化学镀镍工艺研究[J].电镀与涂饰, 2007, 24(2): 21-24
    [85]仝奎,徐恩霞,辛荣生等.金刚石表面化学镀镍工艺[J].材料保护, 2000, 33(2): 19-21
    [86]余家国,程蓓,叶小川等.金刚石颗粒表面化学镀镍及其在树脂磨具中的应用[J].机械工程材料, 1997, 21(1): 27-29
    [87]王艳辉,王明智,关长斌.金刚石表面镀镍工艺研究[J].表面技术, 1993,22(1):12-14
    [88]赵振艳,赵强,安会芬等.金刚石表面化学镀Ni-P[J].电镀与涂饰, 2006, 25(5): 13-15
    [89]袁定胜,刘应亮,李颖.金刚石化学镀Cu-Ni-P工艺的研究[J].材料保护, 2005, 38(6): 33-37
    [90] Alivisatos A. P.. Semiconductor clusters nanocrystals and quantum dots[J]. Science, 1996, 271: 933-937
    [91] Shukla S., Seal S,. Akesson J. Study of Mechanism of electroless copper coating of fly ash cenosphere particles[J].Applied Surface Sciense, 2001, 182: 35-50
    [92] Shukla S., Seal S., Rahaman Z. Electroless copper coating of fly ash cenospheres using silver nitrate activator[J]. Materials Letters, 2002, 57: 151-156
    [93]杜玉成,黄坤良.空心微珠为基核的纳米隐形材料的制备研究[J].中国非金属矿工业导刊, 2001, (6): 19-21
    [94]毛倩瑾,于彩霞,王群等.空心微珠表面金属化及其电磁防护性能研究[J].北京工业大学学报, 2003, 29(2): 108-111
    [95] Cai C. J., Shen Z. G., Wang M. Z., et al. Surface metallization of cenospheres and Precipitators by electroless plating[J].China Particuology, 2003, 1(4): 156-161
    [96]全北平,徐宏,古宏晨等.粉煤灰空心微珠的研究与应用进展[J].化工矿物与加工, 2003(11): 31-33
    [97]葛凯勇,王群,毛倩瑾等.空心微珠表面改性及其吸波特性[J].功能材料与器件学报, 2003, 9(1): 67-70
    [98]曾爱香,熊惟浩,徐坚等.空心微珠表面化学镀Ni-Co-P合金镀层研究[J].材料保护, 2004, 37(4): 16-17
    [99]刘家琴,吴玉程,薛茹君.空心微珠表面化学镀Ni-Co-P合金[J].物理化学学报, 2006, 22(2): 239-243
    [100]徐坚,熊惟皓,曾爱香.银催化化学镀合金包覆空心微珠粉体的制备[J].稀有金属材料与工程, 2007, 36(1): 141-144
    [101] ]魏美玲,任卫,程之强等.超细陶瓷粉及铁粉的表面化学包覆改性的研究[J].现代技术陶瓷, 2000, 83(1): 3-6
    [102]熊小东,翟玉春,田彦文等.铝粉化学镀纯镍的机理[J].东北大学学报(自然科学版),1996, 17(s): 512-5l5
    [103]熊小东,田彦文,翟秀静等.化学镀法制备镍包覆铝粉[J].中国有色金属学报, 1996, 6(4): 39-42
    [104] Hanyaloglu. S. C., Aksakal. B., Mccolm. I. J. Reactive sintering of electroless nickel plated aluminum powders[J]. Materials Characterizetion, 2001,47(1): 9-16
    [105] Paez L. R., Matousek J. Preparation of TiO2 sol-gel layers on glass[J]. Ceramics-Silikaty, 2003, 47(1): 28-31
    [106] Sonawane R. S., Hegde S. G. Dongare M. K. Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating[J]. Materials Chemistry and physics, 2003, 77(3): 744-750
    [107] Agrafiotis C., Tsetsekou A., Stournaras C. J., et al. Evaluation of sol-gel methods for the synthesis of doped-ceria environmental catalysis systems. Part I: preparation of coatings[J]. Journal of the European Ceramic Society, 2002, 22(1):15-25
    [108] Boulle A., Oudjedi Z., Guinebretiere R., et al.. Ceramic nanocomposites obtained by sol-gel coating of submicron powders[J]. Acta Materialia, 2001, 49 (5): 811-816
    [109] Hanada K., Takagi H., Murakoshi Y., et al.. Improvement of interface in SiC particle-reinforced Al-Li composite by sol-gel coating technique[J]. Materials and Manufacturing Processes, 2000, 15(2): 183-198
    [110] Ruys A. J., Mai Y. W. The nanoparticle-coating process: a potential sol-gel route to homogeneous nanocomposites[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 1999, 265(1-2): 202-207
    [111] Zhou Q. F., Tang X. C. Yin L. S., et al.. Nanocrystalline powder and thin films of calcium and lanthanum modified lead titanate by the Sol-gel process[J]. Journal of the Korean Physical Society, 1998, 32: 1380-1383
    [112] Bursik J., Niznansky D., Subrt J., et al. Sol-gel thin films of BaFe12O19 from chemically modified alkoxide precursors[J]. Journal of Sol-Gel Science and Technology, 1997, 8(1-3): 941-946
    [113] Bursik J., Simsa Z., Cernansky M.. Magneto-optical characteristics of Co, Ti-substituted barium hexaferrite films deposited by the dip-coating method[J]. Journal of Sol-Gel Science and Technology, 1997, 8(1-3): 947-951
    [114]徐明霞.溶胶-凝胶法莫来石被覆SiC复合微粒子的制备[J].硅酸盐通报, 1996, (1): 31-35
    [115]曾爱香,熊惟浩,王采芳.溶胶-凝胶法制备空心微珠表面钡铁氧体包覆层的研究[J].材料保护, 2004, 37(9), 19-21
    [116] Zeng A. X., Xiong W. H., Wang C. F., et al. Structure and Properties of BaFe12O19 Coated Fly Ash Cenospheres by Sol-Gel Process[J]. 2006, 21(3): 129-131
    [117]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社, 2006
    [118] Wang B., Ji Z., Zimone F. T., et al. A technique for sputter coating of ceramic reinforcement particles[J], Surface and Coatings Technology , 1997, 91(1-2): 64-68
    [119]. Fernandes C. M, Ferreira V. M., Senos A. M. R., et al. Stainless steel coatings sputter-deposited on tungsten carbide powder particles[J]. Surface and coating technology, 2003, 176(1): 103-108
    [120] Kersten H., Schmetz P., Kroesen G. M. W. Surface modification of powder particles by plasma deposition of thin metallic films[J]. Surface and coating technology, 1998, 108-109(1-3): 507-512
    [121] Ensinger W.. Processing of powder surfaces by ion beam techniques[J]. Nuclear Instruments and Methods in Physics Research B, 1999, 148(1-4):17-24
    [122] Hara M., Hatano Y., Abe T.,et al.. Hydrogen absorption by Pd-coated ZrNi prepared by using Barrel-Sputtering System[J]. Journal of Nuclear Materials 2003, 320(3): 265-271
    [123] Abe T., Akamaru S., Watanabe K. Surface modification of Al2O3 ceramic grains using a new RF sputtering system developed for powdery materials[J]. Journal of Alloys and Compounds 2004, 377(1-2): 194–201
    [124] Akamaru S, Higashide S., Hara M., et al. Surface coating of small SiO2 particles with TiO2 thin layer by using barrel-sputtering system[J]. Thin Solid Films 2006, 513(1-2): 103–109
    [125] Abe T., Akamaru S., Watanabe K, et al. Surface modification of polymer microparticles using a hexagonal-barrel sputtering system[J]. Journal of Alloys and Compounds 2005, 402(1-2) 227–232
    [126]陈松涛,李松田,闫永胜等.空心微珠的开发及应用研究进展[J].环境科学与管理, 2007, 32(3): 103-107
    [127]李云凯,王勇,高勇.空心微珠简介[J].兵器材料科学与工程, 2002, 25(3): 51-54
    [128]苑金生.粉煤灰空心微珠的开发与应用[J].房材与应用, 1997, (4): 26-29
    [129]边炳鑫,宋志伟,艾淑艳.粉煤灰空心微珠的特性及综合利用研究[J].煤炭加工与综合利用, 1997, (3):38-40
    [130] Xu H. F., Xu L.N., Gu N., et al. A new electromagnetic functional material composed of metallic hollow micro-spheres[J]. Journal of Southeast University(English Edition) 2003, 19(1): 8-11
    [131]王丽君,王文焱,李致清. ICP-AES光谱仪的技术特点[J].现代仪器, 2005, (3): 54-55
    [132]靖晶,霍亮生. ICP-AES光谱仪的研制及其分析软件的设计[J].北京工商大学学报(自然科学版), 2005, 23(6): 31-34
    [133]方克明.超微试样超薄片的制备[P].中国专利: 85105786, 1985-07-31
    [134]陈曙光,刘君武,丁厚福.化学镀的研究现状、应用及展望[J].安徽化工, 1999, (6): 23-25
    [135]郭海祥.化学镀技术应用新进展[J].金属热处理, 2001, (1): 9-12
    [136]刘静萍,葛圣松,孙宏飞等.化学镀的国内外研究现状及展望[J].山东机械, 2001, (2): 2-5
    [137] Martínez V., Valencia M. F., Cruz J., et al. Chejne.Production ofβ-SiC by pyrolysis of rice husk in gas furnaces[J]. Ceramics International 2006, 32(8): 891–897
    [138] Chung W S, Chang S Y, Lin S J. Electroless nickel plating on SiC powder with hypophosphite as a reducing agent[J]. Plating & Surface Finishing, 1996, 83(3): 68-71
    [139] Zhang R., Gao L., and Guo J. K. Preparation and characterization of coated nanoscale Cu/SiCp composite particles[J]. Ceramics International,2004, 30(3): 401-404
    [140] Chen C K, Feng H M, Lin H C. The effect of heat treatment on the microstructure of electroless Ni-P coatings containing SiC particles[J]. Thin Solid Films, 2002, 11(416): 31-37
    [141] Grosjean A., Rezrazi M., Takadoum J., et al. Hardness, friction and wear characteristics of nickel-SiC electroless composite deposits[J]. Surface and Coatings Technology,2001, 137(1): 92-96
    [142] Hwang D. K., Bang K. H., Jeong M. C., et al. Effects of RF power variation on properties of ZnO thin films and electrical properties of p–n homojunction[J]. Journal of Crystal Growth, 2003, 254(3): 449-455
    [143] Cheng F.X., Jiang C.H., Wu J.S.. Effect of sputtering input powers on CoSi2 thin films prepared by magnetron sputtering[J]. Materials and Design, 2005, 26(4): 369-372
    [144] H. Bellakhder, A. Outzourhit, E.L. Ameziane. Study of ZnTe thin films deposited by r.f. sputtering[J]. Thin Solid Films, 2001, 382(1-2): 30-33
    [145] Ratsch C., Venables J. A. Nucleation theory and the early stages of thin film growth[J]. J. Vac. Sci. Technol. A, 2003, 21(5): S96-S109
    [146] Petrov I., Barna P.B., Hultman L., et al. Microstructural evolution during film growth[J]. J. Vac. Sci. Technol. A, 2003, 21(5): S117-S128
    [147] Kaiser N.. Review of the fundmentals of thin film growth[J]. Applied Optics, 2002, 41(16): 3053-3060
    [148] Zhang P. F., Zheng X. P., Wu S. P., et al. A computer simulation of nucleation and growth of thin films[J]. Computational Materials Science, 2004, 30(3-4) : 331-336
    [149] Zhang P. F., Zheng X. P., Wu S. P., et al. Kinetic Monte Carlo simulation of Cu thin film growth[J]. Vacuum, 2004, 72(4): 405-410
    [150]杨宁;陈光华;张阳等.薄膜生长的理论模型与Monte Carlo模拟[J].物理学报, 2000, 49(11): 2225-2229
    [151]李言荣;杨春.薄膜生长与原子尺度的计算机模拟[J].重庆师范学院学报(自然科学版), 2002, 19(3): 1-6
    [152] Fujishima A, Honda K. Electrochemical photolysis of wateral a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38
    [153] Yu J. G., Zhao X. J., Du J. C., et al. Preparation, microstructure and photocatalytic activity of the porous TiO2 anatase coating by Sol-Gel processing[J]. Journal of Sol-Gel science and technology, 2000, 17(2): 163-171
    [154] Grzechulska J., Morawski A. W. Photocatalytic decomposition of azodye acid black 1 in water over modified titanium dioxide[J]. Applied Catalysis B: Environmental. 2002, 36(1): 45-51.
    [155]赵文宽,方佑龄,董庆华.太阳能光催化降解水面石油的研究[J].武汉大学学报(自然科学版), 2000, 46(2): 133-136
    [156] Lettmann C., Hildenbrand K., Kisch H., et a1.Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst[J]. Applied Catalysis B: Environmental, 2001, 32(4): 215-227
    [157] Harada K., Hisanaga T., Tanaka K. Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions[J]. Water Research, 1990, 24(11): 1415-1417
    [158] Kajihara K., Yao T., Macroporous morphology of the titania films prepared by a Sol-Gel dip-coating method from the system containing poly(ethylene Glycol). III. Effect of chemical additives[J]. Journal of Sol-Gel Science and Technology, 1999, 16(3): 257-266
    [159]于向阳,程继健,杜永娟. TiO2光催化薄膜的制备法[J].玻璃与搪瓷, 2001, 29(1): 37~41
    [160] Attia S. M.,王钰,吴广明等.溶胶-凝胶法制备TiO2薄膜及其光学特性[J].同济大学学报, 2001, 29(10): 1209-1212
    [161]朱永法,何俣,张利.多孔薄膜型TiO2光催化剂及其环境净化研究.宁夏大学学报(自然科学版) [J], 2001, 22(2): 217-218
    [162]戴松元,邬钦崇,王孔嘉等.TiO2(锐钛矿)纳米晶体薄膜的制备[J].科学通报, 1996, 41(17): 1560-1562
    [163] Zhu Y. C., Ding C. X. Plasma spraying of porous nanostructured TiO2 film[J]. Nanostructured materials, 1999, 11(3), 319-323
    [164] Rashti M A, Brodie D E. The photoresponse of high resistance anatase TiO2 films prepared by the decomposition of titanium isopropoxide[J]. Thin Solid Films. 1994, 240(1-2):163-167
    [165]周磊,刘昌,赵文宽等.液相沉积法制备光催化活性掺铁TiO2薄膜[J].催化学报, 2003, 24(5): 359-363
    [166] Ha H. Y., Nam S. W., Lim T. H., et al. Properties of the TiO2 membranes prepared by CVD of titanium tetraisopropoxide[J]. Journal of Membrane Science.1996, 111(1): 81-92
    [167] Herman G. S., Gao Y., Tran T. T. et al. X-ray photoelectron diffraction study of an anatase thin film: TiO2(001)[J]. Surface Science. 2000, 447(1-3): 201-211
    [168]郭清萍,武正簧,赵君芙等. CVD法TiO2薄膜的制备条件及光学性质的研究[J].太原理工大学学报, 1998, 29(3): 24-~243
    [169] Kim T. H., Sohn B. H. Photocatalytic thin films containing TiO2 nanoparticles by the layer-by-layer self-assembling method[J]. Applied Surface Science, 2002, 201 (1-4),: 109-114
    [170]董昊,张永熙,杨锡良等.直流反应磁控溅射制备二氧化钛薄膜的光催化性能研究[J].真空科学与技术, 2000, 20(7): 252-255
    [171] Dimitrov D. B, Koprinarova J., Pazov J. Conductivity of micro-porous magnetron-sputtered thin TiO2 films[J].Vacuum, 2000, 58(2-3): 344-350
    [172] Zheng S. K., Wang T. M., Xiang G., et al. Photocatalytic activity of nanostructured TiO2 thin films prepared by dc magnetron sputtering method[J].Vacuum, 2001, 62(4): 361-366
    [173] Okimura K. Low temperature growth of rutile TiO2 films in modified rf magnetron sputtering[J]. Surface and Coatings Technology, 2001, 135: 286-290
    [174] Yamagishi M., Kuriki S., Song P. K. Thin film TiO2 photocatalyst deposited by reactive magnetron sputtering[J].Thin Solid Films,2003, 442(1-2): 227-231
    [175] Treichel O., Kirchhoff V. The influence of pulsed magnetron sputtering on topography and crystallinity of TiO2 films on glass[J]. Surface and Coatings Technology, 2000, 123(2-3): 268-272
    [176]张素香,屈撑囤,王新强.光催化剂改性及固定化技术的研究进展[J].工业水处理, 2002, 22(7): 12-15
    [177]钟春妮,罗亚田,皮科武.光活性TiO2膜的制备技术综述[J].黄石高等专科学校学报, 2003, 19(2): 58-61
    [178]颜秀茹,李晓红,宋宽秀等.粉末状和薄膜状TiO2对敌敌畏的光催化降解[J].感光科学与光化学, 1999, 17(4): 330-333
    [179]李田,严煦世.实用型固定膜光催化氧化装置去除水中苯酚[J].同济大学学报, 1995, 23(4): 393-397
    [180]孔令仁,陈曦,杨曦.附着态半导体光催化剂光解可溶性染料的研究[J].环境科学学报,1996, 16(4): 406-411
    [181]符小荣,张校刚,宋世庚等. TiO2/ Pt/glass纳米薄膜的制备及对可溶性染料的光电催化降解[J].应用化学, 1997, 14(4): 77-79
    [182] Young Ku, Chi-ming Ma, et al. Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile[J]. Applied Catalysis B:Environmental, 2001, 34 (3) :181-190
    [183] Yiming Xu, Cooper H. Langford. Photoactivity of titanium dioxide supported on MCM41, Zeolite X, and Zeolite Y. J. Phys. Chem. B.[J], 1997, 101:3115-3121
    [184]王光华,董发勤,司琼.电磁屏蔽导电复合塑料的研究现状[J].材料导报, 2007, 21(2): 22-25
    [185]何益艳,杜仕国,姜志博.电磁屏蔽导电塑料的研究进展[J].材料导报, 2003, 17(2): 49-51
    [186]凌国平,张超,岳远见.金属包覆型复合粉末及其在工程材料中的应用[J].机械工程材料, 2005, 35(5): 545-547
    [187] Kim S. S., Kim S. T., Ahn J. M., et al. Magnetic and microwave absorbing properties of Co–Fe thin films plated on hollow ceramic microspheres of low density[J]. Journal of Magnetism and Magnetic Materials, 2004, 271(1): 39-45
    [188]王宇,张骁勇,毛丽等.空心玻璃微珠化学镀银的研究[J].材料科学与工程学报, 2004, 22(5): 753-756
    [189]赵雯,张秋禹,袁定重等.空心玻璃微球化学镀镍前处理工艺的研究[J].材料保护, 2004, 37(3): 33-35
    [190]张嘉,闫康平,王伟等.金属包覆型复合微球的电磁应用进展[J]. 2006, 13(5): 36-40
    [191]肖雷.毫米波雷达的发展状况及其应用[J].集成电路通讯, 2007, 25(2): 37-40
    [192]黄昊.干扰毫米波用可膨胀石墨的制备及其性能表征[D].南京:南京理工大学硕士学位论文, 2006
    [193]伍士国.可膨胀石墨瞬时膨化与衰减8毫米波动态特性研究[D].南京:南京理工大学硕士学位论文. 2003
    [194]任丽娜,曲延滨.毫米波与红外技术在军事领域中的应用[J].红外技术, 2004, 26(3): 66-70
    [195]关华,潘功配,王广等.三维空间中的膨胀石墨对毫米波衰减性能实验研究[J].含能材料, 2004, 12 (5): 273-276
    [196]付伟.毫米波无源干扰技术的发展现状[J].火控雷达技术, 2001, 30(3): 22-26
    [197]余方全.从毫米波特性看舰艇对毫米波制导导弹的对抗[J].舰船电子对抗, 2000, (6): 23-26
    [198]郑卫平,缪云坤,金宝源等.短切碳纤维丝云团对毫米波的干扰作用研究[J].防化研究, 2000, (l): 6-11
    [199]关华,潘功配,朱晨光等.膨胀石墨与常规毫米波干扰材料性能对比[J].弹箭与制导学报, 2004, 24(4): 76-78
    [200]朱长江,陈作如.膨胀石墨的毫米波二维平面衰减性能研究[J].材料科学与工程, 2002, 20(4): 487-489
    [201]朱长江,陈作如.膨胀石墨的毫米波二维平面散射截面研究[J].材料科学与工程学报, 2003, 21(3): 350-352
    [202]关华,潘功配,姜力.膨胀石墨对3mm、8mm波衰减性能研究[J].红外与毫米波学报, 2004, 23(1): 72-76
    [203]苏涛译.德国NICO公司研制的多频谱烟雾剂[J].弹箭科技动态, 1994, (4): 30-34
    [204]杜桂萍,缪云坤,张良等.膨胀石墨对3mm波衰减性能研究[J].火工品, 2005, (1): 13-17
    [205]吴昱,尹喜凤,崔建林等.可膨胀石墨在爆炸分散型发烟剂中的应用[J].火工品, 2004, 27-30
    [206]任慧,焦清介,崔庆忠.膨胀石墨干扰8毫米波特性研究[J].兵工学报, 2006, 27(6): 994-997
    [207]任慧,康飞宇,焦清介等.掺杂磁性铁粒子膨胀石墨的制备及其对毫米波的干扰作用[J].新型炭材料, 2006, 21(1): 24-29
    [208]胡晓春,乔小晶,薛富民.膨胀石墨用作烟幕材料衰减毫米波性能研究[J].宇航材料工艺, 2005, (5): 41-44
    [209]周明善,李澄俊,徐铭.膨胀石墨复合材料的电磁特性及其3mm、8mm波动态衰减性能研究[J].无机材料学报, 2007, 22(3): 509-513
    [210]潘功配,关华,朱晨光等.可膨胀石墨用作抗红外/毫米波双模发烟剂的研究[J].含能材料, 2007, 15(1): 70-72
    [211]周明善.超薄导电片衰减3 mm波特性研究[D].南京:南京理工大学硕士学位论文, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700