硅芯片封装用球形SiO_2与环氧树脂复合材料的制备工艺与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为集成电路的核心,硅芯片从其设计到封装都是现代科学技术高度融合的产物。芯片封装与测试是芯片生产的最后一道关键工序,封装材料的品质直接影响到芯片的工作性能。环氧树脂体系封装材料因具有高可靠性、低成本、生产工艺简单等特点已远远超越了金属封装材料和陶瓷封装材料,占据了封装材料的绝大部分市场,并广泛应用于军事、民用电子器件领域。
     超大规模集成电路的高度集成化和绿色化发展对封装材料提出了更高的要求,主要包括球形二氧化硅填充材料、高性能环氧树脂以及无卤阻燃等方面。本论文围绕环氧树脂封装材料,在球形二氧化硅的制备、选型以及本征阻燃环氧树脂体系的研究方面取得了一定突破,为进一步开发环保型环氧塑封料奠定了坚实的基础。研究成果如下:
     1.采用工业级原材料,通过紊流循环法大批量合成了球形二氧化硅水合物,经过热处理得到球形二氧化硅,实验结果表明所合成的二氧化硅球形率高达95%以上,纯度达到99.98%,粒度在1-10μ.m(d50)之间可以调控。研究了五种规格的球形二氧化硅对多种环氧树脂复合物体系流动性的影响,发现对于同一种环氧树脂体系,SS2(d50=2.5μm)组分填充的复合物体系的流动性能明显优于其他组分填充的复合物体系。建立了适合五种球形二氧化硅粒度分布特征的级配模型,指出了在模型参数为0.44时可以得到最紧密堆积,通过多元线性回归得到了较合理的实际级配方案,实验证明级配对于提高球形二氧化硅在环氧树脂体系中的填充量是有效的,并将该方案应用于后续实验中。
     2.设计和建立了与实际相接近的实验室环氧塑封料制备工艺,改进了原料的共混工艺、熔融软化过程、粉碎成饼和固化成型工艺,设计制作了一套适用于环氧塑封料性能测试的模具,进一步完善了环氧塑封料螺旋流动长度、热膨胀系数、阻燃性能和吸湿性测试程序;建立了一套环氧塑封料原材料的质量检测方法,包括树脂的环氧当量、羟基当量、氯离子含量以及二氧化硅填充剂的测试方法。
     3.通过热分析手段研究了包覆型三苯基膦促进剂EPCAT-TPP对邻甲酚醛环氧树脂与酚醛树脂的固化反应过程的催化作用,并确定该体系的固化条件为150℃前固化2h,180℃后固化6h;确定了在螺旋流动长度为100 cm时邻甲酚醛单组份环氧树脂体系的二氧化硅填充量为62%,该体系固化后的热膨胀系数达到了70.91×10-6K-1,弯曲强度达到了132.56 MPa(30℃);研究了添加低粘度环氧树脂的邻甲酚醛双组份体系的固化行为,在螺旋流动长度为100 cm时,该系列体系的最佳填充量可达到73%,其中添加联苯环氧树脂的填充体系在固化后性能最佳,其热膨胀系数达到了47.81×10-6K-1,弯曲强度达到了237.05 MPa(30℃),阻燃性能达到了FV-1级别,吸湿性为0.345%。
     4.制备了新型含氮磷的阻燃剂AEDPH4,获得了其单晶结构并进行了相关表征。用DSC方法表征了添加AEDPH4后邻甲酚醛环氧树脂体系的固化行为特征,发现固化反应温度降低,体系粘度增大,通过实验确定该体系的固化程序为130℃时前固化4h,180℃时后固化4h。制备了含1 wt%AEDPH4阻燃剂的邻甲酚醛E5-1双组份体系的固化成型样条,其热膨胀系数为49.14×10-6K-1,弯曲强度为225.13 MPa(30℃),阻燃级别达到FV-0级,吸湿性为0.398%,结果表明除了阻燃级别有所提高外,弯曲强度、吸湿性和膨胀系数都不如E5-1体系,而且成型加工性能变差。
     5.采用热分析手段表征了本征阻燃联苯型环氧树脂与新型酚醛固化剂的固化反应特征,进一步证实了包覆型三苯基膦促进剂EPCAT-TPP对该体系固化反应进程的控制作用;通过研究单组份联苯环氧树脂体系螺旋流动长度与球形二氧化硅填充量的关系确定该体系在螺旋流动长度为100 cm时的填充量为76%,该体系固化后热膨胀系数为45×10-6K-1,弯曲强度为139.68 MPa(30℃),阻燃级别达到FV-0级,吸湿性为0.68%;在该体系中添加其他低粘度环氧树脂后,球形二氧化硅的最佳填充量达到了78%;该填充量下的双组份联苯环氧树脂体系固化后,四种体系的热膨胀系数和弯曲性能趋向一致,其中添加双环戊二烯型环氧树脂的N3-1体系性能最佳,热膨胀系数为42.72×10-6K-1,弯曲强度为190.53 MPa(30℃),阻燃级别达到FV-0级,吸湿性为0.47%。
As the core of modern integrated circuits, silica chip from its design to package is a high degree integration of multiple disciplines of human knowledge and technology. Chip package and testing is the final and key procedure in chip production process. The quality of packing materials has an vital effect on the performance of the packaged device. For the high reliability, low cost and simple production technology suitable for large scale production, epoxy molding compounds (EMC) have accounted for the majority of materials market so far beyond the metal packaging materials and ceramics packaging materials, and been widely used in many military and civilian electronics field.
     The rapid development of VLSI made more strict requirements for packaging materials, including spherical silica filler, high performance epoxy resin and halogen-free flame retardant and so on. As for epoxy encapsulation material, this paper has made some breakthroughs in the preparation and grade of spherical silica and the intrinsic flame retardant epoxy resin system, and laid a solid foundation for further development of environmentally friendly epoxy molding compound. The main results are as follows:
     1. Large scale synthesis of spherical silica hydrate was conducted by using industrial grade raw materials and turbulent flow cycle method. Micron spherical silica were obtained after heat treatment and the quality indexes of products were characterized in detail, the results show that the rate of spherical balls is above 95%, the purity of silica has achieved 99.98%, and the particle size can be adjusted and controlled between 1~10μm (d50). The effect of five kinds of spherical silica on the flowability of several kinds of epoxy resin system was studied, and the results showed that the system filled with SS2 (d50= 2.5μm) component exhibited better flowability than the other kinds of spherical silica in the same epoxy system. Through the establishment of close packing spherical particles model according to the particle size distribution of five kinds of spherical silica, we know that the closest packing can be achieved when the model parameters n=0.44. The reasonable solution was obtained by multiple linear regression of the actual size distribution. Experiments proved that the grading of spherical silica is effective to improve the content of spherical silica filler in the epoxy resin system, and the grade solution has been used in our following experiments.
     2. A laboratory preparation process of epoxy molding compound was designed and established according to the actual industrial production, and a set of mold was designed for the of testing EMC performance. The blending process of raw material, process of melting & softening and molding process were all improved in our experiments. The testing procedures of the spiral flow length, thermal expansion coefficient, flame retardant and moisture of epoxy molding compound were further improved. A set of quality testing method for the raw materials of epoxy molding compound was established, including the epoxy equivalent, hydroxyl equivalent, chloride content of resin and the testing methods of silica filler.
     3. The effect of the coated triphenylphosphine accelerator (EPCAT-TPP) on the curing reaction of the o-cresol formaldehyde epoxy resin and phenolic resin was studied by means of thermal analysis and the curing conditions of 150℃2h+180℃6h was determined. When the spiral flow length of o-cresol formaldehyde epoxy resin system is 100 cm, the appropriate filled loading of this system is 62%, the thermal expansion coefficient (CTE) of this cured system was 70.91×10-6 K-1, and the bending strength was 132.56 MPa (30℃). The curing behavior of two-component system made of o-cresol formaldehyde epoxy resin by adding lower viscosity resin was studied. The filler loading could reach 73% when the spiral flow length was 100 cm, The system made from o-cresol formaldehyde epoxy and biphenyl epoxy resin exhibited best performance:the CTE reached 47.81×10-6K-1, bending strength was 237.05 MPa (30℃), flame retardant properties reached the FV-1 level and the moisture absorption was 0.345%.
     4. The single crystal and powder of a new flame retardant containing nitrogen and phosphorus AEDPH4 are synthesized and characterized. We can find from the DSC figure that the curing temperature is lower and the viscosity increases after adding 1wt% AEDPH4 to the o-cresol formaldehyde epoxy resin system. The new curing process of 130℃4h+180℃4h was determined. The E5-1 system containing 1 wt% AEDPH4 was prepared, the CTE of this cured system was 49.14×10-6 K-1, the bending strength was 225.13 MPa (30℃), the flame retardant grade reached the FV-0 degree and the moisture absorption was 0.398%. The results showed that in addition to the increased levels of flame retardant, the bending strength, water absorption and coefficient of expansion was not as good as E5-1 system, and the processing behavior was getting even worse.
     5. The characteristics of the curing reaction of the intrinsic flame retardant biphenyl resin system were studied by the method of thermal analysis. The catalyst and control action of the coated triphenylphosphine accelerator EPCAT-TPP on the curing process of the system was further confirmed. When the spiral flow length of this biphenyl system is 100 cm, the appropriate filled loading of this system is 76%. The CTE of this cured system was 45×10-6 K-1, and the bending strength was 139.68 MPa (30℃), the flame retardant properties reached the FV-0 level and the moisture absorption was 0.68%. The filler loading reached 78% when this system modified by other low viscosity epoxy resins, and the CTE and bending strength of the four cured system got the same results. The N3-1 system adding dicyclopentadiene ring epoxy resin got the best performance:the CTE was 42.72×10-6 K-1, the bending strength was 190.53 MPa (30℃), the flame retardant properties reached the FV-0 level and the moisture absorption was 0.47%.
引文
1.吴懿平,鲜飞,电子组装技术[M],武汉,华中科技大学出版社,2006.
    2.鲜飞,高密度封装技术的发展[J],电子元件与材料,(2001)20-21.
    3. http://www.most.gov.cn/ztzl/kjzg60/kjzg60hhcj/kjzg60zdzx/
    4.周良知,微电子器件封装,北京,化学工业出版社,2006.8.
    5.汤涛,张旭,许仲梓,南京工业大学学报(自然科学版),32(2010).
    6. Carl Z., Metal matrix composites for electronic packaging [J]. JOM,44 (1992)15-23.
    7. Carl Z. Advances in composite materials for thermal managemen tin electron ic packaging [J]. JOM, 50(1998)47-51.
    8.陈军君,傅岳鹏,田民波.微电子封装材料的最新进展[J],半导体技术,33(2008)185-189.
    9. Yong G Kim, Chung Ryu, Designing an advanced copper-alloy lead frame material, Semiconductor International,8(1985)250.
    10. Simon Medina, Andrew V Olver, Barbara A Shollock, Rolling contact damage accumulation in two contrasting copper alloys, Wear,260(2006)794.
    11. H.Mavoori, S.Jin. Low-thermal-expansion Copper Composites Via Negative CTE Metallic Elements, JOM,50(1998)70-72.
    12. Su Juanhua,Li Hejun,Liu Ping,et al. Aging process optimization for a copper alloy considering hardness and electrical conductivity, Comput Mater Sci,231(2006)1.
    13. Su Juanhua,Li Hejun,Dong Qi ming,et al. Modeling of rapidly solidified aging process of Cu-Cr-Sn-Zn alloy by an artificial neural network, Comput Materi Sci.34 (2005)151.
    14. Blaz L,Korbel A,Kusinski J. Retardation of fracture by static precipitationin a hot deformed Cu-Ni-Cr-Si-Mg alloy, Scr Metall Mater,33(1995)657.
    15. Huang Fuxiang, Ma Jusheng, Ning Honglong, Precipitation in Cu-Ni-Si-Zn alloy for lead frame, Mater Lett,57(2003)2135.
    16. Young G. Kim, Tae Y. Seong, Jae H. Han, Alan J. Ardell, Effect of heat treatment on precipitation behaviour in a Cu-Ni-Si-P alloy, J. Mater Sci,21(1986)4.
    17. Yong G Ki m, Tae Y Seong, Jae H Han, et al. Effect of heat treatment on precipitation behavour in a Cu-Ni-Si-P alloy, J Mater Sci,21(1986)1357.
    18. Suzuki S, Shibutani N, Mi mura K, et al., Improvement in strength electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling, J Alloys Comp,417(2006)116.
    19. Srivastava V C,Schneider A,Uhlenwinkel V,et al. Age-hardening characteristics of Cu-2.4Ni-0.6Si alloy produced by the spray forming process, J Mater Proc Techn,147(2004)174.
    20. Witusiewicz V T, Arpshofen I, Seifert H J, et al., Enthalpy of mixing of liquid and undercooled liquid ternary and quaternary Cu-Ni-Si-Zr alloys, J Alloys Comp,337(2002)155.
    21. Zhao D M, Dong Q M, Liu P, et al., Structure and strength of the age hardened Cu-Ni-Si alloy, Mater Chem Phys,79(2003)81.
    22. S.P.S.Sangha, D.M.Jacobson, A.J.W.Ogilvy, M. Azema, A.A.Junai, E.Botter, Novel Aluminium-silicon Alloys for Electronics Packaging, EngSci Educ J.,6(5)(1997)195-201.
    23. Grylls RJ, Tuck C D S, Loretto M H, Identification of orthorhombic phase in a high-strength cupronickel, Scr Mater,34(1996)121.
    24. C.Bocking, D.M.Jacobson, A.E.W.Rennie, G. Bennett, The Fabrication of Electronic Packages from High Silicon Aluminium Alloys Using Thin Shell Electroformed (TSE) EDM Electrodes, Trans Inst Met Finish,80(3)(2002)92-96.
    25. Jia S G, Liu P, Ren F Z, et al., Wear behavior of Cu-Ag-Cr alloy wire under electrical sliding, Mater Sci Eng A,262 (2005) 398.
    26. Kozlova L E, Titenko A N, Stress-induced martensitic transformation in polycrystalline aged Cu-Al-Mn alloys, Mater Sci Eng A,738(2006)438-440.
    27. M.Ryals, Graphite fiber reinforced Al & Cu alloys for thermal management applications, Electronics Cooling,1(1999)1-2.
    28. C.Zweben, Metal-matrix Composites for Electronic Packaging, Journal of metals,44(7) (1992)15-23.
    29. Liu Ping, Su Juanhua, Dong Qi ming, et al., Optimization of aging treatment in lead frame copper alloy by intelligent technique, Mater Lett,59(2005)3337.
    30.童震松,沈卓身,电子与封装,Vol.5(3)2006.
    31.田民波,林金堵,祝大同,高密度封装基板[M],北京,清华大学出版社,2003.
    32.陈军君,傅岳鹏,田民波,微电子封装材料的最新进展,半导体技术,Vol.133(13)(2008)189.
    33.夏德宏,邬传谷,邓娜,中低铝氧化物陶瓷低温烧结研究和烧结助剂的制备[J],工业加热,36(1)(2007)43-47.
    34. PARK C W, YOON D Y, Effects of SiO2, CaO and MgO additions on the grain growth of alumina [J]. JAm Ceram Soc,83(10)(2000)2605-2609.
    35. Sun J L, Liu C X, Zhang X H, Wang B W, Effects of diopside addition on sintering and mechanical properties of alumina [J], Ceramics International,35(2009) 1321-1325.
    36. Wang C J, Huang C Y, Effect of TiO2 addition on the sintering behavior hardness and fracture toughness of an ultrafine alumina, Materials Science and Engineering A,492(2008)306-310.
    37. DOS SANTOS W N, PAULIN FILHO P I, TAYLOR R, Effect of addition of niobium oxide on the thermal conductivity of alumina, J. Eur Ceram Soc,18(1998)807-811.
    38. RIU D H, KONG Y M, KIM H E, Effect of Cr2O3 addition on microstructural evolution and mechanical properties of A12O3, J. Eur Ceram Soc,20(2000) 1475-1481.
    39.张斌,王焕平,马红萍,徐时清,李登豪,周广淼,CuO-TiO2复合助剂低温烧结氧化铝陶瓷的机理[J],材料研究学报,23(5)(2009)534-542.
    40.姚义俊,丘泰,焦宝祥,沈春英,Y2O3、La2O3、Sm2O3对氧化铝瓷烧结及力学性能的影响[J],中国稀土学报,23(2)(2005)158-164.
    41.王超,彭超群,王日初,余琨,李超,AlN陶瓷基板材料的典型性能及其制备技术[J],中国有色金属学报,17(11)(2007)1729-1738.
    42.郑锐,席生岐,周敬恩,AlN低温烧结助剂的研究现状[J],稀有金属材料与工程,30(5)(2001)396-398.
    43.高陇桥,大功率真空电子器件实用的高导热率陶瓷的进展[J],真空电子技术,2(1999)27-31.
    44. AITKEN E A, Initial sintering kinetics of beryllium oxide[J], J. Am Ceram Soc,43(1960)627-633.
    45. Duderstadt E C, White J F, Sintering BeO to variabledensity and grain sizes [J], Am Ceram Soc Bull, 44(11)(1965)907-911.
    46. FELTEN E J, Sintering behavior of beryllium oxide [J], J. Am Ceram Soc,44(6)(1961)251-255.
    47. CLARE T E, Sintering kinetics of beryllium oxide [J], J. Am Ceram Soc,49(1966)159-165.
    48.H·萨尔满,H·舒尔兹,陶瓷学[M],黄照柏(译)北京:轻工业出版社,(1989)224-225.
    49. Zhou Y, Hirao K S, Watari K, Yamauchi Y, Kanzaki S, Thermal conductivity of silicon carbide densified with rare-earth oxide additives [J], J. Eur Ceram Soc,24(2004)265-270.
    50.郝洪顺,付鹏,,巩丽,王树海,陶瓷,(2007)5.
    51.HAGGERTY J S, LIGHTFOOT A, Opportunities for enhancing the thermal conductivities of SiC and Si3N4 ceramics through improved processing, Ceram Eng Sci Proc,16(1995)475-478.
    52. HIROSAKI N, OKAMOTO Y, MANKATO F, AKIMUNE Y, Effect of seeding on the thermal conductivity of self-reinforced silicon nitride, J. Eur Ceram Soc,19(12)(1999)2183-2187.
    53.张洁,宁晓山,吕鑫,周和平,陈克新,含稀土助烧剂氮化硅陶瓷的热导率、强度及电学性能,稀有金属材料与工程,37(2008)693-696.
    54.陈平、王德中,环氧树脂及其应用,化学工业出版社,北京2004.02
    55. Huang Wenying, Performance improvement of electronic packaging materials [J], Appl Sci Tech, 22(16)(2008) 15-20.
    56.吴启保,青双桂,熊陶等,封装用有机硅材料的制备及性能研究[J],广东化工,36(2)(2009)23-26.
    57. Hirschi D D, Lutz M A, Silicone composition and thermally conductive cured silicone product, US(2002)6448-329.
    58. Adams P M, Katzman H A, Rellick G S, et al., Characterization of high thermal conductivity carbonfibers and a self-reinforced graphitepanel, Carbon,36(1998)233.
    59. Wang Q, Gao W, Xie Z M, Highly thermally conductive room temperature vulcanized silicone rubber and silicone grease, J. Appl Polym Sci,89(9)(2003)2397.
    60. Liu Hui, Wang Yao-xian, Cheng Shu-jun, Research progress in modification of bismaleimide-triazine resin, Jueyuan Cailiao,42(2) (2009)36-41.
    61. Morita Minoru, KuwaharaYutaka, Goto Motonobu, Preparation and properties of siloxane polyimide films containing silver nanoparticles and microparticles as conducting adhesive films, J. Mate Sci: Materials in Electronics,22(5) (2011)531-537.
    62. Yu Dingsheng, Cao Hongwei, Xu Riwei, The effect of octa(maleimidophenyl) silsesquioxane on thermal and dielectric properties of bismaleimide-triazine resins, Adv Mater Res (Zuerich, Switzerland), (2008) 1161-1164.
    63. Cao Hongwei, Xu Riwei, Yu Dingsheng, Thermal and dielectric properties of bismaleimide-triazine resins containing octa-(maleimidophenyl)silsesquioxane, J. ApplPolym Sci,109(5) (2008)3114-3121.
    64. Ikisawa Takayuki, Sunada Takeshi, Gunji Tomoyasu, Printed wiring board and its fabrication, JP 2008053654 A 20080306.
    65. Lee Ju Ho, Choi Hyeong Uk, Kim Seong Taek, Lee Jong Du, Kim Jin Hwa, Kim Jin Hwan, Method for preparing bismaleimide-triazine resin composition, KR 2007114895 A 20071205.
    66. Zhang Longqing, Zhang Chunhua, Qiu Weibo, Preparation of copper clad laminates with high performance BT resin, Dianzi Yuanjian Yu Cailiao,22(9) (2003)27-29.
    67. Denny Lisa R., Goldfarb Ivan J., Farr Michael P., Characterization of a bisbenzocyclobutene high-temperature resin and a bisbenzocyclobutene blended with a compatible bismaleimide resin, Polym Mater Sci Eng,56 (1987)656-9.
    68. Vetanen William Arno, Aguilera Martin J., Electroluminescent device construction employing polymer derivative coating, (1997)US 5650692 A 19970722.
    69. Townsend P. H., Heistand R. H., Castillo D., Stokich T. M., Allen B., Radler M., Tarnowski T., Blackson J., Klassen H., et al., Organic polymer dielectrics in microelectronic technologies: reliability requirements, testing, and qualification, Mater Res Soc Symp Proc,338 (1994)589-97.
    70. Tan Loon Seng, Arnold Fred E., Benzocyclobutene in polymer synthesis. Homopolymerization of bisbenzocyclobutene aromatic imides to form high-temperature resistant thermosetting resins, J. Polym Sci, Part A: Polymer Chemistry,26(7) (1988)1819-34.
    71. http://www.dow.com/cyclotene/prod/index.htmm.
    72. Wan Weitao, Yu Demei, He Jian, Xie Yunchuan, Huang Longbiao, Guo Xiusheng, Simultaneously improved toughness and dielectric properties of epoxy/core-sheil particle blends, J. Appl Polym Sci,107(2) (2008)1020-1028.
    73. Fan Lianhua, Wong C. P., Thermosetting and thermoplastic bisphenol A epoxy/phenoxy resin as encapsulant material, Proceedings-International Symposium on Advanced Packaging Materials: Processes,2001 (2001) 230-235.
    74. Amano Satoshi, Tomita Hideshi, Modified carbodiimide thermosetting resin composition having heat and humidity resistance and excellent adhesive properties, EP 957118 A219991117.
    75. L. Barral, J. Cano, J. Lopez, I. Lopez-Bueno, P. Nogueira, C. Ramirez, A. Torres, M. J. Abad, Thermal properties of amine cured diglycidyl ether of bisphenol A epoxy blended with poly(ether imide), Thermochimica Acta,344(2000) 137-143.
    76. Yoon Il-Nyoung, Lee Youngsun, Kang Docki, Min Jungsik, Won Jongok, Kim Minyoung, Kang Yong Soo, Kim Sung-ho, Kim Jeong-Jin, Modification of hydrogenated Bisphenol A epoxy adhesives using nanomaterials,Intl J. Adhes Adhes,31(2) (2011)119-125.
    77. Ota Shinya, Fuke Kazuhiro, Goto Chisato, Ito Hisataka, Taniguchi Takashi, Yoshida Kazuhiko, Gunji Masao, Takuwa Seigou, Epoxy resin composition with good transparency excellent cracking resistance and thermal stability for optical semiconductor element encapsulation and optical semiconductor device using the encapsulating epoxy resin composition, US 20100019271 Al 20100128.
    78. Murata Yasuyuki, Konishi Isako, Tanaka Ryohei, Nakanishi Yoshinori, Epoxy resin composition, United States Patent (1992)US5149730.
    79. Ochi M., Tsuyuno N., Sakaga K., Nakanishi Y., Murata Y., Effect of network structure on thermal and mechanical properties of biphenol-type epoxy resins cured with phenols, J. Appl Polym Sci, 56(9)(1995)1161-7.
    80. Ochi Mitsukazu, Yamashita Kiichi, Yoshizumi Makoto, Shimbo Masaki, Internal stress in epoxide resin networks containing biphenyl structure, J. Appl Polym Sci,38(5)(1989)789-99.
    81. Kim Whan Gun, Lee Jun Young, Contributions of the network structure to the cure kinetics of epoxy resin systems according to the change of hardeners, Polymer,43(21) (2002)5713-5722.
    82. Han Seung, Kim Whan Gun, Yoon Ho Gyu, Moon Tak Jin, Curing reaction of biphenyl epoxy resin with different phenolic functional hardeners, J. Polym Sci, Part A:Polymer Chemistry,36(5) (1998)773-783.
    83. Kim Whan Gun, Lee Jun Young, Curing characteristics of epoxy resin systems that include a biphenyl moiety, J.Appl Polym Sci,86(8) (2002)1942-1952.
    84. Yoon Ho Gyu, Han Seung, Kim Whan Gun, Sub Kwang S., Cure kinetic model of biphenyl-type epoxy/phenol novolac resin system considering active complex formation, Polymer (Korea),23(4) (1999)507-516.
    85. Kim Whan Gun, Yoon Ho Gyu, Lee Jun Young, Cure kinetics of biphenyl epoxy resin system using latent catalysts, J.Appl Polym Sci,81(11)(2001)2711-2720.
    86. Kim Whan Gun, Cure properties of self-extinguishing epoxy resin systems with microencapsulated latent catalysts for halogen-free semiconductor packaging materials, J. Appl Polym Sci,113(1)(2009)408-417.
    87. Ryu Je Hong, Choi Ki Seop, Kim Whan Gun, Latent catalyst effects in halogen-free epoxy molding compounds for semiconductor encapsulation, J. Appl Polym Sci,96(2005)2287-2299.
    88. Han Seung, Yoon Ho Gyu, Suh Kwang S., Kim Whan Gun, Moon Tak Jin, Cure kinetics of biphenyl epoxy-phenol novolac resin system using triphenylphosphine as catalyst, J.Polym Sci, Part A: Polymer Chemistry,37(6) (1999)713-720.
    89. Han Seung, Kim Whan Gun, Yoon Ho Gyu, Moon Tak Jin, Kinetic study of the effect of catalysts on the curing of biphenyl epoxy resin, J.Appl Polym Sci,68(7) (1998)1125-1137.
    90. Han Seung, Kim Whan Gun, Yoon Ho Gyu, Moon Tak Jin, A kinetic study of biphenyl type epoxy-Xylok resin system with different kinds of catalysts, Bull Kore Chem Soc,18(11)(1997) 1199-1203.
    91. Han Seung, Kim Whan Gun, Hwang Sung Duck, Yoon Ho Gyu, Suh Kwang S., Moon Tak Jin, Glass transition temperature of biphenyl-type epoxy/phenol novolac resin system, Polymer (Korea),22(5)(1998)691-698.
    92. Kim Whan Gun, The moisture absorption properties of liquid type epoxy molding compound for chip scale package according to the change of fillers, J. Kore Chem Soc,54(5) (2010)594-602.
    93. Ochi Mitsukazu, Yamashita Kiichi, Yoshizumi Makoto, Shimbo Masaki, Internal stress in epoxide resin networks containing biphenyl structure, J.Appl Polym Sci,38(5)(1989)789-99.
    94. Kim Whan Gun, Ryu Je Hong, Physical properties of epoxy molding compound for semiconductor encapsulation according to the coupling treatment process change of silica, J. Appl Polym Sci,65(10) (1997)1975-1982.
    95. Aga Fumiaki, Epoxy resin composition with good flame retardant properties with good high-temperature storage for electronic packaging, (2002)US 6358629 B1 20020319.
    96. Yagisawa Takashi, Suzuki Hiroshi, Development of the environmentally friendly epoxy molding compound, Proceedings-Electronic Components & Technology Conference,50th (2000)1737-1742.
    97. Yang Mingshan, Liu Yang, He Jie, Li Linkai, Wang Ze, Relationship of particle content and size of spherical silica with the flowability of epoxy molding compounds for large-scale integrated circuits packaging, Adv Mater Res (Zuerich, Switzerland),92 (2010)201-205.
    98. Fu Tiezhu, Zhang Gang, Zhong Shuangling, Zhao Chengji, Shao Ke, Wang Lifeng, Na Hui, Reaction kinetics, thermal properties of tetramethyl biphenyl epoxy resin cured w th aromatic diamine, J. Appl Polym Sci,105(5) (2007)2611-2620.
    99. Zhang Chunling, Na Hui, Mu Jianxin, Liang Song, Wu Zhongwen, Synthesis and characterization of diglycidyl ether epoxy resin with biphenyl-4,4'-diol and epoxy chloropropane,222nd ACS National Meeting, Chicago,2001 (2001) POLY-154.
    100. Ren Shaoping, Liang Liyan, Lan Yanxun, Lu Mangeng, Synthesis, phase behaviors and mechanical properties of biphenyl-type epoxy resins and composites, Journal of Applied Polymer Science, 106(5) (2007)2917-2924.
    101. Cai Zhi-Qi, Sun Jianzhong, Wang Daodeng, Zhou Qiyun, Studies on curing kinetics of a novel combined liquid crystalline epoxy containing tetramethylbiphenyl and aromatic ester-type mesogenic group with diaminodiphenylsulfone, J. Polym Sci, Part A:Polymer Chemistry, 45(17)(2007)3922-3928.
    102. Hsiue G.H., Wei H.F., Shiao S.J., Kuo W.J., Sha Y.A., Chemical modification of dicyclopentadiene-based epoxy resins to improve compatibility and thermal properties, Polym Degrad Stab,73(2) (2001)309-318.
    103. Hsiue Ging Ho, Shiao Shin Jen, Wei Hsiao Fen, Kuo Wen Jang, Sha Yi An, Novel phosphorus-containing dicyclopentadiene-modified phenolic resins for flame-retardancy applications, J. Appl Polym Sci,79(2)(2001)342-349.
    104. Hua Ren, Jianzhong Sun, Binjie Wu, Qiyun Zhou, Synthesis and characterization of a novel epoxy resin containing naphthyl/dicyclopentadiene moieties and its cured polymer, Polymer,47(2006) 8309-8316.
    105. Zuo Chuanwei, Han Jianglong, Si Zhihuai, Xue Gi, Synthesis, characterization, and properties of a novel epoxy resin containing both binaphthyl and biphenyl moieties, J. Appl Polym Sci,114(6) (2009)3889-3895.
    106. Murai Kouya, Nishi Mineo, Honda Masayuki, Alicyclic epoxy compounds and their preparation process, alicyclic epoxy resin composition, and encapsulant for light-emitting diode, (2003) EP 1270633 Al 20030102.
    107. Kawabata Tomoyuki, Iimuro Shigeru, Yuasa Teruo, Liquid epoxy resin compositions for sealing, (1995)EP 668322 Al 19950823.
    108. Isozaki Osamu, Self-curing aqueous alicyclic epoxy resin dispersions, (1990)EP 384338 A2 199 00829.
    109. Snell John B., Olyphant Murray Jr., Dielectric measurements on liquid resins and curing agents from 10-200 MHz, IEEE Transactions on Electrical Insulation, El 10(2) (1975)54-7.
    110.胡玉明,吴良义编,固化剂,化学工业出版社,北京,2004.4.
    111.付东升,张康助,孙富林等,电器灌注用环氧树脂的研究展,绝缘材料,2003(2)30.
    112. Lisa M, Charles M., Luke hart, Zirconium tungstate/polyimide nanocomposites exhibiting reduced coefficient of thermal pansion, Chem Mater,17(2005)2136.
    113. Paavo J., A new concept for making fine line substrate for active component in polymer, Microelectronics,34(2003)99.
    114. Chaturvedi M., Shen Y L., Thermal expansion of particle filled plastic encapsulate:A micromechanical characterization, Acta Mater,46(12) (1998)4287.
    115. Saeed M. B., Zhan M. S., Adhesive strength of nano-size particles filled thermoplastic polyamides. Part-Ⅱ: Aluminum tride (A1N) nano-powder-polyimide composite films, Int Adhesion and Adhesives, 12(2006)365.
    116. Pezzotti G, Kamada I, Miki S., Thermal conductivity of A1N polystyrene interpenetrating networks, J Eur Ceram Soc,20(2000)1197.
    117.李秀清,AlN陶瓷封装的研究现状,半导体情报,4(1999)1.
    118. Dumm Timothy, Lucek John William, Petreanu John, Davidson Marc Gary, Hofer Bruce Wayne, Method for manufacturing an equipment having wear resistant surfaces (2005), WO 2005002742 A1 20050113.
    119. Funamori Norimasa, Sato Tomoko, Matsuo Toshihiko, KEK Proceedings (2007)36-39.
    120. Smith James, David Blackhall, Stevens Gary, Wood John William, High thermal conductivity plastic materials containing fillers with grafted surface functional groups, (2005) US 20050245644 A1 20051103.
    121. Usuki Takayoshi, Endo Yukio, Ito Kichizo, Tuboi Takao, Kubota Shin, Heat-resistant electrically insulated wires, (1982)US 4342814 A 19820803.
    122.简本成,陈燕,氧化铝填料性能对环氧树脂浇注制品性能的影响,现代技术陶瓷,1(2004)18.
    123. Zen X H, Fan H Q, Zhang J., Modeling the Al2O3 particle-polymer composites for the packing of the shock-ware pulsed transducer, Sens. Actuators A,1(2006)9.
    124. Kim G G, Kim J H, Kang J A, et al., Study on the pretreatment method of glass-epoxy resin in the presence of TiO2 sol prepared by hydrothermal method, Catalysis Commun,8(2007) 861.
    125. Ramajo L, Reboredo M, Castro M., Dielectric response and relaxation phenomena in composites of epoxy resin with BaTiO3 particles, Composites: Part A,36(2005)1267.
    126. Cho S D, Lee J Y, Hyun J G, et al., Study on epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications, Mater Sci Eng B,110(2004)233.
    127. Zhi Chunyi Y., Bando Yoshio, Terao Takeshi, Tang Chengchun, Golberg Dmitri, IUPAC Commission, Dielectric and thermal properties of epoxy/boron nitride nanotube composites, Pure and Applied Chemistry,82(11) (2010)2175-2183.
    128. Mansour S. H., Mostafa N., Abd-El-Messieh L., Electrical and positron annihilation study on epoxy and epoxy acrylate composites, Eur Polym J.,43(11) (2007)4770-4782.
    129. Eto Takuya, Fusumada Mitsuaki, Suzuki Toshimichi, Fire-resistant epoxy resin compositions for semiconductor device encapsulation, (2009)US 20090281225 A1 20091112.
    130. Fraga F., Lopez M., Soto Tellini V. H., Rodriguez-Nunez E., Martinez-Ageitos J. M., Miragaya J., Study of the physical aging of the epoxy system BADGE n= 0/m-XDA/CaCO3, J. Appl Polym Sci,113(4) (2009)2456-2461.
    131. Wen Hui-Ling, Lin John, Lo Yu-Lung, Preparation of zirconium tungstate ceramics for temperature-compensated optical fiber Bragg gratings by reactive sintering with ZrW2O8 nucleation seeds, (2003)US 20030054941 Al 20030320.
    132. Jin H.Y., Xu L., Hou S.E., Preparation of spherical silica powder by oxygen-acetylene flame spheroidization process, J Mater process tech,210(2010)81.
    133. Park H.K., Park K.Y., Vapor-phase synthesis of uniform silica spheres through two-stage hydrolysis of SiCl4, Mater Res Bull,43 (11)(2008)2833.
    134. Sridhar Komarneni, Isaac Robin Abothu and Alamanda V. Prasada Rao, Sol-Gel Processing of Some Electroceramic Powders,J sol-gel Sci Techn,15 (3)(1999)263.
    135. Zhu G. R., Wang L., Wang D., Gao C. J., Synthesis of highly mono-dispersed mesoporous silica spheres, Adv Mater Res,148-149(2011)967-973.
    136. Shiba Kota, Kambara Kumiko, Ogawa Makoto, Size-Controlled Syntheses of Nanoporous Silica Spherical Particles through a Microfluidic Approach, Ind Eng Chem Res,49(2010)8180-8183.
    137. Nagao Daisuke, Mine Eiichi, Kobayashi Yoshio, Konno Mikio, Synthesis of silica particles by the hydrolysis of tetraethylorthosilicate with amine catalysts, J Chem Eng Jpn,37(2004)905-907.
    138. Maged A. Osman, Ayman Atallah, Effect of the particle size on the viscoelastic properties of filled polyethylene, Polymer,47(2006)2357-2368.
    139. Charlles R. A. Abreu, Frederico W. Tavares and Marcelo Castier, Influence of particle shape on the packing and on the segregation of spherocylinders via Monte Carlo simulations, Powder Technol, 134(2003)167-180.
    140. David A. Weitz, Packing in the Spheres, Science,303(2004)968-969.
    141. V. M. Oliveira, M. A. F. Gomes, Loose-rigid transition in 3d packing of spheres, Physica A,272 (1999)294-299.
    142. Paul F. Luckhaml and Michael A. Ukeje, Effect of Particle Size Distribution on the Rheology of Dispersed Systems, J. Colliod Interf Sci,220(1999)347-356.
    143.刘浩斌,颗粒尺寸分布与堆积理论,硅酸盐学报,19(4)(1991).
    144.李朝阳,纳米二氧化硅增韧改性环氧树脂的研究,机械科学研究总院,2007.7.
    145. Zheng Yun, Chonung Kim, Wang Genlin, Wei Ping, Jiang Pingkai, Epoxy/nano-silica composites: curing kinetics, glass transition temperatures, dielectric, and thermal-mechanical performances, J. Appl Polym Sci,111(2009) 917-927.
    146. Li Haiyan, Zhang Zhisheng, Ma Xiaofei, Hu Ming, Wang Xiuyu, Fan Panfeng, Synthesis and characterization of epoxy resin modified with nano-SiO2 and γ-glycidoxypropyltrimethoxy silane, Surf Coat Tech,201 (2007) 5269-5272.
    147. Soon-Chul Kwon, Tadaharu Adachi, Wakako Araki, Temperature dependence of fracture toughness of silica/epoxy composites: Related to microstructure of nano- and micro-particles, packing Composites Part B: Engineering,39(5) (2008)773-781.
    148. Katsoulis Charalampos, Kandare Everson, Kandola Baljinder K., The effect of nanoparticles on structural morphology, thermal and flammability properties of two epoxy resins with different functionalities, Polym Degrad Stab,96 (2011)529-540.
    1. http://baike.baidu.com/view/1753162.htm
    2.成兴明,IC环氧塑封料性能及其发展趋势,集成电路应用,4(2005)21-26.
    3.张桂英,半导体封装用环氧树脂组合物的制备工艺,发明专利200810243278.
    4. Teh P. L., Jaafar M., Akil H. M., Seetharamu K. N., Wagiman A. N. R., Beh K. S., Thermal and mechanical properties of particulate fillers filled epoxy composites for electronic packaging application, Polym Adv Technol,19(4) (2008)308-315.
    5. Zhao Ling, Martin George C., The effect of molecular weight distribution on the curing reaction of epoxies with imidazoles, Annual Technical Conference-Society of Plastics Engineers,57th (1999)921-924.
    6.GB-T 1677-1981增塑剂环氧值的测定(盐酸-丙酮法).
    7.GB-T 4612-2008塑料环氧化合物环氧当量的测定.
    8.ASTM D1652溴化氢-冰乙酸非水滴定法.
    9. David B.Todd(美),塑料混合工艺及设备,化学工业出版社,北京,(2002)9.
    10.瞿金平,胡汉杰主编,聚合物成型原理及成型技术,化学工业出版社,北京,2001.7.
    11. K.W.Tong, C.K.Kwong, K.M.Yu, Process optimisation of transfer moulding for electronic packages using artificial neural networks and multiobjective optimisation techniques [J]. Int J. Adv Manuf Tech, 24(2004)9-10.
    12. Shen Y K, Chen S H, Lee H C, Analysis of the mold filling process on flip-chip package, J. Reinf Plast Comp,23(2004)407-428.
    13. Matsuoka Mika, Saito Toshiharu, Ono Masamichi, Oxidized layer-free metal-electrically insulating polymer moldings with good interlayer adhesion and their manufacture by casting molding, Jpn. Kokai Tokkyo Koho, (2006)JP 2006137042 A 20060601.
    14. Tong Yan Tee. Board level solder joint reliability analysis of stacked die mixed flip-chip and wirebond BGA, Microelectronics Reliability,44 (2004)1957.
    15. H.C.Yeo, Characterisation of IC packaging interfaces and loading effects, Microelectronics Reliability, 46(2006)1892.
    16.GB/T 13488-1992橡胶燃烧性能测定垂直燃烧法.
    1. Hirano Tatsuo, Suzuki Nobukazu, Shiobara Toshio, Manufacture of fine spherical silica for insulating material, (1999)JP 11199218 A 19990727.
    2. Morita Hiroshi, Omi Kimikazu, Manufacture of high purity silica particles, the silica particles, and high purity quartz glass particles using the silica particles, (2006)JP 2006021948 A 20060126.
    3. Kusuhara Masaki, Watabe Hiroyuki, Uehara Hiroshi, Sanpei Keiko, Kurita Ariyasu, Omi Masakazu, Takahashi Makio, Morita Hiroshi, Asahioka Tsugitaka, Manufacture of low-boron silica particles and low-boron quartz glass particles, (2003)JP 2003104716 A 20030409.
    4. Akira Kobayashi, Susumu Mizutani, Norihisa Nakashima, Method for producing inorganic spherical particles, (2000) US006054073.
    5. Kamya Sumio, Kawai Yoichiro, Kobayashi Yukito, Process and apparatus for manufacture of metal oxide powder by combustion of metal powder, (1995)JP 07247105 A 19950926.
    6. Ogawa Masahiro, Abe Susumu, Preparation of oxide powders by metal combustion, Nyu Seramikkusu,3(9) (1990)59-62.
    7. Konno Mikio, Nagao Daisuke, Kobayashi Yoshio, Synthesis and self-assembly of particles, Funtai Kogaku Kaishi,44(2007)680-686.
    8. Saeki Shu, Nagao Daisuke, Konno Mikio, Effects of impeller speed on synthesis of monodisperse silica particles, Kagaku Kogaku Ronbunshu,31(3) (2005)200-203.
    9. Park Hoey K., Park Kyun Y, Vapor-phase synthesis of uniform silica spheres through two-stage hydrolysis of SiCl4, Mater Res Bull,43(11) (2008)2833-2839.
    10. Holmes Justin, Morris Michael, Hanrahan John, Keane Donal, Copley Mark, A method for synthesizing mesoporous silica microparticles, (2009)WO 2009010945 A2 20090122.
    11.(英)贝拉米L.J.,复杂分子的红外光谱[M],黄维垣,聂崇实译,北京:科学出版社,(1957)5-72.
    12.辛勤主编,固体催化剂研究方法,科学出版社,2004.5.
    13. M. Suzuki, H. Sato, M. Hasegawa, M. Hirota, Effect of size distribution on tapping properties of fine powder, Powder Technol,118 (2001) 53-57.
    14. Paul F. Luckhaml and Michael A. Ukeje, Effect of Particle Size Distribution on the Rheology of Dispersed Systems, J. Colloid Interf Sci,220 (1999)347-356.
    15.成兴明,谭伟,周芳,吴娟,侍二增,司奎花,二氧化硅粉在半导体塑封料中的应用,中国粉体技术,14(2008)25-29.
    16.刘浩斌,颗粒尺寸分布与堆积理论,硅酸盐学报,19(1991)164-171.
    1. Zeng Xiaoliang, Sun Rong, Yu Shuhui, Xia Xinnian, Cure kinetics of biphenyl epoxydized novolac resin, J. Polym Eng,30(9) (2010)535-548.
    2. Safarpour M. A., Omrani A., Afsar S., Zare-Hossein-Abadi D., Study of cure kinetics ofepoxy/DDS/nanosized (SiO2/TiO2) system by dynamic differential scanning calorimetry, Polym Adv Technol,22(5) (2011)718-723.
    3. Liao Guosheng, Study on the curing behavior of aromatic amine curing agents with epoxy resin, Suliao Gongye,38(10) (2010)67-69.
    4. Fu Tiezhu, Zhang Gang, Zhong Shuangling, Zhao Chengji, Shao Ke, Wang Lifeng, Na Hui, Reaction kinetics, thermal properties of tetramethyl biphenyl epoxy resin cured with aromatic diamine, J. Appl Polym Sci,105 (2007) 2611-2620.
    5. Chai B.J., Covina W., Muggee FD, Anaheim, U. S. Patent 4239695. Typical synthesis:33 g acetonitrile was introduced slowly over 2 hours into the agitated phosphorus acid (260 g) held at a temperature of 140 ℃. The mixture was held for an additional 12 hours at that temperature after completing addition of the nitrile. The 1-aminoethylidenediphosphonic acid produced was precipitated with methanol. The yield was 70% of the theory calculated on the acetonitrile employed.
    6. S. HOrold, Phosphorus fame retardants in thermoset resins, Polym Degrad Stab.64 (1999) 427-431.
    7. Toyoda Eiji, Noro Hiroshi, Epoxy resin based thermosetting encapsulation adhesive sheet for chip type electronic devices EP 1992671 Al 20081119.
    8. Ma Jin-xin, Hu Zhang-yan, Wang Yue-chuan, Rapid curing of epoxy resin/multithiol compounds at low temperature, Reguxing Shuzhi (2011),26(1),35-38.
    9. Functional Chemicals R&D Lab, Nippon Kayaku Co., Ltd.
    10. Kim Whan Gun, Cure properties of self-extinguishing epoxy resin systems with microencapsulated latent catalysts for halogen-free semiconductor packaging materials, J. Appl Polym Sci,113 (2009)408-417.
    11. Han Seung, Yoon Ho Gyu, Suh Kwang S., Kim Whan Gun, Moon Tak Jin, Cure kinetics of biphenyl epoxy-phenol novolac resin system using triphenylphosphine as catalyst, J. Polym Sci, Part A:Polymer Chemistry 37 (1999) 713-720.
    12. Luca Motoc Dana, Dadirlat Nicolae, Particle size and structural composition influences on overall CTE behavior of recycled polymeric, Metalurgia International,16(4) (2011)149-152.
    13. M. G. LU, M. J. SHIM, S. W. KIM, Effects of Moisture on Properties of Epoxy Molding Compounds, J. Appl Polym Sci,81 (2001) 2253-2259.
    1. Imura Tetsuro, Murata Yasuyuki, Nakanishi Yoshinori, Liquid epoxy resin with high glass temperature and low water absorption, its preparation and use, EP 640635 A1 19950301.
    2. Fu Tiezhu, Zhang Gang, Zhong Shuangling, Zhao Chengji, Shao Ke, Wang Lifeng, Na Hui, Reaction kinetics, thermal properties of tetramethyl biphenyl epoxy resin cured with aromatic diamine, J. Appl Polym Sci,105 (2007) 2611-2620.
    3. Cai Zhi-Qi, Sun Jianzhong, Wang Daodeng, Zhou Qiyun, Studies on curing kinetics of a novel combined liquid crystalline epoxy containing tetramethylbiphenyl and aromatic ester-type mesogenic group with diaminodiphenylsulfone, J. Polym Sci, Part A:Polymer Chemistry,45 (2007) 3922-3928.
    4. Liu Yin-Ling, Cai Zhi-Qi, Wen Xiufang, Pi Pihu, Zheng Dafeng, Cheng Jiang, Yang Zhuoru, Thermal properties and cure kinetics of a liquid crystalline epoxy resin with biphenyl-aromatic ester mesogen, Thermochimica Acta,513 (2011) 88-93.
    5. Umeno Kuniharu, Ueda Shigehisa, Resin composition for encapsulating semiconductor chip and semiconductor device, US 7291684 B2 20071106.
    6. Hsin Ho Wu, Peter P. Chu, Highly Thermally Stable Novolac Derivatives and Their Properties in Epoxy Composites, J. Appl Polym Sci,113 (2009) 3782-3790.
    7. Han Seung, Kim Whan Gun, Yoon Ho Gyu, Moon Tak Jin, Curing reaction of biphenyl epoxy resin with different phenolic functional hardeners, J. Polym Sci, Part A:Polymer Chemistry,36 (1998) 773-783.
    8. Han Seung, Kim Whan Gun, Yoon Ho Gyu, Moon Tak Jin, A kinetic study of biphenyl type epoxy-Xylok resin system with different kinds of catalysts, Bull Kore Chem Soc,18 (1997) 1199-1203.
    9. Sugano Yuuichi, Katagiri Masayuki, Ohno Daisuke, Kita Seiji, Sogame Masanobu, Fukuoka Hironao, Ueno Masayoshi, Cyanate ester compounds for flame-retardant resin compositions, US 20060084787 A120060420.
    10. Zuo Chuanwei, Han Jianglong, Si Zhihuai, Xue Gi, Synthesis, characterization, and properties of a novel epoxy resin containing both binaphthyl and biphenyl moieties, J. Appl Polym Sci,114(6) (2009)3889-3895.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700