核壳结构SiO_2/CeO_2、PS/CeO_2复合微球的可控合成及其CMP性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学机械抛光/平坦化(Chemical Mechanical Polishing/Planarization, CMP)技术被广泛应用于超大规模集成电路和精密光学系统制造过程中的平坦化工艺,其中磨料的性质对于CMP质量具有十分重要的影响。为了提高SiO2-CMP质量,本文设计并可控合成了具有核壳结构的SiO2/Ce02和聚苯乙烯(PS)/CeO2复合微球,并讨论了复合磨料CMP机理。具体研究内容和结果如下:
     以TEOS水解得到的单分散SiO2微球为内核,分别采用浸渍工艺和化学原位沉淀工艺制备了SiO2/CeO2复合微球,整个制备过程无需对SiO2微球进行表面处理。TEM和FESEM结果表明所得复合微球具有核壳结构,CeO2纳米颗粒均匀包覆在SiO2内核表面。XPS分析结果显示,复合微球样品中Ols (O-Si)和Si2p的结合能发生了明显的化学位移,推断CeO2颗粒与SiO2内核之间形成了Si-O-Ce键,两者产生化学键结合。复合微球表面CeO2壳厚(包覆量)可分别通过调整铈溶胶和反应液中硝酸铈的浓度进行控制。
     进一步采用化学原位沉淀工艺制备了以PS为核、CeO2为壳的复合微球。首先用阴离子引发剂(KPS),通过无皂乳液聚合的方法制备了表面带负电荷的PS微球,利用带负电荷的PS微球与反应液中Ce3+之间的静电作用,以及HMT的缓慢水解过程,制备了具有不同内核尺寸和/或不同壳厚的核壳结构PS/CeO2复合微球。制备过程中无需对PS微球进行特殊的表面改性,也不需要加入其他乳化剂或稳定剂。利用TEM、FESEM以及TGA等手段对样品进行表征。通过调节反应条件,可控制复合微球的粒径在100~300 nm,Ce02壳厚在5-20 nm,复合微球中氧化铈的含量在30~70 wt%。
     利用AFM测定了PS微球和PS/CeO2复合微球的力-位移曲线,根据Hertzain接触模型计算了样品的弹性模量,考察了复合微球的PS内核尺寸和/或CeO2壳厚对样品弹性模量的影响规律。计算结果表明,PS微球的平均弹性模量为2.80 GPa,其数值略低于聚苯乙烯块体材料的弹性模量。当复合微球的CeO2壳厚相当时,其平均弹性模量随着PS内核尺寸的增大而增大;当复合微球中PS内核一定时,样品的平均弹性模量随着CeO2壳厚的增大而增大。与纯氧化铈相比,PS/CeO2复合微球的弹性模量明显更偏向于PS微球,整体上表现出了非刚性的力学特征。
     与传统的纳米SiO2磨料和纳米CeO2磨料相比,SiO2/CeO2复合磨料对砷化镓晶片、石英玻璃以及二氧化硅介质层表现出更好的抛光性能,抛光后表面无明显划痕,表面粗糙度RMS值分别为1.09、0.346和0.428 nm。由于SiO2/CeO2复合磨料特殊的核壳包覆结构,能够保证壳层中粒径约5~10 nm的CeO2纳米颗粒与晶片表面直接接触,一定程度上避免了传统纳米磨料产生硬团聚从而造成抛光表面的机械损伤,使得抛光质量得以提高。
     核壳结构PS/CeO2复合磨料能够有效地提高SiO2-CMP质量,且复合磨料的微观结构对抛光后表面形貌有明显影响。本实验范围内,当复合磨料中CeO2壳厚一定时,随着PS内核尺寸的减小,表面粗糙度随之降低,抛光后表面的微观轮廓曲线更趋于平缓;当复合磨料中PS内核尺寸一定时,随着CeO2壳厚的减小,表面粗糙度呈先降低后增大的趋势。SiO2-CMP质量的提高可能归因于复合微球的非刚性力学特性,PS/CeO2复合磨料与晶片表面接触过程中可能发生一定的弹性变形,增大磨料与晶片之间的接触面积,可以将抛光压力更加温和地传递给抛光表面,使得接触应力以及单个磨料在晶片表面的压入深度δW降低,因此不仅抛光表面粗糙度得以降低,而且还有利于减少划痕和亚表层损伤。考虑到抛光垫表面存在凹凸峰,复合磨料所特有的“弹簧状”状结构还有利于调节磨料粒子与晶片之间的接触状态,有利于提高抛光表面的平整度。
Chemical mechanical polishing/Planarization (CMP) is one of the most efficient planarization technologies in the manufacturing of ultra-large scale integration (ULSI) and precision optical devices. In CMP processes, abrasives in slurry play an important role in improving CMP performances, such as material removal rate (MRR), roughness, number of defects, and surface flatness. CMP performances depend on the choice of abrasives including type, morphology, size distribution and mechanical properties. In this dissertation, the silica/ceria (SiO2/CeO2) and polystyrene/ceria (PS/CeO2) composite microspheres with core-shell structure were synthesized by liquid phase method, and the SiO2-CMP performance were investigated. The obtained results are as follows.
     SiO2/CeO2 composite microspheres with core-shell structure were prepared by immersion method and In-situ chemical precipitation method with tetraethyl orthosilicate (TEOS) as silica source and cerium nitrate hexahydrate as the cerium source, respectively. TEM and FESEM results showed the surfaces of SiO2 core were coated uniformly by CeO2 nanoparticles. XPS results showed the CeO2 (shell) was chemically bound with SiO2 (core), and as a result of Si—O—Ce was formed. The CeO2 shell thickness of composite microspheres could be controlled by adjusting the cerium ion concentration in the sol and the concentration of Ce(NO3)3·6H2O in the reaction solution, respectively.
     A simple method was proposed to prepare PS/CeO2 composite microspheres without surface modification or addition of surfactant (stabilizer). Firstly, negative-charged polystyrene microspheres were prepared via soap-free emulsion polymerization by potassium peroxydisulfate (KPS, anionic) as initiator. Then, Ce3+ cations could be absorbed onto the surfaces of the negatively charged PS microspheres. Under slow hydrolyzing of HMT, the opposite-charged OH- was released in the solution. Ce3+ combined with OH- slowly hydrolyzed from HMT driven by electrostatic attraction. By using this method, PS/CeO2 composite microspheres with different core size and/or shell thickness could be obtained. The results indicated that the as-prepared core-shell structured composite microspheres (100-300 nm in diameter) possessed thin shell (5-20 nm) composed of CeO2 nanoparticles (particle diameter of 5-10 nm), and the final CeO2 contents of the composite microspheres ranged from 30 to 70 wt%.
     Atomic force microscopy (AFM) was employed to probe the mechanical properties of PS microspheres and PS/CeO2 composite microspheres. On the basis of Hertz's theory of contact mechanics, elastic moduli were measured by the analysis of force-displacement curves captured on the microsphere samples. The average elastic modulus value of the PS microspheres was found to be approximately 2.8 GPa. The compressive modulus is slightly less than the moduli of polystyrene bulk materials. The PS core size and/or the CeO2 shell thickness affected the mechanical properties of composite microspheres. For a fixed PS core size or CeO2 shell thickness, the elastic modulus of composites increased with an increase of the CeO2 shell thickness or the PS core size, respectively. The elastic moduli of the composites displayed a significant shift from the value of pure CeO2 toward that of PS core. Compared with traditional inorganic particles, the as-prepared PS/CeO2 composite microspheres exhibited the especial non-rigid mechanical properties. This approach would provide fundamental insights into the actual role of organic/inorganic core/shell composite abrasives in CMP.
     Compared with pure SiO2 and CeO2 abrasives, SiO2/CeO2 composite abrasives led to lower topographical variations as well as few scratches. The surface roughness (RMS) values of polished GaAs wafer, silica glass, and silicon oxide dielectric layer was 1.09, 0.346 and 0.428 nm, respectively. The as-prepared SiO2/CeO2 composite abrasives exhibited the core-shell structure, which could provide the direct contact between CeO2 nanoparticles and wafer. Such character could partially avoid the mechanical damage induced by hard agglomerates, which could improve the CMP performance.
     The CMP results showed that the PS/CeO2 composite abrasives were beneficial to elimination of scratches and decrease surface roughness (RMS) in the process of SiO2-CMP. In addition, there was an obvious effect of core size and/or shell thickness of the composite abrasives on oxide CMP performance. At a fixed CeO2 shell thickness, the surface roughness values increased with an increase of PS core size. And for a given PS core, the surface roughness value decreased and then increased with the increase of CeO2 shell thickness. The improvement of CMP performance might be attributed to a synergistic effect of the core-shell structure. The spring-like effect coming from the elastic polymer core increased the contact area between wafer and abrasives and decreased the contact stress during CMP, which was in favor of reducing roughness and mechanical damage. Furthermore, assisted by the mechanical compliance coming from the elastic PS core, the planarity of wafer after CMP could also be enhanced. In addition, inorganic shell could improve the surface hardness of the polymer core and possessed an enhanced chemical activity of composite abrasives.
引文
[1]X. D. Feng, D. C. Sayle, Z. L. Wang, et al. Converting ceria polyhedral nanoparticles into single-crystal nanospheres [J]. Science,2006,312 (6):1504-1508.
    [2]J. C. Yang, H. J. Kim, T. Kim. Study of polishing characteristics of monodisperse ceria abrasive in chemical mechanical planarization [J]. Journal of the Electrochemical Society,2010,157(3): H235-H240.
    [3]A. Ohtake, T. Arai, S. Kurokawa, et al. Development of a nonperiodic boundary practical simulator for oxide and shallow trench isolation chemical mechanical polishing processes [J]. Journal of the Electrochemical Society,2011,158(2):H142-H145.
    [4]张伟.铜层无磨粒化学机械抛光研究[D].北京:清华大学,2008.
    [5]刘玉岭,檀柏梅,张楷亮.超大规模集成电路衬底材料性能及加工测试技术工程[M].北京:冶金工业出版社,2002.
    [6]www.semi.org.cn/
    [7]www.sichinamag.net/index.html
    [8]傅毛生.钛锆掺杂CeO2磨料的制备及其化学机械抛光性能[D].南昌:南昌大学,2009.
    [9]Y. J. Kim, O. J. Kwon, M.C. Kang, et al. Development of a copper chemical mechanical polishing slurry at neutral pH based on ceria slurry [J]. Journal of the Electrochemical Society, 2011,157(10):H952-H958.
    [10]S. Louis, L. Luciano, M. Grant.集成电路实现、电路设计与工艺[M].北京:科学出版社,2008.
    [11]岩田穆,角南英夫.超大规模集成电路:基础设计制造工艺[M].北京:科学出版社,2008.
    [12]J. D. Plummer, M. D. Deal, P. B. Griffin.硅超大规模集成电路工艺技术:理论、实践与模型[M].北京:电子工业出版社,2005.
    [13]陈杨.超细CeO2磨料的超光滑表面化学机械抛光性能与机理研究[D].镇江:江苏大学,2004.
    [14]Y. Lin, D. Chen, C. Ma. Simulations of a stress and contact model in a chemical mechanical polishing process [J]. Thin Solid Films,2009,517(21):6027-6033.
    [15]M. Oh, R. K. Singh, S. Gupta, et al. Polishing behaviors of single crystalline ceria abrasives on silicon dioxide and silicon nitride CMP [J]. Microelectronic Engineering,2010,87(12): 2633-2637.
    [16]S. Jeong, H. Lee, H. Cho, et al. Effect of additives for higher removal rate in lithium niobate chemical mechanical planarization [J]. Applied Surface Science,2010,256(6):1683-1688.
    [17]Y. Huang, X. Lu, G. Pan, et al. Particles detection and analysis of hard disk substrate after cleaning of post chemical mechanical polishing [J]. Applied Surface Science,2009,255(22): 9100-9104.
    [18]H. P. Yang, X. L. Song, G.. Z. Qiu, et al. Effects of process parameters on electrochemical characteristics of silicon wafers during chemical mechanical polishing [J]. Journal of the Electrochemical Society,2009,156(5):H396-H400.
    [19]P. M. Visintin, S. K. Eichenlaub, L. E. Portnow, et al. Studies on CeO2-based slurries and fluorinated silica and alumina particles for chemical mechanical polishing of copper films [J]. Journal of the Electrochemical Society,2006,153(12):G1064-G1071.
    [20]宋晓岚.纳米Si02浆料中半导体硅片的化学机械抛光及其应用研究[D].长沙:中南大学,2007.
    [21]苏建修.IC制造中硅片化学机械抛光材料去除机理研究[D].大连:大连理工大学,2006.
    [22]陈杨,陈建清,陈志刚,等.纳米磨料对硅晶片的超精密抛光研究[J].摩擦学学报,2004,24(4):332-335.
    [23]陈杨,李霞章,陈志刚,等.纳米磨料对GaAs晶片的抛光研究[J].固体电子学研究与进展,2006,26(4):555-559.
    [24]李秀娟,金洙吉,康仁科,等.磨料对铜化学机械抛光过程的影响研究[J].摩擦学学报,2005,25(5):431-435.
    [25]A. Jindal, S. Hegde; S. V. Babu. Chemical mechanical polishing using mixed abrasive slurries [J]. Electrochemical and Solid State Letters,2002,5(7):G48-G50.
    [26]A. Jindal, S. Hegde; S. V. Babu.Chemical mechanical polishing of dielectric films using mixed abrasive slurries [J]. Journal of the Electrochemical Society,2003,150(5):G314-318.
    [27]S. Hegdea; S. V. Babu. Study of surface charge effects on oxide and nitride planarization using alumina/ceria mixed abrasive slurries [J]. Electrochemical and Solid State Letters,2004,7(12): G316-G318.
    [28]L. Y. Wang, K. L. Zhang, Z. T. Song, et al. Chemical mechanical polishing and a succedent reactive ion etching processing of sapphire wafer [J]. Journal of the Electrochemical Society, 2007,154(3):H166-H169.
    [29]Z. Y. Lu, S. H. Lee, V. R. K. Gorantla. Effects of mixed abrasives in chemical mechanical polishing of oxide films [J]. Journal of Materials Research,2003,18(10):2323-2330.
    [30]Y. J. Seo, W. S. Lee; P. C. Yeh. Improvements of oxide-chemical mechanical polishing performances and aging effect of alumina and silica mixed abrasive slurries [J]. Microelectronic Engineering,2004,75(4):361-366.
    [31]S. W. Park, Y. J. Seo, W. S. Lee. A study on the chemical mechanical polishing of oxide film using a zirconia (ZrO2)-mixed abrasive slurry (MAS) [J]. Microelectronic Engineering,2007, 85(4):682-688.
    [32]P. H Chen, B. W. Huang; H. C. Shih. A chemical kinetics model for a mixed-abrasive chemical mechanical polishing [J]. Thin Solid Films,2005,483(1-2):239-244.
    [33]S. Armini, C. M. Whelan, M. Moinpour. Mixed organic/inorganic abrasive particles during oxide CMP [J]. Electrochemical and Solid State Letters,2004,11(7):H197-h201.
    [34]许雪峰,马冰迅,黄亦申,等.利用复合磨粒抛光液的硅片化学机械抛光[J].光学精密工程,2009,17(7):1587-1592.
    [35]P. R. V. Dandu, N. K. Penta, S.V. Babu. Novel a-amine-functionalized silica-based dispersions for selectively polishing polysilicon and Si(100) over silicon dioxide, silicon nitride or copper during chemical mechanical polishing [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,371(1-3):131-136.
    [36]P. R. V. Dandu, N. K. Penta, B.C. Peethala, et al. Novel phosphate-functionalized silica-based dispersions for selectively polishing silicon nitride over silicon dioxide and polysilicon films [J]. Journal of Colloid and Interface Science,2010,348(1):114-118.
    [37]H. Lei, N. Bu, R. Chen, et al. Chemical mechanical polishing of hard disk substrate with α-alumina-g-polystyrene sulfonic acid composite abrasive [J]. Thin Solid Films,2010,518(14): 3792-3796.
    [38]H. Lei, H. S. Lu, J. B. Luo, et al. Preparation of a-alumina-g-polyacrylamide composite abrasive and chemical mechanical polishing behavior [J]. Thin Solid Films,2008,516(10): 3005-3008.
    [39]Z. F. Zhang, H. Lei. Preparation of a-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate [J]. Microelectronic Engineering,2008,85(4):714-720.
    [40]Z. Zhang, L. Yu, W. Liu, et al. Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate [J]. Applied Surface Science,2010,256(12): 3856-3861.
    [41]G S. Pan, Z. H. Gu, Y. Zhou, et al. Preparation of silane modified SiO2 abrasive particles and their Chemical Mechanical Polishing (CMP) performances [J]. Wear,2011,273(1):100-104.
    [42]M. Fu, L. Wei, Y. Li, et al. Surface charge tuning of ceria particles by titanium doping:Towards significantly improved polishing performance [J]. Solid State Sciences,2009,11(12): 2133-2137.
    [43]胡建东,李永绣,程昌明,等.Ce02-ZrO2复合氧化物的制备及协同抛光性能[J].无机化学学报,2006,22(7):1354-1358.
    [44]胡建东.铈基抛光粉的制备及其在CMP中的应用[D].南昌:南昌大学,2007.
    [45]傅毛生,李永绣,陈伟凡,等.Ce0.8Zr0.2O2固溶体磨料对ZF7光学玻璃抛光性能的改善[J].摩擦学学报,2009,29(2):180-185.
    [46]S. H. Lee, Z. Y. Lu, S.V. Babu, E. Matijevic. Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria [J]. Journal of Materials Research,2002,17(10): 2744-2749.
    [47]X. L. Song, N. Jiang, Y. K. Li, et al. Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension [J]. Materials Chemistry and Physics,2008,110(1):128-135.
    [48]肖保其,雷红.纳米SiO2/CeO2复合磨粒的制备及其抛光特性研究[J].摩擦学学报,2008,28(2):103-107.
    [49]雷红,司马能,屠锡富,等.氧化硅/氧化铁复合磨粒用于硬盘基片的抛光研究[J].摩擦学学报,2010,30(3):268-272.
    [50]Y. Kang, Y. N. Prasad, I. Kim, et al. Synthesis of Fe metal precipitated colloidal silica and its application to W chemical mechanical polishing (CMP) slurry [J]. Journal of Colloid and Interface Science,2010,349(1):402-407.
    [51]Y. Li, M. L. Gong, K. Ramji, et al. Role of Cu-benzotriazole nanoparticles in passivation film formation [J]. Journal of Physical Chemistry C,2009,113(42):18003-18013.
    [52]李燕.22nm节点技术的铜抛光液中纳米复合物粒子的合成与表征[D].广州:中山大学,2009.
    [53]S. Armini, C. M. Whelan, M. Moinpour, et al. Composite polymer core-silica shell abrasive particles during oxide CMP:A detectivity study [J]. Journal of the Electrochemical Society, 2007,154(8):H661-H671.
    [54]S. Armini, C. M. Whelan, M. Moinpour, et al. Composite polymer core-silica shell abrasives: The effect of polishing time and slurry solid content on oxide CMP [J]. Electrochemical and Solid-State Letters,2007,10(9):H243-H247.
    [55]S. Armini, C. M. Whelan, M. Moinpour, et al. Composite polymer core- silica shell abrasives: The effect of the shape of the silica particles on oxide CMP [J]. Journal of the Electrochemical Society,2008,155(6):H401-H406.
    [56]S. Armini, C. M. Whelan, M. Moinpour, et al. Copper CMP composite polymer core-silica shell abrasives:A detectivity study [J]. Journal of the Electrochemical Society,2009,156(1): H18-H26.
    [57]S. Armini, C. M. Whelan, K. Maex. Engineering polymer core-silica shell size in composite abrasives for CMP applications [J]. Electrochemical and Solid-State Letters,2008,11(10): 280-284.
    [58]S. Armini, I.U. Vakarelski, C.M. Whelan, et al. Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by Atomic Force Microscopy [J]. Langmuir,2007,23(4):2007-2014.
    [59]S. Armini, J. De Messemaeker, C. M. Whelan, et al. Composite polymer core-ceria shell abrasive particles during oxide CMP:A defectivity study [J]. Journal of the Electrochemical Society,2008,155(9):H653-H660.
    [60]C. A. Coutinho, S. R. Mudhivarthi, A. Kumar, et al. Novel ceria-polymer microcomposites for chemical mechanical polishing [J]. Applied Surface Science,2008,255(4):3090-3096.
    [61]P. R. V. Dandu, B. C. Peethala, S.V. Babu. Role of different additives on silicon dioxide film removal rate during chemical mechanical polishing using ceria-based dispersions [J]. Journal of the Electrochemical Society,2010,157(9):H653-H660.
    [62]P. R. D Veera, S. Peddeti, S.V. Babu. Selective chemical mechanical polishing of silicon dioxide over silicon nitride for shallow trench isolation using ceria slurries [J]. Journal of the Electrochemical Society,2009,153(12):H936-H943.
    [63]T. Fujita, J. Watanabe. Surface conformable polishing mechanism for chemical mechanical polishing [J]. Journal of the Electrochemical Society,2009,156(6):H479-H486.
    [64]D. Ng, T. Sen, F. Gao, et al. Friction and wear-mode comparison in copper electrochemical mechanical polishing [J]. Journal of the Electrochemical Society,2008,155(7):H520-H524.
    [65]刘瑞鸿.二氧化硅介质层CMP抛光液研制及其性能研究[D].大连:大连理工大学,2009.
    [66]楼飞燕.CMP中抛光液膜特性的数值模拟和实验研究[D].杭州:浙江工业大学,2009.
    [67]F. Preston. The theory and design of plate glass polishing machines [J]. Journal of The Society of Glass,1927,11:214-256.
    [68]W. T. T seng, Y. L.Wang. Re-examination of pressure and speed dependences of removal rate during chemical mechanical polishing processes [J]. Journal of the Electrochemical Society, 1997,144(2):L15-L17.
    [69]F. G.Shi, B. Zhao. Modeling of chemical-mechanical polishing with soft pads [J]. Applied Physics A,1998, (67):249-252.
    [70]B. Zhao, F. G. Shi. Chemical mechanical polishing:threshold pressure and mechanism [J]. Electrochemical and Solid-State Letters,1999,2(3):145-147.
    [71]J. Luo, D. A. Dornfeld. Material removal mechanism in chemical mechanical polishing:theory and modeling [J]. IEEE Transactions on Semiconductor Manufacturing,2001,14(2):112-133.
    [72]F. B. Kaufman, D. B. Thompson, R. E. Broadie, et al. Chemical mechanical polishing for fabricating patterned W metal features as chip interconnects [J]. Journal of the Electrochemical Society,1991,138(11):3460-3465.
    [73]L. B. Christopher, G. T. Dipto, N. G. William, et al. Surface kinetics model for SiLK chemical mechanical polishing [J]. Journal of the Electrochemical Society,2002,149(2):G118-G127
    [74]Y. W. Zhao, L. Chang, S. H. Kim. A mathematical model for chemical mechanical polishing based on formation and removal of weakly bonded molecular species [J]. Wear,2003,254(3-4): 332-339.
    [75]H. Hocheng, H. Y. Tsai, Y. T. Su. Modeling and experimental analysis of material removal rate in the chemical mechanical planarization of dielectric films and bare silicon wafers [J]. Journal of the Electrochemical Society,2001,148 (10):G581-G586.
    [76]J. F. Lin, J. D. Chern, Y. H. Chang, et al. Analysis of the tribological mechanisms arising in the chemical mechanical polishing of copper film wafers [J]. Journal of Tribology,2004,126(1): 185-198.
    [77]G. Ahmadi, X. Xia. A model for mechanical wear and abrasive particle adhesion during the chemical mechanical polishing process [J]. Journal of the Electrochemical Society,2001, 148(3):G99-G109.
    [78]M. Bastaninejad, G. Ahmadi. Modeling the effects of abrasive size distribution, adhesion, and surface plastic deformation on chemical mechanical polishing [J]. Journal of the Electrochemical Society,2005,152(9):G720-G730.
    [79]G. J. Pietsch, Y. J. Chabal, G. S. Higashi. The atomic-scale removal mechanism during chemo-mechanical polishing of si(100) and si(111) [J]. Surface Science,1995,331-333(1): 395-401.
    [80]A. Vijayakumar, T. Du, K. B. Sundaram, et al. Polishing mechanism of tantalum films by SiO2 particles [J]. Microelectronic Engineering,2003,70(1):93-101.
    [81]徐进,雒建斌.含纳米粒子溶液对单晶硅表面的冲蚀磨损损伤实验研究[J].摩擦学学报,2006,26(11):7-11.
    [82]J. Xu, J. B. Luo, X. C. Lu, et al. Progress in material removal mechanisms of surface polishing with ultra precision [J]. Chinese Science Bulletin,2004,49 (16):1687-1693
    [83]W. Choi, K. S. Rajiv. Roles of colloidal silicon dioxide particles in chemical mechanical polishing of dielectric dioxide [J]. Japanese Journal of Applied Physics,2005,44(12): 8383-8390.
    [84]E. Paul. A model of CMP chemical mechanical polishing [J]. Journal of the Electrochemical Society,2001,148(6):G355-G358.
    [85]E. Paul. A model of chemical mechanical polishing Ⅱ. polishing pressure and speed [J]. Journal of the Electrochemical Society,2002,149(5):G305-G308.
    [86]E. Paul, F. Kaufman, A. Brusic, et al. A model of copper CMP [J]. Journal of the Electrochemical Society,2005,152(4):G322-G328.
    [87]王永光.基于分子量级的化学机械抛光材料去除机理的理论和试验研究[D].无锡:江南大学,2008.
    [88]Y. G. Wang, Y. W. Zhao. A new nonlinear-micro-contact model for single particle in the chemical mechanical polishing with soft pad [J]. Journal of Materials Processing Technology, 2007,183(2-3):374-379.
    [89]Y. G. Wang, Y. W. Zhao. Modeling the effects of oxidizer, complexing agent and inhibitor on material removal for copper chemical mechanical polishing [J]. Applied Surface Science,2007, 254(5):1517-1523.
    [90]Y. G. Wang, Y. W. Zhao. Modeling effect of chemical-mechanical synergy on material removal at molecular scale in chemical mechanical polishing [J]. Wear,2008,265(5-6):721-728.
    [91]Y. G. Wang, Y. W. Zhao. Research on the molecular scale removal mechanism in chemical mechanical polishing [J]. Chinese Science Bulletin,2008,53(13):2084-2089.
    [92]王永光,赵永武.基于分子量级的化学机械抛光材料去除机理[J].半导体学报,2007,28(2):308-312.
    [93]王永光,赵永武.基于分子量级的化学机械抛光界面动力学模型研究[J].摩擦学学报,2007,27(3):259-263.
    [94]王永光,赵永武.化学机械抛光材料分子去除机理的研究[J].科学通报,2008,53(3):359-363.
    [1]X. D. Feng, D. C. Sayle, Z. L. Wang, et al. Converting ceria polyhedral nanoparticles into single-crystal nanospheres [J]. Science,2006,312 (6):1504-1508.
    [2]M. Oh, R. K. Singh, S. Gupta, et al. Polishing behaviors of single crystalline ceria abrasives on silicon dioxide and silicon nitride CMP [J]. Microelectronic Engineering,2010,87(12): 2633-2637.
    [3]L, Y. Wang, K. L. Zhang, Z. T. Song, et al. Ceria concentration effect on chemical mechanical polishing of optical glass [J]. Applied Surface Science,2007,253(11):4951-4954.
    [4]X. Zhao, R. Long, Y. Chen. Synthesis, characterization of CeO2@SiO2 nanoparticles and their oxide CMP behavior [J]. Microelectronic Engineering,2010,87(9):1716-1720.
    [5]S. H. Lee, Z. Y. Lu, S.V. Babu, et al. Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria [J]. Jourmal of Materials Research,2002,17(10): 2744-2749.
    [6]X. L. Song, N. Jiang, Y. K. Li, et al. Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension [J]. Materials Chemistry and Physics,2008,110(1):128-135.
    [7]M. Fu, L. Wei, Y. Li, et al. Surface charge tuning of ceria particles by titanium doping:Towards significantly improved polishing performance [J]. Solid State Sciences,2009,11(12): 2133-2137.
    [8]胡建东,李永绣,程昌明,等.CeO2-ZrO2复合氧化物的制备及协同抛光性能[J].无机化学学报,2006,22(7):1354-1358.
    [9]Z. Zhang, L. Yu, W. Liu, et al. Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate [J]. Applied Surface Science,2010,256(12): 3856-3861.
    [10]杨良斌,陈胜,韩征和,等.在SrTiO3基底上用溶胶一凝胶法制备CeO2缓冲层[J].低温物理学报,2003,25:345-350.
    [11]徐桂龙,邓丽丽,皮丕辉,等.溶胶凝胶法制备超疏水二氧化硅涂膜及其表面润湿行为[J].无机化学学报,2010,26(10):1810-1814.
    [12]赵丽.纳米微米二氧化硅球形颗粒的制备与表征[D].武汉:武汉理工大学,2003.
    [13]陈杨,隆仁伟,陈志刚.包覆结构Ce02/Si02复合磨料的合成及其应用[J].中国有色金属学报,2010,20(1):163-169.
    [14]王其祥,潘海斌,宋宝珍,等.XPS研究Fe203纳米粒子表面包覆无机膜[J].无机材料学报,2002,17(4):782-186.
    [15]B. M. Reddy, P. Saikia, P. Bharali, et al. Highly despersed ceria and ceria-zirconia nanocomposites over silica surface for catalytic applications [J]. Catalysis Today,2009,141: 109-114.
    [16]H. Cui, G. Hong, X. Wu, et al. Silicon dioxide coating of CeO2 nanoparticles by solid state reaction at room temperature [J]. Materials Research Bulletin,2002,37:2155-2163.
    [17]M. F. Montemor, P. Pinto, M. G. S. Ferreira. Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles [J]. Electrochimica Acta,2009,54:5179-5189.
    [18]李霞章.氧化铈基纳米材料的介孔结构合成,形貌控制及其性质研究[D].镇江:江苏大学,2009.
    [19]Z. Guo, F. Jian, F. Du. A simple method to controlled synthesis of CeO2 hollow microspheres [J]. Scripta Materialia,2009,61(1):48-51.
    [20]S. Wang, J. Zhang, J. Jiang, et al. Porous ceria hollow microspheres:Synthesis and characterization [J]. Microporous and Mesoporous Materials,2009,123(1-3):349-353.
    [1]陈敏.聚合物/SiO2有机-无机纳米复合微球的制备与表征[D].上海:复旦大学,2006.
    [2]F. F. Fang, J. H. Kim, H. J. Choi. Synthesis of core-shell structured PS/Fe3O4 microbeads and their magnetorheology [J]. Polymer,2009,50(10):2290-2293.
    [3]B. Peng, F. Tang, D. Chen, et al. Preparation of PS/TiO2/UF multiplayer core-shell hybrid microspheres with high stability [J]. Journal of Colloid and Interface Science,2009,329(1): 62-66.
    [4]Y. Yu, W. Chien, T. Tsai, et al. Synthesis of soluble polyimide/silica-titania core-shell nanoparticle hybrid thin films for anti-reflective coatings [J]. Materials Chemistry and Physics, 2011,126(3):962-972.
    [5]马光辉,苏志国.高分子微球材料[M].北京:化学工业出版社,2005.
    [6]Y. F. Li, Z. Q. Sun, J. H. Zhang, et al. Polystyrene@TiO2 core-shell microsphere colloidal crystals and nonspherical macro-porous materials [J]. Journal of Colloid and Interface Science, 2008,325(2):567-572.
    [7]贾进义,刘晶冰,张文熊,等.掺钒二氧化钛中空微球的制备和光催化性能研究[J].无机材料学报,2009,24(4):671-674.
    [8]B. Ksapabutr, E. Gulari, S. Wongkasemjit. Sol-gel derived porous ceria powders using cerium glycolate complex as precursor [J]. Materials Chemistry and Physics,2006,99(2-3):318-324.
    [9]M. L. Teng, L. T. Luo, X. M. Yang. Synthesis of mesoporous Ce1-xZrxO2 (x= 0.2-0.5) and catalytic properties of CuO based catalysts [J]. Microporous and Mesoporous Materials,2009, 119(1-3):158-164.
    [10]S. N. Wang, M. C. Zhang, D. Wang, et al. Synthesis of hollow mesoporous silica microspheres through surface sol-gel process on polystyrene-co-poly(4-vinylpyridine) core-shell microspheres [J]. Microporous and Mesoporous Materials,2011,139(1-3):1-7.
    [11]陈杨,陆锦霞,陈志刚.核壳结构PS/CeO2复合微球的制备及其在化学机械抛光中的应用 [J].无机化学学报,2011,27(1):66-72.
    [12]X. H. Lu, X. Huang, S. L. Xie, et al. Facile electrochemical synthesis of single crystalline CeO2 octahedrons and their optical properties [J]. Langmuir,2010,26(10):7569-7573.
    [13]韩巧凤,陈亮,强飞,等.CeO2纳米晶的制备及其谱学性能研究[J].光谱学与光谱分析,2009,29(11):3011-3014.
    [14]缪建英,蔡俊修.CeO2及Ce0.5Zr0.5O2固态溶液的现场拉曼光谱比较[J].厦门大学学报(自然科学版),1999,38(2):235-241.
    [15]S. Wang, J. Zhang, J. Jiang, et al. Porous ceria hollow microspheres:Synthesis and characterization [J]. Microporous and Mesoporous Materials,2009,123(1-3):349-353.
    [16]T. W. Wang, S. Ozlem, I. Djerdj, et al. Preparation of a large Mesoporous CeO2 with crystalline walls using PMMA colloidal crystal templates [J]. Colloid and Polymer Science,2006,285(1): 1-9.
    [17]X. Z. Li, F. Chen, X. W. Lu, et al. Layer-by-layer synthesis of hollow spherical CeO2 templated by carbon spheres [J]. Journal of Porous Materials,2010,17(3):297-303.
    [18]K. L. Yu, G. L. Ruan, Y. H. Ben, et al. Convenient synthesis of CeO2 nanotubes [J]. Materails Science and Engineering:B,2007,139(2-3):197-200.
    [19]G. F. Wang, Q. Y. Mu, T. Chen, et al. Synthesis, characterization and photoluminescence of CeO2 nanoparticles by a facile method at room temperature [J]. Journal of Alloys and Compounds,2010,493(1-2):202-207.
    [20]H. X. Guo, Z. P. Qin, J. Wei, et al. Synthesis of novel magnetic spheres by electroless nickel coating of polymer spheres [J]. Surface and Coatings Technology,2005,200(7):2531-2536.
    [21]E. Dunkerley, H. Koerner, R. A. Vaia, et al. Structure and dynamic mechanical properties of highly oriented PS/clay nanolaminates over the entire composition range [J]. Polymer,2011, 52(4):1163-1171.
    [22]I. A. Kartsonakis, P. Liatsi, I. Daniilidis, et al. Synthesis, Characterization, and antibacterial action of hollow ceria nanospheres with/without a conductive polymer coating [J]. Journal of American Ceramic Society,2008,91(2):372-378.
    [23]陈建清.超细二氧化铈制备及其化学机械抛光机理研究[D].镇江:江苏大学,2004.
    [1]H. X. Shen, M. M. Xu, X. Yan, et al. Synthesis and surface enhanced optical properties of multibranched spindle particles and core-shell structures [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,353(2-3):204-209.
    [2]L. He, J. Y. Liang. Synthesis, modification and characterization of core-shell fluoroacrylate copolymer latexes [J]. Journal of Fluorine Chemistry,2008,129(7):590-597.
    [3]A. P. Zhu, Z. H. Shi, A. Y. Cai, et al. Synthesis of core-shell PMMA-SiO2 nanoparticles with suspension-dispersion-polymerization in an aqueous system and its effect on mechanical properties of PVC composites [J]. Polymer Testing,2008,27(5):540-547.
    [4]X. J. Fang, H. Yang, G. Wu, et al. Preparation and characterization of low density polystyrene/TiO2 core-shell particles for electronic paper application [J]. Current Applied Physics,2009,9(4):755-759.
    [5]陈敏.聚合物/SiO2有机-无机纳米复合微球的制备与表征[D].上海:复旦大学,2006.
    [6]S.Armini, C.M.Whelan, M.Moinpour, et al. Composite polymer core-silica shell abrasive particles during oxide CMP:A defectivity study [J]. Journal of the Electrochemical Society,2007, 154(8):661-671.
    [7]S. Armini, C. M. Whelan, M. Moinpour, et al. Copper CMP composite polymer core- silica shell abrasives:A Defectivity Study [J]. Journal of the Electrochemical Society,2009,156(1):18-26.
    [8]S. Armini, J. De Messemaeker, C. M. Whelan, et al. Composite polymer core-ceria shell abrasive particles during oxide CMP:A defectivity study [J]. Journal of the Electrochemical Society, 2008,155(9):H653-H660.
    [9]C. A. Coutinho, S. R. Mudhivarthi, A. Kumar, et al. Novel ceria-polymer microcomposites for chemical mechanical polishing [J]. Applied Surface Science,2008,255(4):3090-3096.
    [10]彭平.基于AFM的微纳尺度模板加工技术研究[D].武汉:华中科技大学,2010.
    [11]王春梅.基于AFM的纳米结构精确测量的方法学和标准化研究[D].上海:上海交通大学,2009.
    [12]杨谦,孙润广.红细胞膜弹性特性的AFM力曲线测量[J].中国科学(C辑),2008,38(11):1013-1027.
    [13]A. Touhami, B. Nysten, Y. F. Dufrene. Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy [J]. Langmuir,2003,19 (11),4539-4543.
    [14]J. C. Hansen, J. Y. Lim, Xu L, et al. Effect of surface nanoscale topography on elastic modulus of individual osteoblastic cells as determined by atomic force microscopy [J]. Journal of Biomechanics,2007,40(13):2865-2871.
    [15]G. Guhados, W. Wan, J. L. Hutter. Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy [J]. Langmuir,2005,21(14):6642-6646.
    [16]S. Tan, R. L. Sherman, W. T. Ford. Nanoscale compression of polymer microspheres by atomic force microscopy [J]. Langmuir,2004,20(17):7015-7020.
    [17]S. Armini, I. U. Vakarelski, C. M. Whelan, et al. Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy [J]. Langmuir,2007,23(4):2007-2014.
    [18]彭昌盛,宋少先,谷庆宝.扫描探针显微技术理论与应用[M].北京:化学工业出版社,2007.
    [19]陈红燕.竹条/乙烯基酯复合材料的界面吸湿性能及界面性能的AFM表征[D].上海:东华大学,2010.
    [20]窦建华.原子力显微镜针尖—表面相互作用分子动力学仿真研究[D].哈尔滨:哈尔滨工业大学,2010.
    [21]B. Cappella, G. Dietler. Force-distance curves by atomic force microscopy [J]. Surface Science Reports,1999,34(1-3):1-104.
    [22]K. L. Johnson接触力学[M].北京:高等教育出版社,1992.
    [23]王元元,郭丹.聚苯乙烯纳米微球单层膜的制备、表征及其力学性能的研究[J].中国表面工程,2010,23(2):86-89.
    [24]E. Wachtel, I. Lubomirsky. The elastic modulus of pure and doped ceria [J]. Scripta Materialia, 2011,65(2):112-117.
    [25]K. Sato, H. Yugami, T. Hashida. Effect of rare-earth oxides on fracture properties of ceria ceramics [J]. Journal of Materials Science,2004,39(18):5765-5770.
    [1]P. R. V. Dandu, N. K. Penta, S.V. Babu. Novel a-amine-functionalized silica-based dispersions for selectively polishing polysilicon and Si(100) over silicon dioxide, silicon nitride or copper during chemical mechanical polishing [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,371(1-3):131-136.
    [2]P. R. V. Dandu, N. K. Penta, B.C. Peethala, et al. Novel phosphate-functionalized silica-based dispersions for selectively polishing silicon nitride over silicon dioxide and polysilicon films [J]. Journal of Colloid and Interface Science,2010,348(1):114-118.
    [3]H. Lei, N. Bu, R. Chen, et al. Chemical mechanical polishing of hard disk substrate with a-alumina-g-polystyrene sulfonic acid composite abrasive [J]. Thin Solid Films,2010,518(14): 3792-3796.
    [4]Z. Zhang, L. Yu, W. Liu, et al. Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate [J]. Applied Surface Science,2010,256(12): 3856-3861.
    [5]M. Fu, L. Wei, Y. Li, et al. Surface charge tuning of ceria particles by titanium doping:Towards significantly improved polishing performance [J]. Solid State Sciences,2009,11(12):2133-2137.
    [6]胡建东,李永绣,程昌明,等.Ce02-ZrO2复合氧化物的制备及协同抛光性能[J].无机化学学报,2006,22(7):1354-1358.
    [7]Y. Kang, Y. N. Prasad, I. Kim, et al. Synthesis of Fe metal precipitated colloidal silica and its application to W chemical mechanical polishing (CMP) slurry [J]. Journal of Colloid and Interface Science,2010,349(1):402-407.
    [8]X. Zhao, R. Long, Y. Chen. Synthesis, characterization of CeO2@SiO2 nanoparticles and their oxide CMP behavior [J]. Microelectronic Engineering,2010,87(9):1716-1720.
    [9]C. A. Coutinho, S. R. Mudhivarthi, A. Kumar, et al. Novel ceria-polymer microcomposites for chemical mechanical polishing [J]. Applied Surface Science,2008,255(4):3090-3096.
    [10]S. Armini, C. M.Whelan, M. Moinpour, et al. Composite polymer core-silica shell abrasive particles during Oxide CMP:A defectivity study [J]. Journal of the Electrochemical Society, 2007,154(8):661-671.
    [11]S. Armini, C. M.Whelan, M.Moinpour, et al. Composite polymer core- silica shell abrasives: The effect of polishing time and slurry solid content on Oxide CMP [J]. Electrochemical and Solid-State Letters,2007,10(9):243-247.
    [12]S.Armini, C.M.Whelan, M.Moinpour, et al. Composite polymer core- silica shell abrasives:The effect of the shape of the silica particles on Oxide CMP [J]. Journal of the Electrochemical Society,2008,155(6):401-406.
    [13]S. Armini, C. M. Whelan, M.Moinpour, et al. Copper CMP composite polymer core- silica shell abrasives:A defectivity study [J]. Journal of the Electrochemical Society,2009,156(1):18-26.
    [14]S. Armini, C. M. Whelan, K.Maex. Engineering polymer core-silica size in composite abrasives for CMP Applications [J]. Electrochemical and Solid-State Letters,2008,11(10):280-284.
    [15]S. Armini, J. De Messemaeker, C. M. Whelan, et al. Composite polymer core-ceria shell abrasive particles during Oxide CMP:A defectivity study [J]. Journal of the Electrochemical Society,2008,155(9):653-660.
    [16]杨德仁.半导体材料测试与分析[M].北京:科学出版社,2010.
    [17]袁哲俊,王先逵.精密与超精密加工技术[M].北京:机械工业出版社,2007.
    [18]陈杨,李霞章,陈志刚,等.纳米磨料对GaAs晶片的抛光研究[J].固体电子学研究与进展,2006,26(4):555-559.
    [19]陈志刚,李霞章,陈杨,等.纳米CeO2的醇水法制备及其对GaAs晶片的抛光性能[J].中国有色金属学报,2006,16(6):1064-1069.
    [20]T. Hirose, K. Saito, A. J. Ikushima. Structural relaxation in sputter-deposited silica glass [J]. Journal of Non-Crystalline Solids,2006,352(21-22):2198-2203.
    [21]M. Tomozawa, A. Koike, S. R. Ryu. Exponential structural relaxation of a high purity silica glass [J]. Journal of Non-Crystalline Solids,2008,354(40-41):4685-4690.
    [22]A.Y. Shmykov, S.V. Mjakin, I.V. Vasiljeva, et al. Electron beam initiated grafting of methacryloxypropyl-trimethoxysilane to fused silica glass[J]. Applied Surface Science,2009, 255(12):6391-6396.
    [23]T. M. Gross, M. Tomozawa. Crack-free high load Vickers indentation of silica glass [J]. Journal of Non-Crystalline Solids,2008,354(52-54):5567-5569.
    [24]T. Suratwala, R. Steele, M. D. Feit, et al. Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing [J]. Journal of Non-crystalline solids,2008,354(18): 2023-2037.
    [25]刘瑞鸿.二氧化硅介质层CMP抛光液研制及其性能研究[D].大连:大连理工大学,2009.
    [26]Y. J. Kim, O. J Kwon, M. C. Kang, et al. Development of a copper chemical mechanical polishing slurry at neutral pH based on ceria slurry [J]. Journal of the Electrochemical Society, 2010,157(10):H952-H958.
    [27]陈明君,董申,李旦,等.脆性材料超精密磨削时影响表面质量因素的研究[J].机械工程学报,2001,37(3):1-4.
    [28]T. G. Bifao, T. A. Bow, R. O. Scattergood. Ductile-regime grinding:A new technology for machining brittle material [J]. Journal of Engineering for Industry,1991,113(5):184-189.
    [29]L. Y. Wang, K. L. Zhang, Z. T. Song, et al. Chemical mechanical polishing and a succedent reactive ion etching processing of sapphire wafer [J]. Journal of the Electrochemical Society, 2007,154(3):H166-H169.
    [30]王永光.基于分子量级的化学机械抛光材料去除机理的理论和试验研究[D].无锡:江南大学,2008.
    [31]S. Oh, J. Seok. An integrated material removal model for silicon dioxide layers in chemical mechanical polishing processes [J]. Wear,2009,266(7-8):839-849.
    [32]Y. W. Zhao, L. Chang. A micro-contact and wear model for chemical-mechanical polishing of silicon wafers [J]. Wear,2002,252(3-4):220-226.
    [33]K. L. Johnson. Contact mechanics [M]. New York:Cambridge university press,1985.
    [34]L. M. Cook. Chemical processes in glass polishing [J]. Journal of Non-crystalline solids,1990, 120(1-3):152-171.
    [35]李生华,周春红,张瑞军,等.摩擦化学进展—化学的地位与作用[J].摩擦学学报,2002,22(1):74-79.
    [36]T. Hoshino, Y. Kurata, Y. Terasaki, et al. Mechanism of polishing of SiO2 films by CeO2 particles [J]. Journal of Non-Crystalline Solids,2001,283(1-3):129-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700