淀粉纳米晶的改性及其在热塑性淀粉复合材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,人们纷纷致力于研发来自于可再生资源的生物降解材料,用其替代石化基不可降解材料。热塑性淀粉因其可生物降解、来自可再生资源、价格相对低廉而受到广泛的关注。热塑性淀粉可以通过现有的合成塑料加工技术进一步加工成各种制品,并在某些领域特别是包装领域成功取代部分合成塑料。但是,淀粉的亲水特性,使得热塑性淀粉的力学性能对环境湿度敏感、阻湿性差。这些缺点极大地限制了热塑性淀粉材料的应用。向热塑性淀粉中添加至少在某一维方向上具有纳米尺度(≤100nm)的填料,制备热塑性淀粉纳米复合材料,是近年来改善热塑性淀粉力学性能和阻隔性能的主要方法之一。
     在淀粉糊化温度以下,通过酸水解的方法除去原淀粉颗粒中的无定形部分而得到的淀粉纳米晶,由于其呈碟片状,结构致密,刚度大,结晶度高以及透湿性低,使其成为制备热塑性淀粉纳米复合材料以提高其力学性能和阻湿性能的理想增强相。通过酸解蜡质玉米淀粉制备淀粉纳米晶,对其进行交联改性、酯化改性和交联-酯化双重改性,调节淀粉纳米晶的极性。以改性处理的淀粉纳米晶为增强相,用流延法制备热塑性淀粉纳米复合材料。通过淀粉纳米晶改性程度的变化与控制,优化热塑性淀粉纳米复合材料的力学性能和阻湿性能。
     在水相介质中及淀粉糊化温度以下,淀粉纳米晶可以与六偏磷酸钠、硼砂、戊二醛发生交联反应,交联改性后淀粉纳米晶的结晶结构可以完全或部分保留,交联反应基本只发生在淀粉纳米晶表面。用柠檬酸对淀粉纳米晶进行交联改性,可以在淀粉分子上引入酯基基团;柠檬酸水溶液改性处理的淀粉纳米晶,结晶结构完全被破坏,但用pH值调节为3.5的柠檬酸水溶液或柠檬酸乙醇溶液改性处理,淀粉纳米晶的结晶结构可以部分保留。透射电子显微镜照片显示,交联改性后,淀粉纳米晶的形貌发生了变化,因氢键作用而引起的团聚现象明显减弱。经六偏磷酸钠、硼砂交联改性处理后,淀粉纳米晶之间的团聚现象被有效地抑制,能够均匀稳定地分散在水中;经戊二醛、柠檬酸交联改性处理后,淀粉纳米晶除了可以均匀稳定地分散在水中,还可以在极性比较低的氯仿、二氯甲烷等有机溶剂中分散。通过对交联剂所含官能团的选择,可以在降低淀粉纳米晶极性的基础上,赋予淀粉纳米晶一定的疏水性。
     在淀粉糊化温度以下,淀粉纳米晶可以与十二烯基琥珀酸酐、辛烯基琥珀酸酐和乙酸酐发生酯化反应,酯化改性将酯基官能团C=O引入到淀粉纳米晶上,淀粉纳米晶的结晶结构可以部分保留。在相同的酯化反应条件下,相比于十二烯基琥珀酸酐,使用烯基碳原子个数少的(即碳链长度短的)辛烯基琥珀酸酐对淀粉纳米晶进行酯化改性,更容易得到高的羟基取代度。酯化改性处理后,淀粉纳米晶的极性降低,能够分散在水以及氯仿、二氯甲烷和甲苯等有机溶剂中,具有两亲性;羟基取代度越高,淀粉纳米晶越容易分散到有机溶剂中。在羟基取代度相近的情况下,相比于乙酸酐,烯基琥珀酸酐酯化改性更有效地降低了淀粉纳米晶的极性,抑制了淀粉纳米晶的团聚。
     淀粉纳米晶经交联改性处理后仍然可以与十二烯基琥珀酸酐、辛烯基琥珀酸酐和乙酸酐发生酯化反应,而且淀粉纳米晶的结晶结构可以部分保留。交联-酯化双重改性处理后,淀粉纳米晶不仅能够均匀稳定地分散在水中,还可以在氯仿、二氯甲烷、甲苯等有机溶剂中分散,具有两亲性。相比于交联改性,交联-酯化双重改性有效降低了淀粉纳米晶的极性,使其可以在极性比较低的有机溶剂中分散;相比于酯化改性,交联-酯化双重改性在提高淀粉纳米晶羟基取代度的同时,有效降低了淀粉纳米晶的极性。
     淀粉纳米晶的加入,显著提高了热塑性淀粉复合材料的拉伸强度和弹性模量。交联改性淀粉纳米晶的加入大幅度提高了热塑性淀粉复合材料的拉伸强度和弹性模量,同时也提高了在75%和95%相对湿度环境下的断裂伸长率。相比于淀粉纳米晶自增强热塑性淀粉,交联改性淀粉纳米晶增强热塑性淀粉的拉伸强度和断裂伸长率增加了,但弹性模量变化不大。酯化改性淀粉纳米晶和交联-酯化双重改性淀粉纳米晶的加入提高了热塑性淀粉复合材料的拉伸强度、弹性模量和断裂伸长率,但相比于淀粉纳米晶自增强热塑性淀粉,拉伸强度和弹性模量却大幅度下降了。交联-酯化双重改性淀粉纳米晶增强热塑性淀粉的拉伸强度和弹性模量明显小于交联改性淀粉纳米晶增强热塑性淀粉,但断裂伸长率却大于交联改性淀粉纳米晶增强热塑性淀粉。相比于热塑性淀粉,淀粉纳米晶自增强热塑性淀粉的水蒸气透过量和水蒸气透过系数明显降低,而且随着淀粉纳米晶添加量的增加而减小;相比于淀粉纳米晶,改性淀粉纳米晶的加入更有效地提高了热塑性淀粉复合膜的阻湿性能,而且交联-酯化双重改性淀粉纳米晶增强热塑性淀粉膜的阻湿性明显优于交联改性淀粉纳米晶增强热塑性淀粉膜和酯化改性淀粉纳米晶增强热塑性淀粉膜。在低湿环境下,淀粉纳米晶自增强热塑性淀粉和改性淀粉纳米晶增强热塑性淀粉的饱和吸湿率与热塑性淀粉十分相近,只有在高湿环境下,才明显低于热塑性淀粉的饱和吸湿率。相比于交联改性和酯化改性,交联-酯化双重改性有效降低了淀粉纳米晶增强热塑性淀粉对环境湿度的敏感性。
In the last two decades, there have been greater efforts to develop biodegradablepolymers and products from renewable resources for replacing non-degradablepetrochemical-based materials. Thermoplastic starch (TPS) has received considerableattention because of its biodegradability, availability from renewable resources and low cost.Products of TPS can be manufactured using technology already developed for the syntheticplastics and have found applications to replace the synthetic plastics in some marketsespecially in packaging industry. However, the hydrophilic nature of starch leads tomechanical properties of TPS sensitive to humidity and poor moisture barrier. Thesedisadvantages hinder the applications of TPS materials which may be improved by addingreinforcing fillers with at least one nanoscale dimension (nanoparticles), formingcomposites.
     By submitting native starch to acid hydrolysis at temperature below the gelatinizationtemperature of starch, the amorphous regions in starch granules are hydrolyzed allowing theseparation of nanoscale crystalline residues. Because of its unique properties such as thenanoscale platelet morphology, intrinsic rigidity, high crystallinity and low permeability,starch nanocystals (SNC) have been used as ideal reinforcements to prepare TPSnanocomposites to improve mechanical properties and moisture barrier. In this paper, SNCobtained from acid hydrolysis of waxy maize starch were modified through crosslinking oresterification or dual modification of crosslinking and esterification to reduce hydrophilicity of SNC and adjust surface polarity of SNC. TPS nanocomposites were prepared by castingprocess using modified SNC as the fillers in glycerol-plasticized corn starch matrix. Themechanical properties and moisture barrier properties of the SNC reinforced TPSnanocomposites were optimized by controlling the degree of modification of SNC.
     SNC were successfully modified through crosslinking with sodium hexametaphosphate(SHMP), borax and glutaraldehyde (GA) in water at temperatures below the gelatinizationtemperature of starch. The crystalline structure of SNC was completely or partially preservedafter the crosslinking modification and the crosslinking reaction may only occur on thesurface of SNC. The ester groups were introduced onto the starch molecule throughcrosslinking with citric acid (CA). The crystalline structure of SNC was completelydestroyed after modification with CA aqueous solution, but the crystalline structure could bepartially preserved with the CA aqueous solution adjusting the pH to3.5or CA ethanolsolution. Transmission electron microscopy (TEM) showed that, after crosslinkingmodification, the morphology of SNC changed and the aggregation between SNC due to thehydrogen bonding significantly reduced. The SNC crosslinked with SHMP or borax could bewell dispersed in water. The SNC crosslinked with GA or CA could be well dispersed notnoly in water, but also in lower polarity organic solvents such as chloroform,dichloromethane. These results suggested that it is possible to reduce the hydrophilicity ofSNC and provide it hydrophobicity by selecting crosslinking agents with different functionalgroups to react with SNC.
     SNC were modified through esterification by using dodecenyl succinic anhydride(DDSA), octenyl succinic anhydride (OSA) and actic anhydride (AA) at temperatures belowthe gelatinization temperature of starch. The ester groups were introduced onto the starchmolecule and the crystalline structure of SNC was partially preserved after esterificationmodification. Esterification modification of SNC with OSA having shorter chain ofn-alkenyl group was more easily to yield a higher degree of substitution of hydroxyl groupsthan with DDSA at the same reaction conditions. After esterification modification, thepolarity of SNC reduced and SNC can be well dispersed in water and organic solvents suchas chloroform, dichloromethane and toluene, suggesting that the esterified SNC has amphiphilicity. Esterified SNC with higher degree of substitution of hydroxyl groups wasmore easily dispersed in organic solvents. Esterification modification of SNC with ASA wasbetter than with AA for reducing the hydrophilicity of SNC and the aggregation betweenSNC at similar degree of substitution of hydroxyl groups.
     The crosslinking SNC were further modified through esterification with AA, DDSA orOSA. The crystalline structure of SNC was partially preserved after the dual modification ofcrosslinking and esterification. Dual modification of SNC through crosslinking andesterification was better than single crosslinkng modification for reducing the polarity of theSNC, and was more easily to yield a higher degree of substitution of hydroxyl groups andmore effectively to reduce the the polarity of the SNC than single esterification modification.
     The addition of SNC significantly improved the tensile strength and Young’s modulusof TPS composites. The addition of crosslinked SNC significantly increased the tensilestrength and Young’s modulus of TPS composites and the elongation at break at75%RHand95%RH. Compared to SNC self-reinforced TPS composites, the tensile strength andelongation at break of crosslinked SNC reinforced TPS composites increased, but theYoung’s modulus was almost unchanged. The addition of esterified SNC or dual modifiedSNC improved the tensile strength, Young’s modulus and elongation at break of TPScomposites, but compared to SNC self-reinforced TPS composites, it led to a drasticdecrease of tensile strength and Young’s modulus. The tensile strength and Young’s modulusof dual modified SNC reinforced TPS composites were significantly less than those ofcrosslinked SNC reinforced TPS composites, but elongation at break was greater. Thepresence of SNC or modified SNC decreased the rate of water vapor transmission (WVT)and the water vapour permeability (WVP) of TPS composites. Moisture barrier properties ofdual modified SNC reinforced TPS composites were significantly better than crosslinkedSNC reinforced TPS composites and esterified SNC reinforced TPS composites. In the lowRH area, the equilibrium moisture contents of SNC self-reinforced TPS composites andmodified SNC reinforced TPS composites were very similar to those of TPS, but in the highenvironment, the equilibrium moisture contents of them were lower than those of TPS. Dualmodification was better than crosslinking modification and esterification modification for reducing the sensitivity of SNC reinforced TPS composites to ambient humidity.
引文
[1] Yu, L., Dean, K., Li, L. Polymer blends and composites from renewable resources [J].Progress in Polymer Science,2006,31(6):576-602.
    [2] Gandini, A. Polymers from renewable resources: a challenge for the future ofmacromolecular materials [J]. Macromolecules,2008,41(24):9491-9504.
    [3] Liu, H. S., Xie, F. W., Yu, L., Chen, L., Li, L. Thermal processing of starch basedpolymers [J]. Progress in Polymer Science,2009,34(12),1348-1368.
    [4] Averous, L., Moro, L., Dole, P., Fringant, C. Properties of thermoplastic blends:starch-polycaprolactond [J]. Polymer,2000,41(11):4157-4167.
    [5] Lu, Y. S., Tighzert, L., Dole, P., Erre, Damien. Preparation and properties of starchthermoplastics modified with waterborne polyurethane from renewable resources [J].Polymer,2005,46(24):9863-9870.
    [6] Gáspár, M., Benko, Zs., Dogossy, G., Réczey, K., Czigány, T. Reducing waterabsorption in compostable starch-based plastics [J]. Polymer Degradation andStability,2005,90(3):563-569.
    [7] Carvalho, A. J. F., Job, A. E., Alves, N., Curvelo, A. A. S., Gabdini, A. Thermoplasticstarch/natural rubber blends [J]. Carbphydrate Polymers,2003,53(1):95-99.
    [8] Bangyekan, C., Aht-Ong, D., Srikulkit, K. Preparation and properties evaluation ofchitosan-coated cassava starch films [J]. Carbohydrate Polymers,2006,63(1):61-71.
    [9] Ryu, S. Y., Rhim, J. W., Roh, H. J., Kim, S. S. Preparation and physical properties ofzein-coated high-amylose corn starch film [J]. Lebensmittel Wissenschaftund-Technologie,2002,35(8):680-686.
    [10] Delville, J., Joly, C., Dole, P., Bliard, C. Solid state photocrosslinked starch basedfilms: a new family of homogeneous modified starches [J]. Carbohydrate Polymers,2002,49(1):71-81.
    [11] Delville, J., Joly, C., Dole, P., Bliard, C. Influence of photocrosslinking on theretrogradation of wheat starch based films [J]. Carbohydrate Polymers,2003,53(4):373-381.
    [12] Marques, P. T., Lima, A. M. F., Bianco, G., Laurindo, J. B., Borsali, R., Le Meins, J. F.,Soldi, V. Thermal properities and stability of cassava starch films crosslinked withtetraethylene glycol diacrylate [J]. Polymer Degradation and Stability,2006,91(4):726-732.
    [13] Zhou, J., Zhang, J., Ma, Y. H., Tong, J. Surface photo-crosslinking of corn starchsheets [J]. Carbohydrate Polymers,2008,74(4):405-410.
    [14] Zhou, J., Ma, Y. H., Zhang, J., Tong, J. Influence of surface photocrosslinking onproperties of thermoplastic starch sheets [J]. Journal of Applied Polymer Science,2009,112(1):99-106.
    [15] Zhou, J., Ma, Y. H., Ren, L. L., Tong, J. Liu, Z. Q., Xie, L. Preparation andcharacterization of surface crosslinked TPS/PVA blend films [J]. CarbohydratePolymers,2009,76(4):632-638.
    [16] Liu, Z. Q., Jiang, M., Dong, X. G., Bai, X., Tong, J., Zhou, J. Preparation andcharacterization of surface crosslinked TPS/PVA blend films by glutaraldehyde [J].Journal of Applied Polymer Science,2012,124(5):3774-3781.
    [17] Bengtsson, M., Koch, K., Gatenholm, P. Surface octanoylation of high-amylosepotato starch films [J]. Carbohydrate Polymers,2003,54(1):1-11.
    [18] Carvalho, A. J. F., Curvelo, A. A. S., Gandini, A. Surface chemical modification ofthermoplastic starch: reactions with isocyanates, epoxy functions and stearoylchloride [J]. Industrial Corps and Products,2005,21(3):331-336.
    [19] Andrad, C. T., Simao, R. A., Thire, R. M. S. M., Achete, C. A. Surface modificationof maize starch films by low-pressure glow l-butene plasma [J]. CarbohydratePolymers,2005,61(2):407-413.
    [20] Jayasekara, R., Harding, I. H., Bowater, I. C., Christie, G. B., Lonergan, G. T.Preparation, surface modification and characterization of solution cast starch PVAblended films [J]. Polymer Testing,2004,23(1):17-27.
    [21] Bruno, F. F., Akkara, J. A., Ayyagari, M., Kaplan, D. L., Gross, R., Swift, G. Dordick,J. S. Enzymatic modification of insoluble amylose in organic solvents [J].Macromolecules,1995,28(26):8881-8883.
    [22] Ren, L. L., Jiang, M., Tong, J., Bai, X., Dong, X. G., Zhou, J. Influence of surfaceesterification with alkenyl succinic anhydrides on mechanical properties of cornstarch films [J]. Carbohydrate Polymers,2010,82(3):1010-1013.
    [23] Stone, D. A., Korley, L. T. J. Bioinspired Polymeric Nanocomposites [J].Macromolecules,2010,43(22):9217-9226.
    [24] Henriette, M. C. de Azeredo. Nanocomposites for food packaging applications [J].Food Research International,2009,42(9):1240-1253.
    [25] Smith, J. S., Bedrow, D., Smith, G. D. A molecular dynamics simulation study ofnanoparticle interactions in a model polymer-nanoparticle composite [J]. CompositeScience and Technology,2003,63(11):1599-1605.
    [26] Huang, M. F., Yu, J. G., Ma, X. F. Studies on the properties ofMontmorillonite-reinforced thermoplastic starch composites [J]. Polymer,2004,45(20):7017-7023.
    [27] Chen, B, Julian, R. G. Evans, J. R. G. Thermoplastic starch–clay nanocomposites andtheir characteristics [J]. Carbohydrate Polymers,2005,61(4):455-463.
    [28] Zhang, Q. X., Yu, Z. Z., Xie, X. L., Naito, K., Kagawa, Y. Preparation and crystallinemorphology of biodegradable starch/clay nanocomposites [J]. Polymer,2007,48(24):7193-7200.
    [29] Park, H. M., Lee, W. K., Park, C. Y., Cho, W. J., Ha, C. S. Environmentally friendlypolymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplasticstarch/clay nanocomposites [J]. Journal of Materials Science,2003,38(5):909-915.
    [30] Mbey, J. A., Hoppe, S., Thomas, F. Cassava starch-kaolinite composite film. Effect ofclay content and clay modification on film properties [J]. Carbohydrate Polymers,2012,88(1):213-222.
    [31] Gao, W., Dong, H. Z., Hou, H. X., Zhang, H. Effects of clays with varioushydrophilicities on properties of starch-clay nanocomposites by film blowing [J].Carbohydrate Polymers,2012,88(1):321-328.
    [32] Carvalho, A. J. F., Curvelo, A. A. S., Agnelli, J. A. M. A first insight on compositesof thermoplastic starch and kaolin [J]. Carbohydrate Polymers,2001,45(2):189-194.
    [33] Ma, X. F., Yu, J. G., Wang, N. Production of thermoplastic starch/MMT-sorbitolnanocomposites by dual-melt extrusion processing [J]. Macromolecular Materials andEmgineering,2007,292(6):723-728.
    [34] Teixeira, E. M., Pasquini, D., Curvelo, A. A. S., Corradini, E., Belgacem, M. N.,Dufresne, A. Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassavastarch [J]. Carbohydrate Polymers,2009,78(3):422-431.
    [35] Mathew, A. P., Thielemans, W., Dufresne, A. Mechanical properties ofnanocomposites from sorbitol plasticized starch and tunicin whiskers [J]. Journal ofApplied Polymer Science,2008,109(6):4065-4074.
    [36] Chen, Y., Liu, C. H., Chang, P. R., Cao, X. D., Anderson, D. P. Bionanocompositesbased on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre:Effect of hydrolysis time [J]. Carbohydrate Polymers,2009,76(4):607-615.
    [37] Chang, P. R., Jian, R. J., Zheng, P. W., Yu, J. G., Ma, X. F. Preparation and propertiesof glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites [J].Carbohydrate Polymers,2010,79(2):301-305.
    [38] Paillet, M., Dufresne, A. Chitin whisker reinforced thermoplastic nanocomposites [J].Macromolecules,2001,34(9):6527-6530.
    [39] Chang, P. R., Jian, R. J., Yu, J. G., Ma, X. F. Starch-based composites reinforced withnovel chitin nanoparticles [J]. Carbohydrate Polymers,2010,80(2):421-426.
    [40] Lin, N., Huang, J., Chang, P. R., Anderson, D. P., Yu, J. H. Preparation, modification,and application of starch nanocrystals in nanomaterials: a Review [J]. Journal ofNanomaterials,2011,2011(2011):1-13.
    [41] Jenkins, P. J., Donald, A. M. The effect of acid hydrolyis on native starch granulestructure [J]. Starch/Starke,1997,49(7/8):262-267.
    [42] Wang, Y. J., Truong, V. D., Wang, L. Structures and rheological properties of cornstarch as affected by acid hydrolysis [J]. Carbohydrate Polymers,2003,52(3):327-333.
    [43] LeCorre, D., Bras, J., Dufresne, A. Influence of botanic origin and amylase content onthe morphology of starch nanocrystals [J]. Journal of nanoparticle Research,2011,13(12):7193-7208.
    [44] Chakraborty, S., Sahoo, B., Teraoka, I., Miller, L. M., Gross, R. A. Enzyme-catalyzedregioselective modification of starch nanoparticles [J]. Macromolecules,2005,38(1):61-68.
    [45] Kim, J, Y., Park, D. J., Lim, S. T. Fragmentation of waxy rice starch granules byenzymatic hydrolysis [J]. Cereal Chemistry,2008,85(2):182-187.
    [46] LeCorre, D., Vahanian, E., Dufresne, A., Bras, J. Enzymatic pretreatment forpreparing starch nanocrystals [J]. Biomacromolecules,2012,13(1):132-137.
    [47] Putaux, J. L., Molina-Boisseau, S., Momaur, T., Dufresne, A. Platelet nanocrystalsresulting from the disruption of waxy maize starch granules by acid hydrolysis [J].Macromolecules,2003,4(5):1198-1202.
    [48] Lin, J. H., Lee, S. Y., Chang, Y. H. Effect of acid-alcohol treatment on the molecularstructure and physicochemical properties of maize and potato starches [J].Carbohydrate Polymers,2003,53(4):475-482.
    [49] Chang, Y. H., Lin, J. H., Li, C. Y. Effect of ethanol concentration on thephysicochemical properties of waxy corn starch treated by hydrochloric acid [J].Carbohydrate Polymers,2004,57(1):89-96.
    [50] Angellier, H., Choisnard, L., Molina-Boisseau, S., Dole, P., Dufresne, A.Optimization of the Preparation of Aqueous Suspensions of Waxy Maize StarchNanocrystals Using a Response Surface Methodology [J]. Biomacromolecules,2004,5(4):1545-1551.
    [51] Angellier, H., Putaux, J. L., Molina-Boisseau, S., Dufresne, A., Bertoft, E., Perez S.The molecular structure of waxy starch nanocrystals [J]. Carbohydrate Research,2009,344(12):1558-1566.
    [52] LeCorre, D., Bras, J., Dufresne, A. Evidence of micro-and nanoscaled particlesduring starch nanocrystals preparation and their isolation [J]. Biomacromolecules,2011,12(8):3039-3046.
    [53] Ma, X F., Jian, R. J., Chang, P. R., Yu, J. G. Fabrication and Characterization ofCitric Acid-Modified Starch Nanoparticles/Plasticized-Starch Composites [J].Biomacromolecules,2008,9(11):3314-3320.
    [54] Liu, D. G., Wu, Q. L., Chen, H. H., Chang, P. R. Transitional properties of starchcolloid with particle size reduction from micro-to nanometer [J]. Journal of Colloidand Interface Scince,2009,339(1):117-124.
    [55] Song, D., Thio, Y. S., Deng, Y. L. Starch nanoparticle formation via reactiveextrusion and related mechanism study [J]. Carbohydrate Polymers,2011,85(1):208-214.
    [56] LeCorre, D., Bras, J., Dufresne, A. Ceramic membrane filtration for isolating starchnanocrystals [J]. Carbohydrate Polymers,2011,86(4):1565-1572.
    [57] Angellier, H., Molina-Boisseau, S., Belgacem, M. N., Dufresne, A. Surface chemicalmodification of waxy maize starch nanocrystals [J]. Langmuir,2005,21(6):2425-2433.
    [58] Xu, Y., Ding, W. Q., Liu, J., Li, Y., Kennedy, J. F., Gu, Q., Shao, S. X. Preparationand characterization of organic-soluble acetylated starch nanocrystals [J].Carbohydrate Polymers,2010,80(4):1078-1084.
    [59] Namazi, H., Dadkhah, A. Convenient method for preparation of hydrophobicallymodified starch nanocrystals with using fatty acids [J]. Carbohydrate Polymers,2010,79(3):731-737.
    [60] Valodkar, M., Thakore, S. Isocyanate crosslinked reactive starch nanoparticles forthermo-responsive conducting applications [J]. Carbohydrate Research,2010,345(16):2354-2360.
    [61] Thielemans, W., Belgacem, M. N., Dufresne, A. Starch Nanocrystals with LargeChain Surface Modifications [J]. Langmuir,2006,22(10):4804-4810.
    [62] Labet, M., Thielemans, W., Dufresne, A. Polymer Grafting onto starch nanocrystals[J]. Biomacromolecules,2007,8(9):2916-2927.
    [63] Song, S. W., Wang, C., Pan, Z. L., Wang X. F. Preparation and characterization ofamphiphilic starch nanocrystals [J]. Journal of Applied Polymer Science,2008,107(1):418-422.
    [64] Namazi, H., Dadkhah, A. Surface modification of starch nanocrystals throughring-opening polymerization of ε-caprolactone and investigation of theirmicrostructures [J]. Journal of Applied Polymer Science,2008,110(4):2405-2412.
    [65] Corre, D. L., Bras, J., Dufresne, A. Starch nanoparticles: A review [J].Biomacromolecules,2010,11(5):1139-1153.
    [66] Dufresne, A., Cavaille, J. Y., Helbert, W. New Nanocomposite Materials:Microcrystalline Starch Reinforced Thermoplastic [J]. Macromolecules,1996,29(23):7624-7626.
    [67] Angellier, H., Molina-Boisseau, S., Dufresne, A. Mechanical Properties of WaxyMaize Starch Nanocrystal Reinforced Natural Rubber [J]. Macromolecules,2005,38(22):9161-9170.
    [68] Angellier, H., Molina-Boisseau, S., Dufresne, A. Waxy maize starch nanocrystals asfiller in natural rubber [J]. Macromolecular Symposia,2006,233(1):132-136.
    [69] Angellier, H., Molina-Boisseau, S., Lebrun, L., Dufresne, A. Processing andStructural Properties of Waxy Maize Starch Nanocrystals Reinforced Natural Rubber[J]. Biomacromolecules,2005,38(9):3783-3792.
    [70] Bouthegourd, E., Rajisha, K. R., Kalarical, N., Saiter, J. M., Thomas, S. Naturalrubber latex/potato starch nanocrystal nanocomposites: correlationmorphology/electrical properties [J]. Materials Letters,2011,65(23/24):3615-3617.
    [71] Mélé, P., Angellier, H., Molina-Boisseau, S., Dufresne, A. Reinforcing mechanismsof starch nanocrystals in a nonvulcanized natural rubber matrix [J]. Macromolecules,2011,12(5):1487-1493.
    [72] Angellier, H., Molina-Boisseau, S., Dole, P., Dufresne, A. Thermoplastic starch-waxymaize starch nanocrystals nanocomposites [J]. Biomacromolecules,2006,7(2):531-539.
    [73] Viguié, J., Molina-Boisseau, S., Dufresne A. Processing and characterization of waxymaize starch films plasticized by sorbitol and reinforced with starch nanocrystals [J].Macromolecular Bioscience,2007,7(11):1206-1216.
    [74] Kristo, E., Biliaderis, C. G. Physical properties of starch nanocrystal-reinforcedpullulan films [J]. Carbohydrate Polymers,2007,68(1):146-158.
    [75] Carcia, N. L., Ribbal, L., Dufresne, A., Aranguren, M. I., Goyanes, S.Physico-Mechanical Properties of Biodegradable Starch Nanocomposites [J].Macromolecular Materials and Engineering,2009,294(3):169-177.
    [76] Carcia, N. L., Ribbal, L., Dufresne, A., Aranguren, M. I., Goyanes, S. Effect ofglycerol on the morphology of nanocomposites made from thermoplastic starch andstarch nanocrystals [J]. Carbohydrate Polymers,2011,84(1):203-210.
    [77] Zheng, H., Ai, F. J., Chang, P. R., Huang, J., Dufresne, A. Structure and properties ofstarch nanocrystal-reinforced soy protein plastics [J]. Polymer Composites,2009,30(4):474-480.
    [78] Dufresne, A., Cavaillé, J. Y. Clustering and percolation effects in microcrystallinestarch-reinforced thermoplastic [J]. Journal of Polymer Science Part B: PolymerPhysics,1998,36(12):2211-2224.
    [79] Angellier, H., Putaux, J. L., Molina-Boisseau, S., Dupeyre, D., Dufresne A. Starchnanocrystals fillers in an acrylic polymer matrix [J]. Macromolecular Symposia,2005,221(1):95-104.
    [80] Chen, Y., Cao, X. D., Chang, P. R., Huneault, M. A. Comparative study on the filmsof poly (vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native peastarch [J]. Carbohydrate Polymers,2008,73(1):8-17.
    [81] Chen, G. J., Wei, M., Chen, J. H., Huang, J. Dufresne, A. Chang, P. R. Simultaneousreinforcing and toughening: New nanocomposites of waterborne Polyurethane filledwith low loading level of starch nanocrystals [J]. Polymer,2008,49(7):1860-1870.
    [82] Zou, J. W., Zhang, F., Huang, J., Chang, P. R., Su, Z. M., Yu J. H. Effects of starchnanocrystals on structure and properties of waterborne polyurethane-basedcomposites [J]. Carbohydrate Polymers,2011,85(4):824-831.
    [83] Wang, Y. X., Tian, H. F., Zhang, L. N. Role of starch nanocrystals and cellulosewhiskers in synergistic reinforcement of waterborne polyurethane [J]. CarbohydratePolymers,2010,80(3):665-671.
    [84] Lin, N., Yu, J. H., Chang, P. R., Li, J. L., Huang J. Poly (butylene succinate) basedbiocomposites filled with polysaccharide nanocrystals: structure and properties [J].Polymer Composites,2011,32(3):472-482.
    [85] Yu, J. H., Ai, F. J., Dufresne, A., Gao, S. J., Huang, J., Chang, P. R. Structure andmechanical properties of poly (lactic acid) filled with (starch nanocrystal)-graft-poly(ε-caprolactone)[J]. Macromolecular Materials and Engineering,2008,293(9):763-770.
    [86] Chang, P. R., Ai, F. J., Chen, Y., Dufresne, A., Huang, J. Effects of starchnanocrystal-graft-polycaprolactone on mechanical properties of waterbornepolyurethane-based nanocomposites [J]. Journal of Applied Polymer Science,2009,111(2):619-627.
    [87] Habibi, Y., Dufresne, A. Highly filled bionanocomposites from functionalizedpolysaccharide nanocrystals [J]. Biomacromolecules,2008,9(7):1974-1980.
    [88] Uslu, M. K., Polat, S. Effects of glyoxal cross-linking on baked starch foam [J].Carbohydrate Polymers,2012,87(3):1994-1999.
    [89] Parra, D. F., Tadini, C. C., Ponce, P., Lugao, A. B. Mechanical properties and watervapor transmission in some blends of cassava starch edible films [J]. CarbohydratePolymers,2004,58(4):475-481.
    [90] Seker, M., Hanna, M. A. Cross-linking starch at various moisture contents byphosphate substitution in an extruder [J]. Carbohydrate Polymers,2005,59(4):541-544.
    [91] Li, B. Z., Wang, L. J., Li, D., Chiu, Y. L., Zhang, Z. J., Shi, J., Chen, X. D., Mao, Z. H.Physical properties and loading capacity of starch-based microparticles crosslinkedwith trisodium trimetaphosphate [J]. Journal of Food Engineering,2009,92(3):255-260.
    [92] Shi, A. M., Wang, L. J., Li, D., Adhikari, B. The effect of annealing andcryoprotectants on the properties of vacuum-freeze dried starch nanoparticles [J].Carbohydrate Polymers,2012,88(4):1334-1341.
    [93] Rioux, B., Lspas-Szabo, P., Ait-Kadi, A., Mateescu, M. A., Juhasz, J.Structure-properties relationship in cross-linked high amylase starch cast films [J].Carbohydrate Polymers,2002,50(4):371-378.
    [94] Sreedhar, B., Chattopadhyay, D. K., Karunakar, M. S. H., Sastry, A. R. K. Thermaland surface characterization of plasticized starch polyvinyl alcohol blends crosslinkedwith epichlorohydrin [J]. Journal of Applied Polymer Science,2006,101(1):25-34.
    [95] Garg, S., Jana, A. K. Studies on the properties and characteristics of starch-LDPEblend films using cross-linked, glycerol modified, cross-linked and glycerol modifiedstarch [J]. European Polymer Journal,2007,43(9):3976-3987.
    [96] Bai, X., Ye, Z. F., Li, Y. F., Zhou, L. C., Yang, L. Q. Preparation of crosslinkedmacroporous PVA foam carrier for immobilization of microorganisms [J]. ProcessBiochemistry,2010,45(1):60-66.
    [97] Mostafa, K. M., Samarkandy, A. R., El-Sanabary, A. A. Preparation of poly(DMAEM)-cross linked pregelled starch graft copolymer and its application in wastewater treatments [J]. Carbohydrate Polymers,2011,86(2):491-498.
    [98] Wu, K. Y., Wisecarver, K. D. Cell immobilization using PVA crosslinked with boricacid [J]. Biotechnol Bioeng,1992,39(4):447-449.
    [99] Yin, Y. P., Li, J. F., Liu, Y. C., Li, Z. Starch crosslinked with poly(vinyl alcohol) byboric acid [J]. Journal of Applied Polymer Science,2005,96(4):1394-1397.
    [100] Reddy, N., Yang, Y. Q. Citric acid cross-linking of starch films [J]. Food Chemistry,2010,118(3):702-711.
    [101] Spiridon, I., Teaca, C. A., Bodirlau, R., Preparation and characterization of adipicacid-modified starch microparticles/plasticized starch composite films reinforced bylignin [J]. Journal of Materials Science,2011,46(10):3241-3251.
    [102] Bermejo, J. S., Ugarte, C. M. Chemical crosslinking of PVA and prediction ofmaterial properties by means of fully atomistic MD simulations [J]. MacromolecularTheory and Simulations,2009,18(4/5):259-267.
    [103] Valodkar, M., Thakore, S. Organically modified nanosized starch derivatives asexcellent reinforcing agents for bionanocomposites [J]. Carbohydrate Polymers,2011,86(3):1244-1251.
    [104] Lim, S., Seib, P. A. Preparation and pasting properties of wheat and corn starchphosphates [J]. Cereal Chemistry,1993,70(2):137-144.
    [105] Fang, Y. Y., Wang, L. J., Li, D., Li, B. Z., Bhandari, B., Chen, X. D., Mao, Z. H.Preparation of crosslinked starch microspheres and their drug loading and releasingproperties [J]. Carbohydrate Polymers,2008,74(3):379-384.
    [106] John, J. K., Sunitha Rani, V., Raja, K. C. M., Moorthy, S. N., Trivandrum.Physicochemical and enzyme susceptibility characteristics of starch extracted fromchemically pretreated Xanthosoma sagitifolium roots [J]. Starch/St rke,1999,(2/3):86-89.
    [107] Xu, H., Sun, L. P., Zhao, D. Q., Zhang, B., Zheng, G. F. Preparation and structurecharacterization of crosslinked potato starch [J]. Journal of the Chinese Cereals andOils Association,2007,22(5):67-72.
    [108] Yin, Y. P., Li, J. F., Liu, Y. C., Zhong, L. Starch Crosslinked with Poly(vinyl alcohol)by Boric Acid [J]. Journal of Applied Polymer Science,2005,96(4):1394-1397.
    [109] Mao, G.J., Wang, P., Meng, X. S., Zhang, X., Zheng, T. Crosslinking of corn starchwith sodium trimetaphosphate in solid state by microwave irradiation [J]. Journal ofApplied Polymer Science,2006,102(6):5854-5860.
    [110] Chen, C. Y., Guo, J. Y., Yu, T. L., Wu, S. C. Dynamic light scattering of dilutePVA-Borax aqueous solutions [J]. Journal of Polymer Research,1998,5(2):67-76.
    [111] Sreedhar, B., Sairam, M., Chattopadhyay, D. K., Syamala Rathnam, P. A., Mohan Rao,D. V. Thermal, mechanical, and surface characterization of starch-poly(vinyl alcohol)blends and borax-crosslinked films [J]. Journal of Applied Polymer Science,2005,96(4):1313-1322.
    [112] Pawlak, A., Mucha, M. Thermogravimetric and FTIR studies of chitosan blends [J].Thermochimica Acta,2003,396(1/2):153-166.
    [113] Zullo, R., Iannace, S. The effects of different starch sources and plasticizers on filmblowing of thermoplastic starch: Correlation among process, elongational propertiesand macromolecular structure [J]. Carbohydrate Polymers,2009,77(2):376-383.
    [114] Fang, J. M., Fowler, P. A., Tomkinson, J., Hill, C. A. S. The preparatianion andcharacterisation of a series of chemically modified potato starches [J]. CarbohydratePolymers,2002,47(3):245-252.
    [115] Lin, H. L., Liu, W. H., Shen, K. S., Yu, L., Cheng, C. H. Weak gel behaviour ofpoly(vinyl alcohol)-borax aqueous solutions [J]. Journal of Polymer Research,2003,10(3):171-179.
    [116] El-Tahlawy, K., Venditti, R. A., Pawlak, J. J. Aspects of the preparation of starchmicrocellular foam particles crosslinked with glutaraldehyde using a solventexchange technique [J]. Carbohydrate Polymers,2007,67(3):319-331.
    [117] Wang, Y. H., Hsieh, Y. L. Cellulose functionalization by glutaraldehyde (GA)[J].Polymer Preprints,2001,42(2):520-521.
    [118] Pauliukaite, R., Ghica, M. E., Fatibello-Filho, O., Brett, C. M. A. Comparative studyof different cross-linking agents for the immobilization of functionalized carbonnanotubes within a chitosan film supported on a graphite-epoxy composite electrode[J]. Analytical Chemistry,2009,81(13):5364-5372.
    [119] Wang, Y. H., Hsieh, Y. L. Crosslinking of polyvinyl alcohol (PVA) fibrousmembranes with glutaraldehyde and PEG diacylchloride [J]. Journal of AppliedPolymer Science,2010,116(6):3249-3255.
    [120] Ramaraj, B. Crosslinked poly(vinyl alcohol) and starch composite films. Ⅱ.Physicomechanical, thermal properties and swelling studies [J]. Journal of AppliedPolymer Science,2007,103(2):909-916.
    [121] Yoon, S. D., Chough, S. H., Park, H. R. Properties of starch-based blend folms usingcitric acid as additive. Ⅱ[J]. Journal of Applied Polymer Science,2006,100(3):2554-2560.
    [122] Yoon, S. D., Chough, S. H., Park, H. R. Preparation of resistant starch/poly(vinylalcohol) blend films with added plasticizer and crosslinking agents [J]. Journal ofApplied Polymer Science2007,106(3):2485-2493.
    [123] Hernández-Muňoz, P., Villalobos, R., Chiralt, A. Effect of cross-linking usingaldehydes on properties of glutenin-rich films [J]. Food Hydrocolloids,2004,18(3):403-411.
    [124] El-Tahlawy, K., Venditti, R. A., Pawlak, J. J. Aspects of the preparation of starchmicrocellular foam particles crosslinked with glutaraldehyde using a solventexchange technique [J]. Carbohydrate Polymers,2007,67(3):319-331.
    [125] Fang, J. M., Fowler, P. A., Sayers, C., Williams, P. A. The chemical modification of arange of starches under aqueous reaction conditions [J]. Carbohydrate Polymers,2004,55(3):283-289.
    [126] Kacurakova, M., Wilson, R. H. Developments in mid-infrared FT-IR spectroscopy ofselected carbohydrates [J]. Carbohydrate Polymers,2001,44(4):291-303.
    [127] Kacurakova, M., Belton, P. S., Wilson, R. H., Hirsch, J., Ebringerova, A. Hydrationproperties of xylan-type structure: An FTIR study of xylooligosaccharides [J]. Journalof the Science of Food and Agriculture,1998,77(1):38-44.
    [128] Kalutskaya, E.P. IR-spectroscopic study of interaction of sorbed water and xylans [J].Vysokomolekulyarnye Soedineniya,1988,3:867-873.
    [129] Alam, F., Hasnain, A. Studies on swelling and solubility of modified starch from taro(Colocasia esculenta): effect of pH and temperature [J]. Agriculturae ConspectusScientificus,2009,74(1):45-50.
    [130] Yang, C. Q., Wang, X. L. Formation of cyclic anhydride intermediates andesterification of cotton cellulose by multifunctional carboxylic acids: an infraredspectroscopy study [J]. Textile research Journal,1996,66(9):595-603.
    [131] Yang, C. Q., Xu, L., Li, S. Q., Jiang, Y. Q. Nonformaldehyde durable press finishingof cotton fabrics by combining citric acid with polymers of maleic acid [J]. Textileresearch Journal,1998,68(5):457-464.
    [132] Shi, R., Bi, J. L., Zhang, Z. Z., Zhu, A. C., Chen, D. F., Zhou, X. H., Zhang, L. Q.,Tian, W. The effect of citric acid on the structural properties and cytotoxicity of thepolyvinylalcohol/starch films when molding at high temperature [J]. CarbohydratePolymers,2008,74(4):763-770.
    [133] Yu, J. G., Wang, N., Ma, X. F. The effects of citric acid on the properties ofthermoplastic starch plasticized by glycerol [J]. Starch/Starke,2005,57(10):494-504.
    [134] Shin, S. I., Lee, C. J., Kim, D. I., Lee, H. A., Cheong, J. J., Chung, K. M., Baik, M. Y.,Park, C. S., Kim, C. H., Moon, T. W. Formation, characterization, and glucoseresponse in mice to rice starch with low digestibility produced by citric acid treatment[J]. Journal of Cereal Science,2007,45(1):24-33.
    [135] Shin, S. I., Lee, C. J., Kim, M. J., Choi, S. J., Choi, H. J., Kim, Y., Moon T. W.Structural characteristics of low-glycemic response rice starch produced by citric acidtreatment [J]. Carbohydrate Polymer,2009,78(3):588-595.
    [136] Wing, R. E., Peoria. Starch citrate: preparation and lon exchange properties [J].Starch/Starke,1996,48(7/8):275-279.
    [137] Yang, C. Q., Xu, L., Li, S. Q., Jiang, Y. Q. Nonformaldehyde durable press finishingof cotton fabrics by combining citric acid with polymers of maleic acid [J]. TextileResearch Journal,1998,68(5):457-464.
    [138] Xie, X. J., Liu, Q. Development and physicochemical characterization of newresistant citrate starch from different corn starches [J]. Starch/Starke,2004,56(8):364-370.
    [139] Ma, X. F., Chang, P. R., Yu, J. G., Stumborg, M. Properties of biodegradable citricacid-modified granular starch/thermoplastic pea starch composites [J]. CarbohydratePolymers,2009,75(1):1-8.
    [140] Marcazzan, M., Vianello, F., Scarpa, M., Rigo, A. An ESR assay for a-amylaseactivity toward succinylated starch, amylose and amylopectin [J]. Journal ofBiochemical and Biophysical Methods,1999,38(3):191-202.
    [141] Aburto, J., Thiebaud, S., Borredon, E., Bikiaris, D., Prinos, J., Panayiotou, C.Synthesis, characterization, and biodegradability of fatty-acid esters of amylase andstarch [J]. Journal of Applied Polymer Science,1999,74(6):1440-1451.
    [142] Neumann, U., Wiege, B., Warwel, S. Synthesis of hydrophobic starch esters byreaction of starch with various carboxylic acid imidazolides [J]. Starch/Starke,2002,54(10):449-453.
    [143] Shogren, R. L. Rapid preparation of starch esters by high temperature/pressurereaction [J]. Carbohydrate Polymers,2003,52(3):319-326.
    [144] Lower, E. S. Starch, fatty, organic and inorganic esters [J]. La Rivista Italiana DelleSostanze Grasse,1996,73(4):159-163.
    [145] Tessler, M. M., Billmers, R. L. Preparation of starch esters [J]. Journal ofEnvironmental Polymer Degradation,1996,4(2):85-89.
    [146] Albertsson, A. C., Karlsson, S. Degradable polymers for the future [J]. ActaPolymerica,1995,46(2):114-123.
    [147] Riward, C., Moens, L., Roberts, K., Brigham, J., Kelley, S. Starch esters asbiodegradable plastics: Effects of ester group chain length and degree of substitutionon anaerobic biodegradation [J]. Enzyme and Microbial Technology,1995,17(9):848-852.
    [148] Xu, Y. X., Dzenis, Y., Hanna, M. A. Water solubility, thermal characteristics andbiodegradability of extruded starch acetate foams [J]. Industrial Crops and Products,2005,21(3):361-368.
    [149] Bisws, A., Shogren, R. L., Selling, G., Salch, J., Willett, J. L., Buchanan, C. M. Rapidand environmentally friendly preparation of starch esters [J]. Carbohydrate Polymers,2008,74(1):137-141.
    [150] Jeon, Y. S., Viswanathan, A., Gross, R. A. Studies of starch esterification: Reactionswith alkenyl-succinates in aqueous slurry Systems [J]. Starch/Starke,1999,51(2/3):90-93.
    [151] Chi, H., Xu, K., Xue, D. H., Song, C. L., Zhang, W. D., Wang, P. X. Synthesis ofdodecenyl succinic anhydride (DDSA) corn starch [J]. Food Research International,2007,40(2):232-238.
    [152] Chang, P. R., Qian, D. Y., Anderson, D. P., Ma, X. F. Preparation and properties ofthesuccinic ester of porous starch [J]. Carbohydrate Polymers,2012,88(2):604-608.
    [153] Zhou, J., Ren, L. L., Tong, J., Ma, Y. H. Effect of surface esterification with octenylsuccinic anhydride on hydrophilicity of corn starch films. Journal of Applied PolymerScience,2009,114(2):940-947.
    [154] Zhou, J., Ren, L. L., Tong, J., Xie, L., Liu, Z. Q. Surface esterification of corn starchfilms reaction with dodecenyl succinic anhydride [J]. Carbohydrate Polymers,2009,78(4):888-893.
    [155] Bhosale, R., Singhal, R. Process optimization for the synthesis of octenyl succinylderivative of waxy corn and amaranth starches [J]. Carbohydrate Polymers,2006,66(4):521-527.
    [156] Caldwell, C. G., Hills, F., Wurzburg, O. B. Polysaccharides derivative of substituteddicarboxylic acids [P]. US:2661349,1953-12-1.
    [157] Hui, R., Chen, Q. H., Fu, M. L., Xu, Q., He, G. Q. Preparation and properties ofoctenyl succinic anhydride modified potato starch [J]. Food Chemistry,2009,114(1):81-86.
    [158] Song, X. Y., He, G. Q., Ruan, H., Chen, Q. H. Preparation and properties of octenylsuccinic anhydride modified early Indica rice starch [J]. Starch/Starke,2006,58(2):109-117.
    [159] Shogren, R. L., Viswanathan, A., Felker, F., Gross, R. A. Distribution of octenylsuccinate groups in octenyl succinic anhydride modified waxy maize starch [J].Starch/Starke,2000,52(6/7):196-204.
    [160] Viswanathan, A. Effect of degree of substitution of octenyl succinate starch onenzymatic degradation [J]. Journal of Polymers and the Environment,1999,7(4):185-190.
    [161] Viswanathan, A. Effect of degree of substitution of octenyl succinate starch on theemulsification activity of different oil phases [J]. Journal of Polymers and theEnvironment,1999,7(4):191-196.
    [162] Bao, J. S., Xing, J., Phillips, D. L., Corke, H. Physical properties of octenyl succinicanhydride modified Rice, wheat, and potato starches [J]. Journal of Agricultural andFood Chemistry,2003,51(8):2283-2287.
    [163] Xu, J., Zhou, C. W., Wang, R. Z., Yang, L., Du, S. S., Wang, F. P., Ruan, H., H, G. Q.Lipase-coupling esterification of starch with octenyl succinic anhydride [J].Carbohydrate Polymers,2012,87(3):2137-2144.
    [164] Chen, Z., Schols, H. A., Voragen, A. G. J. Differently sized granules from acetylatedpotato and sweet potato starches diVer in the acetyl substitution pattern of theiramylose populations [J]. Carbohydrate Po lymers,2004,56(2):219-226.
    [165] Sassi, J. F., Chanzy, H. Ultrastructural aspects of the acetylation of cellulose [J].Cellulose,1995,2(2):111-127.
    [166] Cerqueira, D. A., Filho, G. R., Meireles, C. D. S. Optimization of sugarcane bagassecellulose acetylation [J]. Carbohydrate Polymers,2007,69(3):579-582.
    [167] Huang, J., Schols, H. A., Jin, Z., Sulmann, E., Voragen, A. G. J. Characterization ofdiVerently sized granule fractions of yellow pea, cowpea and chickpea starches aftermodification with acetic anhydride and vinyl acetate [J]. Carbohydrate Polymers,2007,67(1):11-20.
    [168] Wu, Y., Seib, P. A. Acetylated and hydroxypropylated distarch phosphates from waxybarley: paste properties and freeze-thaw stability [J]. Cereal Chemistry,1990,67(2):202-208.
    [169] Liu, H. J., Ramsden, L., Corke, H. Physical properties of cross-linked and acetylatednormal and waxy rice starch [J]. Starch/Starke,1999,51(7):249-252.
    [170] Zheng, G. H., Han, H. L., Bhatty, R. S. Functional properties of cross-linked andhydroxypropylated waxy hullless barley starches [J]. Cereal Chemistry,1999,76(2):182-188.
    [171] Shin, S. I., Kim, H. J., Ha, H. J., Lee, S. H., Moon, T. W. Effect of hydrothermaltreatment on formation and structural characteristics of slowly digestible non-pastedgranular sweet potato starch [J]. Starch/Starke,2005,57(9):421-430.
    [172] Raina, C. S., Singh, S., Bawa, A. S., Saxena, D. C. Some characteristics of acetylated,cross-linked and dual modified Indian rice starches [J].2006,223(4):561-570.
    [173] Tran, T., Piyachomkwan, K., Sriroth, K. Gelatinization and thermal properties ofmodified cassava starches [J]. Starch/Starke,2007,59(1):46-55.
    [174] Janssen, L. P. B. M., Moscicki, L. Thermoplastic starch as packaging material [J].Acta Scientiarum Polonorum, Technica Agraria,2006,5(1):19-25.
    [175] Pushpadass, H. A., Marx, D. B., Wehling, R. L., Hanna, M. A. Extrusion andcharacterization of starch films [J]. Cereal Chemistry,2009,86(1):44-51.
    [176] Fu, S. Y., Feng, X. Q., Lauke, B., Mai, Y. W. Effects of particle size, particle/matrixinterface adhesion and particle loading on mechanical properties ofparticulate-polymer composites [J]. Composites: Part B,2008,39(6):933-961.
    [177] Alves, V. D. Mali, S., Beléia, A., Grossmann, M. V. E. Effect of glycerol and amylaseenrichment on cassava starch film properties [J]. Journal of Food Engineering,2007,78(3):941-946.
    [178] Pukanszky, B., Voros, G. Mechanism of interfacial interactions in particulate filledcomposites. Composite Interfaces,1993,1(5):411-427.
    [179] Pérez, S., Bertoft, E. The molecular structures of starch components and theircontributibution to the architecture of starch granules: A comprehensive review [J].Starch/Starke,2010,62(8):389-420.
    [180] Musa, H., Gambo, A., Bhatia, P. G. studies on some physicochemical properties ofnative and modified starches from digitaria iburua and zea mays [J]. InternationalJournal of Pharmacy and Pharmaceutical Sciences,2011,3(1):28-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700