埃洛石纳米管/聚合物乳胶纳米复合薄膜的制备、微结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中首先介绍了通过微乳液法制备聚甲基丙烯酸甲酯[Poly(Methyl methacrylate), PMMA]与甲基丙烯酸甲酯—乙酸正丁酯共聚物[Poly(methyl methacrylate-n-butyl acrylate), P(MMA-BA)]的微乳液分散体系,测量了体系中胶体粒子的尺寸分布(rD-65nm)。通过改变单体组分中乙酸正丁酯含量,考察其对临界裂纹厚度的影响,并研究其制备薄膜的成型性。同时,利用显微镜观察薄膜表面形貌。结果表明,单体中乙酸正丁酯含量在改变聚合物玻璃化转变温度后,可影响聚合物薄膜材料塑性、韧性及硬度,进而提高材料的成膜质量;
     其次,研究了天然纳米管材料——埃洛石纳米管(Halloysite nanotube, HNT)的性能,以及在聚合物微乳液中掺杂HNT对聚甲基丙烯酸甲酯(PMMA)与甲基丙烯酸甲酯—乙酸正丁酯共聚物[P(MMA-BA)]的增强作用,试验研究了HNT/PMMA、 HNT/P(MMA-BA)复合材料的成膜性,考察了纳米复合高分子薄膜材料的力学及热力学等性能,利用偏光显微镜观察薄膜中的微结构,分析聚合物在成膜过程中的应力分布,并通过AFM、SEM、摆杆阻尼硬度分析等测试手段研究了埃洛石纳米管加入前后高分子薄膜的微观结构形态与性能的变化。结果表明,HNT与基体聚合物材料结合紧密,可有效改善制膜材料的性能,TGA测试表明其热力学性能也得到大幅度提高。当聚合物与HNT固体含量比为1:1-1.2时,薄膜质量最佳,HNT的增强效果最为显著,纳米复合材料所制薄膜的临界裂纹厚度较纯聚合物薄膜可增加约400%。与此同时,通过尝试不同实验条件,探索改善纳米管增强相在在胶乳液中的分散的方法,采用不同强度搅拌、高强度超声、长时间循环振动等方法对聚合物微乳液中HNT分散相进行预处理,并采用聚乙二醇(Polyethylene glycol, PEG1500)作为辅助分散剂,通过DLS研究了不同分散条件对埃洛石纳米管分散相均匀化的作用,最终确定最佳实验条件,并考察对HNT分散体系进行预处理后对纳米复合材料成膜性能的改善;
     最后,在制备出具有良好性能纳米复合薄膜材料的基础上,考察其作为涂层材料的性能指标,分析表明,纳米复合薄膜的力学性能较未掺杂增强相之前有较大改善。通过Fick扩散定律与Lucas-Washburn模型分析,并设计实验测试其耐湿性能,得到了纳米复合薄膜的吸湿过程曲线、饱和相对湿度,通过测定其吸湿量发现,随着埃洛石纳米管分散相含量的提高,由于纳米材料所具有的大比表面积,润湿有所增强,平衡吸水率随之增加,但由于基体和增强相的疏水性质以及薄膜内部的毛细管作用,尽管其微观形貌表现出一定的多孔特征,其吸湿速率呈现出两阶段不同趋势。在起始阶段,随着HNT含量的增加,吸温速率随之减小;在第二阶段,在起始阶段达到一定吸湿量后,吸湿速率开始呈现明显下降的趋势,表现出良好的耐湿性能。
This work is mainly concentrated on the film formation from polymer latex which is polymerized from microemulsion, Halloysite nanotube (HNT)/Polymer latex dispersions and the evaluation of the improvement, such as mechanical and thermal properties of the films. The first major topic is the development of methods for solving the cracking problem in latex films. The second important part is the evaluation of the nanocomposite films which are after different way of treatment and of improved properties.
     Commonly, there is a quandary in polymer film formation:soft polymer particles are needed for preventing films cracking when deform but hard films are expected afterwards for good mechanical properties. It was found that the intermixed layer between two Poly(Methyl methacrylate)(PMMA) particles, widened by increasing the drying temperature, would be helpful for preventing cracking even there are always stress fluctuations in drying polymer dispersions which easily cause the micro crack. The addition of n-Butyl acrylate (BA) is proposed as a method to decrease the hardness but to increase the critical cracking thickness of PMMA latex films. Our results show that the softer P(MMA-BA) latex particles of lower Tg lead to higher critical cracking thicknesses.
     Another method developed, different from adjusting the forming temperature and hardness of polymer by copolymer to improve the film formation, is the introduction of the Halloysite nanotube (HNT) which could naturally bridge the polymer particles together and form a physical cohesive connection between them. As showed in experiments, the intercalation of organic compounds would be favored when halloysite is hydrated. Theoretically HNTs can both sustain the stress of deformation based on and aid the concomitant interdiffusion of polymer particles during drying, resulted in higher critical thicknesses (up to nearly400%as higher). Thick, crack-free films were made from hard latex. It was found that the dispersion of HNT has a significant effect on the film formation from polymer latex. But here comes a problem. Halloysite nanotube, directly manufactured from the natural minerals and often hard to be refined during processing, will therefore be of a large range of size distribution in micro-scale and burden the polymer-HNT nanocomposites with the nanotube aggregation most of the time. From the observation by microscope, it can be concluded that even applied into the polymer latex which is much more viscous than water, Brownian motion still has a significant effect on the HNT dispersion in the latex. Stirring, high shear mixing, sonication and shaking pre-treatment of HNT suspensions with the help of the coagulant Polyethylene glycol (PEG1500) can sorting the HNTs and make them homogeneously disperse in the latex, and then improve the polymer films'properties at the end. Meanwhile, although after proper treatment, HNTs will still have the trend to cluster together in suspensions because of the strong Van der Waals interaction between tubes and their high specific surface area. As the experiments show that increasing the HNT content can help to decrease the cracking in HNT/PMMA and HNT/P(MMA-BA) nanocomposite films, in order to improve the surface quality of the films, it would be better to decrease the HNT bundles than simply lower the Halloysite content.
     At last, the nanocomposite films from the latex dispersions mixed with HNT are very white. This can make the materials a candidate of painting without Titania. In the moisture absorption test, polymer films show an increasing water mass fraction in equilibrium with the HNTs. This can also explain to some extent the strengthen mechanism, that is, Halloysite slower the drying of films to supply enough time for the deformation and alleviation of the strain during film formation. And interestingly, with the increasing solid content of HNT, films absorbing water become slower which represent a good moisture resistance.
引文
1陈华辉 等,现代复合材料,北京:中国物质出版社,1998.
    2何曼君 等 高分子物理,上海:复旦大学出版社,1981.
    3 Shelden, R. P. Composite polymeric materials, Applied Science Publishers Ltd. 1982
    4 Moore, Edward P. Polypropylene handbook. New York:Hanser Publishers,1996.
    5大森英三(张育川 等译).功能丙烯酸树脂.北京:化学工业出版社1993,256--270.
    6 Winnik, M. A, "The formation and properties of latex films" in Lovell, P.A. and El-Aasser, M. S. In Emulsion Polymerization and Emulsion Polymers, Wiley, New York 1997,467-518.
    7 Winnik, M. A. Latex film formation. Curr. Opinion Coll. Polym. Sci.1997,2, 192-199.
    8 Keddie, J. L. Film formation of latex. Mat. Sci. Eng.1997, (21),101-170.
    9 Taylor, J. W. and Winnik, M. A. Functional Latex and Thermoset Latex Films. Journal of Coatings Technology-Research 2004,1, (3),163-190.
    10 Zosel, A. and Ley, G. Influence of crosslinking on structure, mechanical properties, and strength of latex films. Macromolecules 1993,26,2222-2227.
    11 Huang, Y. and Jones, F.N. Synthesis of crosslinkable acrylic latexes by emulsion polymerization in the presence of etherified melamine-formaldehyde (MF) resins. Prog. Org. Coat.1996,28,133-141.
    12 Teng, G. and Soucek, M.D. Effect of introduction mode of hydroxyl functionality on morphology and film properties of cycloaliphatic diepoxide crosslinkable core-shell latex. J. Polym. Sci. Part A:Polymer Chemistry 2002,40,4256-4265.
    13 Winnik, M. A. Interdiffusion and crosslinking in Thermoset Latex Films. Journal of Coatings Technology-Research 2002,74, (925),49-63.
    14 Winnik, M. A. Crosslinking and polymer interdiffusion in latex films. Polym. Prep. 2003,44,(1),100-101.
    15 Routh, A. F., Russel, W. B. A process model for latex film formation:limiting regimes for individual driving forces. Langmuir 1999,15,7762-7773.
    16 Routh, A. F., zimmerman, W. B. Distribution of particles during solvent evaporation from films. Chemical Engineering Science 2004,59,2961-2968.
    17 Visschers, M. et al. Forces operative during film formation from latex dispersions. Progress in Organic Coatings 1997,31,311-323.
    18 Jesen, D. P. and Morgan, L. W. Particle size as it relates to the minimum film formation temperature of latices. Journal of applied polymer sciences 1991,42, 2845-2849
    19 Dillon, R. E. et al. Sinter of synthetic latex paticles. Journal of colloed Sci.1951,6, 108-117.
    20 Frenkel, J. Viscous flow of crystalline bodies under the action of surface tension. Journal of Physics 1945,9,385-391.
    21 Brown, G. L. Formation of films from polymer dispersions. Journal of Polymer Science 1956,22,423-434.
    22 Routh, A. F.; Russel W. B. Deformation mechanisms during latex film formation: experimental evidence. Ind. Eng. Chem. Res.,2001,40,4302-308.
    23 Koenig, A. M. et al. Heterogeneous drying of colloidal polymer films:Dependenc on added salt. Langmuir 2008,24 7580-7589.
    24 Griffith, A. A. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Seires A(211) 1921,221,163-198.
    25 Tirumkudulu, M. S.; Russel, W. B. Cracking in Drying Latex Films. Langmuir 2005,21,4938-4948.
    26 Corcoran, E. M. Determining stresses in organic coatings using plate beam method. Journal of Paint Technology 1969,41,635-640.
    27 Perera, Y. D.; Eynde, D. V. Considerations on a cantilever (beam) method for measuring the internal stress in organic coatings. Journal of Coating Technology 1981, 53,39-44.
    Petersen, C.; Heldmann, C. and Johannsmann, D. Internal stresses during film formation of polymer latices. Langmuir 1999,15,7745-7751.
    29 Lee, W. P.; Routh, A. F. Temperature dependence of crack spacing in drying latex films. Ind. Eng. Chem. Res.2006,45,6996-7001.
    30 Man, W.; Russel, W. B. Direct measurements of critical stresses and cracking in thin films of colloidal dispersions. Physics Review Letters 2008,100,198302.
    31 Singh, K. B.; Tirumkudulu, M. S. Cracking in Drying Colloidal Films. Physical Review Letters 2007,98,218302.
    32 Strobl, G. R. The physics of polymers,2nd edition, Springer,1997,245.
    33 Carreras, E. S. et al. Avoiding "mud" cracks during drying of thin films fro aqueous colloidal suspensions. Journal of Colloidal and Interface Science 2007,313, 160-168.
    34 Neda, Z. et al. Spiral Cracks in Drying Precipitates. Physical Review Letters 2002, 88,095502.
    35 Pauchard, L. et al. Influence of salt content on crack patterns formed through colloidal suspension desiccation. Physical Review E 1999,59,3737.
    36 Dufresne, E. R. Flow and fracture in drying nanoparticle suspensions. Physical Review Letters 2003,91,224501
    37 Allain, C.; Limat, L. Regular patterns of cracks formed by directional drying of a colloidal suspension. Physical Review Letters 1995,74,2981.
    38 Shorlin, K. A. et al. Development and geometry of isotropic and directional shrinkage-crack patterns. Physical Review E 2000,61,6950.
    39 Watts, P. C. P.; Hsu W. K. Behaviours of embedded carbon nanotubes during film cracking. Nanotechnology 2003,14, L7-L10.
    40 Levis, S.R. and Deasy, P.B. Characterisation of halloysite for use as a microtubular drug delivery system. International Journal of Pharmaceutics 2002243,125-134.
    41 Noro, H. Hexagonal platy halloysite in an altered tuff bed. Clay Miner 1986,21, 401-415.
    42 Antill, S. J. Halloysite:a low-cost alternative nanotube. Aust. J Chem.2003,56, 723.
    43 Shchukin, D. G. et al. Halloysite Nanotubes as Biomimetic Nanoreactor. Small 2005,1,510-513.
    44 Du, M. L.; Guo, B. C. and Jia, D. M. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur. Polym. J.2006,42,1362-1369.
    45 Berthier, P. Analyse de l'halloysite. Annales de Chimie et de Physique 1826,32, 463-484.
    46 Hofmann, U. et al. Rontgenographishe und kolloidchemishe Untersuchungun iiber ton. Angewandte Chemie 1934,47,539-547.
    47 Churchman, G. J. Interlayer water in halloysite.1970, PhD thesis, University of Otago, New Zealand.
    48 Carr, R. M.; Chih, H. Complexes of halloysite with organic compounds. Clay Minerals 1971,9,153-166.
    49 Alexander, L. T. et al. Relationship of the clay minerals halloysite and endellite. American Mineralogist 1943,28,1-18.
    50 Bailey, S. W. Structures of layer silicates. Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G. W. and Brown, G., editors). Monograph 5, Mineralogical Society, London.1980,1-123.
    51 White, G. N. and Dixon, J. B. Kaolin-serpentine minerals. Soil Mineralogy with Environmental Applications (Dixon, J. B. and Schulze, D. G., editors). Soil Science Society of America, Madison, Wisconsin.2002,389-414.
    52 Theng, B. K. G. On measuring the specific surface area of clays and soils by adsorption of para-nitrophenol:Use and limitations. Clays Control the Environment y Proceedings of the 10th International Clay Conference 1993 (Churchman, G. J.; Fitzpatrick, R. W. and Eggleton, R. A., editors). Adelaide, Australia.1995,304-310.
    53 Theng, B. K. G. and Wells, N. Assessing the capacity of some New Zealand clays for decolourizing vegetable oil and butter. Applied Clay Science 1995,9,321-326.
    54 Birrell, K. S.; Fieldes, M. and Williamson, K. I. Unusual forms of halloysite. American Mineralogist 1955,40,122-124.
    55 Churchman, G. J. et al. Characteristics of fine pores in some halloysites. Clay Minerals 1995,30,89-98.
    56 Kunze, G. W. & Bradley, W. F. "Occurence of a tabular halloysite in a Texas soil" in:Proceedings of the 12th National Conference on Clays and Clay Minerals 1963 (W.F. Bradley, editor). Clays and Clay Minerals, Pergamon Press, Oxford, UK.1964, 19,523-528.
    57 Bailey, S. W. "Halloysite y A critical assessment". in:Surface Chemistry Structure and Mixed Layering of Clays. Proceedings of the 9th International Clay Conference 1989 (Farmer, V. C. & Tardy, Y., editors). Sciences Geologiques, Memoire, Strasbourg, France.1990,86,89-98.
    58 Ma, C. & Eggleton, R. A. Cation exchange capacity of kaolinite. Clays and Clay Minerals 1999,47,174-180.
    59 Wada, K. Adsorption of alkali chloride and ammonium halide on halloysite. Soil and Plant Food 1958,4,137-144.
    60 Garrett, W. G. and Walker, G. F. The cation-exchange capacity of hydrated halloysite and the formation of halloysite-salt complexes. Clay Minerals Bulletin 1959, 4,75-80.
    61 Wada, K. Adsorption of alkali chloride and ammonium halide on halloysite. Soil and Plant Food 1958,4,137-144.
    62 Hart, R. D. et al. The nature of soil kaolins from Indonesia and Western Australia. Clays and Clay Minerals 2002,50,198-207.
    63 Bradley, W. F. Diagnostic criteria for clay minerals. American Mineralogist 1945, 30,704-713.
    64 MacEwan, D. M. C. Complexes of clay with organic compounds. I. Complex formation between montmorillonite and halloysite and certain organic liquids. Journal of the Chemical Society-Faraday Transactions 1948,44,349-367.
    65 Range, K. J. et al. Fire-clay kaolinite or fire-clay mineral? Experimental classi-fication of kaolinite-halloysite minerals, in:Proceedings of the International Clay Conference 1969, Tokyo (Heller, L., editor). Israel University Press, Jerusalem. 1969,3-13.
    66 Churchman G. J. Relevance of different intercalation tests for distinguishing halloysite from kaolinite in soils. Clays and Clay Minerals 1990,38,591-599.
    67 Churchman, G. J. et al. Intercalation method using formamide for differentiating halloysite from kaolinite. Clays and Clay Minerals 1984,32,241-248.
    68 Franco, F. & Ruiz, Cruz M. D. Factors influencing the intercalation degree ('reactivity') of kaolin minerals with potassium acetate, formamide, dimethylsulphoxide and hydrazine. Clay Minerals 2004,39,193-205.
    69 Carr, R. M. and Chih, H. Complexes of halloysite with organic compounds. Clay Minerals 1971,9,153-166.
    70 Theng, B. K. G. The Chemistry of Clay-Organic Reactions. Adam Hilger, London. 1974.
    71 MacEwan, D. M. C. Halloysite-organic complexes. Nature 1946,157,159-160.
    72 Hillier, S. & Ryan, P. C. Identification of halloysite (7A) by ethylene glycol solvation:the'MacEwan effect'. Clay Minerals 2002,37,487-496.
    73 Wada, K. Lattice expansion of kaolin minerals by treatment with potassium acetate. American Mineralogist 1961,46,78-91.
    14 Miller, W. D. & Keller, W. D. Differentiation between endellite-halloysite and kaolinite by treatment with potassium acetate and ethylene glycol. in:Proceedings of the 10th National Conference on Clays and Clay Minerals 1961 (Swineford, A. editor). Clay and Clay Minerals, Pergamon Press, Oxford,UK.1963,10,244-253.
    75 Wilson, M. J. Clay mineralogical and related characteristics of geophagic materials Journal of'Chemical Ecology 2003,29,1525-1547. 76 Wilson, I. R. Kaolin and halloysite deposits of China. Clay Minerals 2004,39, 1-15.
    77 Neuber, U. & Bender, H. Acrylate sealants. Industrial report, Germany.2004.
    78 Zhang, Y. Antiwear composite lubricating greases for machinery parts. Industrial report, China.2004.
    79 Gaeddert A. (2001) How do you treat intestinal gas? Townsend Letter for Doc and Patients, June issue.
    80 Levis, S. R. & Deasy, P. B. Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride. International Journal of Pharmaceutics 2003,253,145-157.
    81 Kelly, H. M. et al. Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. International Journal of Pharmaceutics 2004,274,167-183.
    82 Smith, A. W. Biofilms and antibiotic therapy:Is there a role for combating bacterial resistance by the use of novel drug delivery systems? Advanced Drug Delivery Reviews 2005,57,1539-1550.
    83 Gualtieri, A. F. Synthesis of sodium zeolites from a natural halloysite. Physics and Chemistry of Minerals 2001,28,719-728.
    84 Kutsuna,S.et al.Heterogeneous decomposition of CHF2OCH2CF3 and CHF2OCH2C2F5 over various standard aluminosilica clay minerals in air at 313 K. Environmental Science and Technology 2002,36,3118-3123.
    85 Qiu Q.et al.Carbonitridation of Fly Ash.Ⅰ.Synthesis of SiAlON-based Materials. Industrial & Engineering Chemistry Research 2005,44,2469-2476.
    86 Gallagher,L.A.et al.Sealing composition having corrosion inhibitor and Kevlar pulp.Application:US,USA,2004,11.
    87 Kasseh,A.;Chaouki,J.;Ennajimi,E.Self-foamable organoclay/novolak nanocomposites and process thereof.U.S.Patent Application,WO2004063259,USA, 2004.
    88 Muehlebach,A. & Rime,F.Process for intercalating natural or synthetic clays with block or comb copolymers. Industrial report,Ciba Specialty Chemicals Holding Inc.,Switzerland,2004.
    89 Shirai,J.et al.Thin ingection molded articles of polyphenylene oxide blends containting organic clay.U.S.Patent Application,703927,USA,2004.
    90 Suzuki,K.et al.Thermoplastic resin nanocomposites with good heat and impac resistance and rigidity for automobiles.Industrial report,Nissan Motor Co.,Japan, 2004.
    91 Tae,J.W.et al.Catalytic degradation of polystyrene using acid-treated halloysite clays.Solid State Ionics 2004,172,129-133.
    92 Van Baarle,B.;Heideman,G.and Noordermeer,J.W.M.Method for vulcanizing a rubber compound, and rubber articles manufactured from a vulcanized rubber compound as obtained with the method.Industrial report,Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno.,Netherland,2004.
    93 Sheppard,C.M.;MacKenzie,K.J.D.Silicothermal synthesis and densification of x-sialon in the presence of metal oxide additives.Journal of the European Ceramic Society 1999,19,535-541.
    94 Fu,Y.B.;Zhang,L.D.;Zheng,J.Y.Electroless deposition of Ni on template halloysite and its magnetic property.Transactions of Nonferrous Metals Society of China 2004,14,152-156.
    95 Imai,H.;Nakano,H.;Urabe,K.Microstructural observation of tubular halloysite with a high-resolution transmission electron microscope.Journal of the Ceramic Society of Japan 2004,112,1153-1155.
    96 Price,R.R.;Gaber,B.P.;Lvov,Y.In-vitro release characteristics of tetracycline HCl,khellin and nicotinamide adenine dineculeotide from halloysite;a cylindrical mineral.Journal of Microencapsulation 2001,18,713-722.
    97 Lee,S.Y.;Kim S.J.Adsorption of naphthalene by HDTMA modified kaolinite and halloysite.Applied Clay Science 2002,22,55-63.
    98 Antill,S.J.Halloysite:A low-cost alternative nanotube.Australian Journal of Chemistry 2003,56,723.
    99 Majid,A.Characterization of sol-gel-derived nano-particles separated from oil sands fine tailings.Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003,224,33-44.
    100 Lovell,J.S.High capacity regenerable sorbent for removal of mercury from flue gas.U.S.Patent Application,6719828,USA 2004.
    101 Tomishige,H.Water-soluble mold core and its manufacture.Industrial report, Toyota Motor Corp.,Japan 2004.
    1 Taylor, G. I. The formation of emulsions in definable fields of flow. Proc. R. Soc. London, Ser.1934, A 146,501-523.
    2 Mason, T. G. et al. Nanoemulsions:formation, structure, and physical properties. J. Phys.:Condens. Matter 2006,18, R635-R666.
    3 Leong, T. S. H. et al. Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry 2009,16,721-727.
    4 Tadros, T. et al. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science 2004,108-109,303-318.
    5 Walstra, P. Principles of emulsion formation. Chem. Eng. Sci. 1993,48,333-349.
    6 Taisne, L.; Walstra, P. and Cabane, B. Transfer of oil between emulsion droplets. J. Colloid and Interface Sci.1996,184,378-390.
    7 Crum, L. A. Rectified diffusion. Ultrasonics 1984,22,215-223.
    8 Odell, J. A., Keller, A.; Rabin, Y. Flow-induced scission of isolated macromolecules. J. Chem. Phys.1988,88,4022-4028.
    9 Nguyen, T.Q.; Liang, O. Z.; Kausch, H. H. Kinetics of ultrasonic and transient elongational flow degradation:a comparative study, Polymer 1997,38,3783-3793.
    10 Kuijpers, M. W. A., et al. The mechanism of cavitation-induced polymer scission; experimental and computational verification. Polymer 2004,45, (19),6461-6467.
    11 Lee, J.; Kentish, S. E.; Ashokkurnar, M. The effect of surface-active solutes on bubble coalescence in the presence of ultrasound. Journal of Physical Chemistry B 2005,109,(11),5095-5099.
    12 Lucas, A. et al. Kinetics of Nanotube and Microfiber Scission under Sonication. Phys. Chem. C 2009,113, (48),20599-20605.
    13 Delmas, T. et al. How To Prepare and Stabilize Very Small Nanoemulsions Langmuir 2011,27, (5),1683-1692.
    14 Kruus, P.; Patraboy, T. J. Initiation of polymerization with ultrasound in methyl methacrylate. J. Phys. Chem.1985,89,3379-3384.
    15 Kruus, P. Sonochemical initiation of polymerization. Adv. Sonochem.1991,2, 1-21.
    16 Price, G. J.; Norris, D.J.; West, P. J. Polymerization of methyl methacrylate initiated by ultrasound. Macromolecules 1992,25,6447-6454.
    17 Lorimer, J. P.; Mason, T. J.; Kershaw, D. An observation of the effect of ultrasonic power on the rates of initiation and polymerisation of N-vinylcarbazole in benzene. J. Chem. Soc., Chem. Commun.1991,1217-1219.
    18胡又牧,魏邦柱.胶乳应用技术.北京:化学工业出版社,1990.
    19 Keddie, J. L. et al. Kinetics of Film Formation in Acrylic Latices Studied with Multiple-Angle-of-Incidence Ellipsometry and Environmental SEM. Macromolecules 1995,28,2673-2682.
    20 Wang, Y. C. et al. Freeze-Fracture Studies of Latex Films Formed in the Absence and Presence of Surfactant. Langumuir 1992,8,1435-1442.
    21 Holmes, D. M.; Kumar, R. V.; Clegg, W. J. Cracking during lateral drying of alumina suspensions. J. Am. Ceram. Soc.2006,89, (6),1908-1913.
    22 Huang, Y.; Paul, D. R. Physical Aging of Thin Glassy Polymer Films Monitored by Gas Permeability. Polymer 2004,45,8377-8393.
    23 ISO-1522-2006. Paints and varnishes—Pendulum damping test. Switzerland: ISO,2006.
    24 Spevacek, J.; Schneider, B. Aggregation of stereoregular poly(methyl methacrylates). Adv. Colloid Interface Sci.1987,27,81-150.
    25 Schomaker, E.; Hoppen, H.; Challa, G. Complexation of stereoregular poly(methyl methacrylates).12. Complexation process in dilute solution. Macromolecules 1988, 21,2203-2209.
    1 Schulz, G. O.; Milkovich, R. Graft polymers with macromonomers. I. Synthesis from methacrylate-terminated polystyrene. J. Appl. Polym. Sci.1982,27,4773-4786.
    2 Schulz, G. O.; Milkovich, R. Graft polymers with macromonomers. II. Copolymerization kinetics of methacrylate-terminated polystyrene and predicted graft copolymer structures. J. Appl. Polym. Sci.1984,22,1633-1652.
    3 Ito, K.; Usami, N.; Yamashita, Y. Syntheses of Methyl Methacrylate-Stearyl Methacrylate Graft Copolymers and Characterization by Inverse Gas Chromatography. Macromolecules 1980,13,216-221.
    4 Kirn, W. N. and Burns, C. M. Thermal-Behavior, Morphology, and The Determination of The Flory-Huggins Interaction Parameter of Polycarbonate Polystyrene Blends. J. Appl. Polym. Sci.1987,34,945-967.
    5 Fox, T. G., Influence of Diluent and of Copolymer. Composition on the Glass Temperature of a Polymer. System, Bull. Am. Phys. Soc.1956,1,123-125.
    6 Reghunadhan, C. P.; Nair, G. C.; Brossas, J. Copolymerization of diethyl 2-(methacryloyloxy) ethyl phosphate with alkyl acrylates:Reactivity ratios and glass transition temperatures. Journal of Polymer Science, Part A:Polymer Chemistry 1988, 26,1791-1807.
    7 Brandrup, J.; Immergut, E. H.; Grulke, E. A. Polymer Handbook, fouth Edition, (John Wiley & Sons, Inc.1999), pp. V/88, VI/199.
    1 Tirumkudulu, M. S.; Russel, W. B. Cracking in drying latex films. Langmuir 2005, 21, (11),4938-4948.
    2 Taylor, J. W.; Winnik, M.A. Functional latex and thermoset latex films. JCT RESEARCH 2004,1, (3),163-190.
    3 Konig, A. M.; Johannsmann, D. Stress Fluctuations in Drying Polymer Dispersions. Langmuir 2010,26, (12),9437-9441.
    4 Turshatov, A. et al. Interparticle contact in drying polymer dispersions probed by time resolved fluorescence. Macromolecules 2008,41, (14),5365-5372.
    5 Birringer, R. et al. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? Physics Letters A 1984,102,365-369.
    6 Joussein E. et al. Halloysite clay minerals - a review. Clay Minerals 2005,40, 383-26.
    7 Iijima S. Carbon nanotubes:past, present, and future. Physica B:Condensed Matter 2002,323,1-5.
    Mittal, Vikas Polymer Nanotube Nanocomposites:Synthesis, Properties, and Applications, Wiley 2010, ISBN:978-0-470-62592-7,
    9 Lvov, Y. M. et al. Halloysite Clay Nanotubes for Controlled Release of Protective Agents. ACS Nano 2008,2, (5),814-820.
    10 Li, C. et al. A general synthesis approach toward halloysite-based composite nanotube. Journal of Applied Polymer Science 2009,112,2647-2655.
    11 Vergaro, V. et al. Cytocompatibility and Uptake of Halloysite Clay Nanotubes. Biomacromolecules 2010,11, (3),820-826.
    12 Liu, M. et al. Interactions between halloysite nanotubes and 2,5-bis(2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites. Nanotechnology 2008,19,205709.
    13 Liu, M. et al. Benzothiazole sulfide compatibilized polypropylene/halloysite nanotubes composites. Applied Surface Science 2009,255,4961-4969.
    14 Deng, S. et al. Toughening epoxies with halloysite nanotubes. Polymer 2008,49, 5119-5127.
    15 Ning, N. Y. et al. Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 2007,48,7374-7384.
    16 Marney, D. C. O. et al. The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polymer Degradation and Stability 2008,93,1971-1978.
    17 Guo, B. et al. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid. Applied Surface Science 2008,255,2715-2722.
    18 Du, M. et al. Newly emerging applications of halloysite nanotubes:a review. Polymer International 2010,59,574-582. 19 http://www.sigmaaldrich.com/materials-science/nanomaterials/nanoclay-building/hall oysite-nanotubes.html (downloaded on July 5,2011).
    20 Pasbakhsh, P. et al. Halloysite nanotubes as a novel nanofiller for polymer nanocomposites. Extended Abstracts-21st Australian Clay Minerals Conference-Brisbane, August 2010.
    21 Du, M.; Guo, B.; Jia, D. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). European Polymer Journal 2006,42,1362-1369.
    22 Pasbakhsh, P. et al. EPDM/modified halloysite nanocomposites. Applied Clay Science 2010,48,405-413.
    23 Michael J. O'Connell et al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science 2002,297,593-596.
    24 Liu T. et al. Preparative Ultracentrifuge Method for Characterization of Carbon Nanotube Dispersions. J. Phys. Chem. C 2008,112,19193-19202.
    25 Green, A. A.; Hersam, M. C. Processing and properties of highly enriched double-wall carbon nanotubes. Nature Nanotechnology 2009,4,64-70.
    26 Williams, S. R.; Philipse, A. P., Random packings of spheres and spherocylinders simulated by mechanical contraction. Physical Review E 2003,67, (5),051301.
    27 Liang, D.; Hsiao, B. S.; Chu, B., Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced Drug Delivery Reviews 2007,59,1392-1412.
    28 Fiedler, B. et al. Fundamental aspects of nano-reinforced composites. Composites Science and Technology 2006,66,3115-3125.
    29 Weitsman, Y. J. and Elahi, M. Effects of Fluids on the Deformation, Strength and Durability of Polymeric Composites-An Overview. Mechanics of Time-Dependent Materials 2000,4,107-126.
    30 Bao, Li-Rong and Yee, A. F. Effect of temperature on moisture absorption in a bismaleimide resin and its carbon fiber composites. Polymer 2002,43,3987-3997.
    31 Weitsman, Y. J. Anomalous fluid sorption in polymeric composites and its relation to fluid-induced damage. Composites Part A:Applied Science and Manufacturing 2006,37,617-623.
    32 Bocquet, L.; Charlaix, E.; Ciliberto, S.; Crassous, J., Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 1998,396, 735-737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700