大鲵黏液低聚糖肽的制备、性质和生物活性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大鲵(Andrias davidianus)属两栖纲、有尾目、隐鳃鲵科,是我国特有的珍稀特产,属国家二类保护动物,主要分布于长江中上游、珠江中上游及汉水上游的溪流中。上世纪90年代以来,湖南、湖北、陕西及广西都建立了大量的大鲵驯养繁殖企业。仅湖南省就有大鲵驯养繁殖企业35家左右,年繁殖能力已达4-5万尾。随着养殖规模的扩大,大鲵资源的精深加工利用成为一个关系大鲵产业持续发展的紧迫课题。至今还没有一种经济效益显著的大鲵精深加工利用技术,这严重制约了大鲵养殖业的发展。
     大鲵体表无鳞,多皮肤腺,在生长过程中不断分泌黏液。大鲵作为有3亿5千万年的物种,除了具有寿命长、能自我修复的特点,还具有包括体表黏液在内的独特的非特异性免疫系统。大鲵在长期进化过程中体表黏液具备了抵御环境变化的能力和丰富的生物学活性。因此,大鲵黏液具有更大的利用价值和利用的可能性。如果能够对大鲵体表黏液进行开发利用,可以起到既利用大鲵资源,又不危害大鲵生长繁殖的效果,是实现大鲵资源可持续利用的最理想状态。本文利用海洋曲霉菌酸性蛋白酶(Aspergillus sp. acid protease)酶解大鲵体表黏液获得了大鲵低聚糖肽,研究了大鲵低聚糖肽的制备工艺、物理化学特性、生物学活性,并研究了它在果汁饮料与化妆品中的应用。研究结果对大鲵体表黏液的加工利用具有理论和实际意义,主要研究结果如下:
     1.通过正交试验,得到海洋曲霉菌酸性蛋白酶酶解大鲵体表黏液的最优酶解条件。各因素对酶解大鲵黏液影响的大小顺序为:酶解时间>E/S>温度>pH。海洋酸性蛋白酶酶解大鲵粘液最优酶解条件为:55oC,pH:2.0, E/S:0.03%,,酶解时间:3h。通过对大鲵酶解物溶液共晶点、冻融过程以及冷冻浓缩过程的研究,得到了一些可以提高冷冻干燥大鲵酶解物溶液效率的措施。即冷冻干燥操作前,大鲵酶解物溶液在-8.6~-13.6℃进行预冻结,来提高大鲵酶解物溶液的浓度。
     2.大鲵黏液酶解物经飞行质谱检测后被确认为分子量低于3.5kDa的大鲵低聚糖肽。大鲵低聚糖肽总蛋白含量较高,为80.01%,总糖含量为15.65%。总糖中盐酸氨基葡萄糖最高,半乳糖醛酸其次,之后依次为葡萄糖醛酸和唾液酸,分别占大鲵低聚糖肽3.39%、2.45%、0.65%、0.60%,占总糖含量的22.38%、16.17%、4.29%和3.69%。经测定大鲵低聚糖肽中不含硫酸糖。大鲵低聚糖肽中所含有18种氨基酸,除色氨酸未测出外,人体其它7种必需氨基酸的含量较高,其中苏氨酸(Thr)含量最为丰富,高达13.1%,其次是天冬氨酸/酰胺(Asx)和谷氨氨酸/酰胺(Glx),分别为11.2%和12.5%,而丝氨酸(Ser)含量最低,仅为0.2%。
     用β-消旋反应与血细胞凝集法测定糖肽键连接方式表明,大鲵低聚糖肽中存在O-连接糖肽键。
     对大鲵低聚糖肽进行nano-ESI-MS/MS分析,串联质谱图经Micromass专用软件处理后,用Spectrum List通过Mascot查询NCBI、SWISSPROT等数据库,经MasSeq软件分析,得到3个序列为:KAPILSDSSCKSC、KLQGTVSWGSGCQAKNC和VVHSLVQVTANKVMVRM。
     3.大鲵低聚糖肽具有清除羟基自由基、DPPH自由基和超氧阴离子自由基的作用。随着大鲵低聚糖肽浓度的升高,其清除自由基的能力逐渐增强。当浓度达到1mg/mL时,羟基自由基清除率达到54.69%,DPPH自由基清除率高达92.25%,超氧阴离子自由基清除率达到52%。
     大鲵低聚糖肽具有较好的ACE抑制活性。HPLC测试表明,大鲵低聚糖肽在40mg/mL时对ACE抑制活性最高,达90.82%。
     4.研究不同剂量的大鲵低聚糖肽对小鼠免疫功能影响的结果表明,按体质量将昆明种小鼠分成对照组(0g/kg·bw)和低(0.01g/kg·bw)、中(0.05g/kg·bw)、高(0.1g/kg·bw)3个剂量组,大鲵低聚糖肽饲喂小鼠8d后,各剂量组小鼠血清中IgG含量、吞噬鸡红细胞的巨噬细胞数以及T淋巴细胞活性与对照组相比均显著提高。
     将大鲵低聚糖肽按低浓度(100mg/kg体重)和高浓度(150mg/kg体重)两个浓度剂量组连续饲喂小鼠,并每天按剂量0.1mL/16g体重灌胃(对照组灌服相同体积生理盐水),15d后进行小鼠负重游泳试验。结果显示大鲵低聚糖肽高浓度组小鼠的游泳竭力增加到78.5min(P<0.01)。服用高浓度大鲵低聚糖肽的小鼠比空白组小鼠的肝糖原浓度增加了100mg/mL,增加率达到30.3%,肌乳酸浓度减少了43.2mg/mL,减少率为39.2%;尿素减少了26mg/mL,减少率高达68.4%。
     选昆明种雄性小鼠,随机分成空白对照组,模型对照组和联苯双酯阳性对照组[200mg/(kg.d)],大鲵低聚糖肽低浓度[200mg/(kg.d)]、中浓度[400mg/(kg.d)]、高浓度[800mg/(kg.d)]剂量组。各给药组每天给药灌胃1次,连续给药7d后,测定大鲵低聚糖肽对小鼠CCl_4肝损伤的保护作用。结果表明中、高大鲵低聚糖肽剂量组可显著抑制小鼠肝脏组织中由CCl_4造成的血清谷草转氨酶(AST)、谷丙转氨酶(ALT)活性升高,明显降低丙二醛(MDA)含量,并且提高超氧化物岐化酶(SOD)活性。光镜检查结果表明,CCl_4模型组肝细胞明显肿胀变形,肝细胞索紊乱,伴有炎症细胞侵润。大鲵低聚糖肽各剂量组的肝细胞索排列整齐、肝细胞排列规则,较模型组肝组织损伤明显减轻。
     5.大鲵低聚糖肽对280-315nm的紫外线有一定吸收。小鼠紫外损伤试验表明涂抹大鲵低聚糖肽的小鼠耳指数(耳片质量/小鼠质量)与未进行紫外线损伤照射的涂抹食用植物油的小鼠耳指数相当,说明小鼠耳部皮肤涂抹大鲵低聚糖肽可以避免紫外照射损伤。
     6. Caco-2细胞吸收试验表明,大鲵低聚糖肽可以被Caco-2细胞吸收。
     大鲵低聚糖肽可以被HaCaT细胞吸收,同时大鲵低聚糖肽具有促进HaCaT细胞生长的作用。MTT法表明,HaCaT细胞在大鲵低聚糖肽浓度0.098mg/mL中培养72h的存活率,是对照组的145%。
     7.以pH值、沉淀率、感官评分和固形物含量为指标,通过单因素和正交实验确定大鲵低聚糖肽果汁保健饮料的最佳制备工艺为:黑加仑果汁和蓝莓果汁的比例为1:3(15mL:45mL)、大鲵低聚糖肽和牡蛎多糖的比例1:3(1.5mL:4.5mL),柠檬汁为10mL(总体积200mL)和果胶含量为0.1%,杀菌温度95℃,杀菌时间10min为最佳,产品的色泽、风味和稳定效果较好。
     在低湿度条件(RH=43%)下,大鲵低聚糖肽的吸湿率达3.8%;在高湿度条件(RH=81%)下,大鲵低聚糖肽吸湿率达15.6%。以大鲵低聚糖肽制备的润肤霜稳定性符合中华人民共和国行业标准QB/T1684-93的要求。按照2007年卫生部制定的化妆品卫生规范进行皮肤变态反应试验,涂抹大鲵低聚糖肽化妆品的豚鼠皮肤没有发生任何的变态反应,30例人体受试者没有发生任何不良反应。
Giant salamander (Andrias davidianus) belongs to the class of Amphibia, order ofCaudata, family of Cryptobranchidae. It is a rare precious animal protected as Chinesenational second grade animal, mainly distributed in the upstream of Yangtze River,Zhujiang River, and Hanshui River. A large number of the domestication and breedingenterprises have been set up since1990s in Hunan, Hubei, Shanxi and Guangxi provinces.There are about35taming and breeding enterprises in Hunan province and about40,000-50,000giant salamanders are cultured every year. Deep processing and utilization ofgiant salamander need to be developed immediately. Therefore, fast creation of thetechnology for deep processing and utilization of giant salamander is an urgent task.
     Giant salamander is that there are many skin glands, instead of scales, on the bodysurface. These skin glands secrete a lot of mucus during the process of growth. If the mucuscan be used, sustainable utilization of giant salamander resources can be realized. Use ofmucus secreted by the skin glands of giant salamanders will exert no injuries to their growthand reproduction.
     As a species existed for350million years, Giant salamander has remarkablecharacteristics of longevity and self-repairs with a unique non-specific immune systempresented as in their mucus. Materials with biological activities for environmental changesare, after long-term evolution, contained in the mucus of giant salamander, which render themucus potential utilization in food industry.
     In this study, giant salamander glycopeptides (GSGPs) were obtained by using theAspergillus sp. acid protease from the marine organism to hydrolyze the mucus.. Thepreparation process, physical and chemical properties, biological activities of GSGPs andtheir application in juice and cosmetics are studied. The results are of theoretical andpractical significance for the processing and utilization of this mucus for the benefits ofhuman beings. Results are summerized as follows:
     1. The optimum conditions of marine-derived Aspergillus acid protease forhydrolyzing giant salamander skin mucus are obtained by the orthogonal test. The effectorder of hydrolysis is: hydrolysis time> E/S> temperature>pH. The optimum conditionsare:55C,pH:2.0,E/S:0.03%,,hydrolysis time:3h. Eutectic point, frozen-thaw processand freeze concentration process of the giant salamander hydrolysates are studied, and some of measures are obtained to improve the efficiency of freeze-drying of giant salamanderhydrolysates. Before freeze-drying operation, the giant salamander hydrolysates ispre-freezed in temperature range-8.6to-13.6C, meanwhile the solution concentration isimproved by the approaches of frozen-thaw and freeze concentration.
     2. The hydrolysates of giant salamander mucus (GSGPs) detected byMALDI-TOF-MS. Total protein and carbohydrate contents of GSGPs were estimated to be80.01%and15.15%, respectively. GSGPs contain3.39%glucosamine,0.65%glucuronicacid,2.45%galacturonic acid and0.60%sialic acid. While the sugar contents are22.38%、16.17%、4.29%and3.69%in total sugar respectively. Sulfuric acid sugar has not beendetected in GSGPs.18amino acids have been determined in GSGPs. In addition totryptophan not be detected, the other8essential amino acids (EAA) for human being arehigher. Amino acid of GSGPs was rich in Thr (13.1%), Pro, Ala, Leu, Arg and Phe.
     The O-glycosidic linkage of GSGPs is demonstrated by β-elimination reaction andblood cell agglutination test.
     GSGPs are performed peptide sequencing by nano-electrospray ionization massspectrometry/mass spectrometry(nano-ESI-MS/MS).The database search is finished withthe Mascot search engine (http://www.matrixscience.co.uk) using the data processedthrough MasSeq. Amino acid sequences of3peptides are obtained as follows:KAPILSDSSCKSC, KLQGTVSWGSGCQAKNC and VVHSLVQVTANKVMVRM,respectively.
     3. The hydroxyl radical, DPPH free radical and superoxide anion radicals scavengingactivities are detected in GSGPs. The free radical scavenging capacity is graduallyenhanced with GSGPs concentration increasing. GSGPs at the concentration of1.0mg/mlexhibited54.69%scavenging activity against hydroxyl radical,92.25%against DPPHradical and52%against superoxide radical.
     GSGPs have showed an ACE inhibitory activity by HPLC. An ACE inhibitory activityratio attains90.82%at GSGPs concentration of40mg/mL.
     4. The impacts of different doses of GSGPs on immune functions of mice indicate that:the mice were divided into three groups (0.01g/kg bw,0.05g/kg bw,0.1g/kg bw)compared with control group (0g/kg bw) according to the body weight, and fed withGSGPs at three levels for8d, respectively. GSGPs at three levels obviously improved theamounts of antibody, enhanced the phagocytic capacity of macrophages and increased the amounts of positive ANAE cell compared with the control. Therefore, the immunologicalfunction of mice is improved by GSGPs.
     GSGPs were injected into the stomach of the mice once a day for15consecutive days.The mice are divided into2groups according to different GSGPs concentrations (lowconcentration of100mg/mL, high concentration of150mg/mL). Each group daily givendose is0.1mL/16g bw compared with control group with the same volume of saline bygavage. After intragastric administration for15d,the mice were forced swimming to deathwith5%body weight loaded. The results show that compared with control group,theswimming time prolonged significantly, up to103min (P <0.01); the concentration ofhepatic glycogen increased100mg/mL, by30.3%up to; the level of lactic acid in musclereduced43.2mg/mL, by39.2%; the level of urea reduced26mg/mL, by68.4%.
     Kunming male mice are divided into6groups: blank control group, model controlgroup, DDB control group [200mg/(kg d)], low GSGPs concentration [200mg/(kg d)],middle GSGPs concentration [400mg/(kg d)] and high GSGPs concentration [800mg/(kg d)]. GSGPs are given to mice once a day for7consecutive days by gavage. Theprotection of mice liver damaged by CCl_4has been detected. The results indicate that theactivity increases of AST and ALT caused by CCl_4are significantly inhibited by middleGSGPs concentration and high GSGPs concentration. In mice liver, the MDA content ofhigh GSGPs concentration has significantly been lowered, as well as SOD activityenhanced.
     Microscopic observations show that: in the CCl_4model group, liver cells are markedlyswelled and deformed, liver cell cords inordinate and accompanied by the inflammatory cellinfiltration. At low, middle and high GSGPs concentration,liver cell cords are arranged inorder, liver cells are regular arranged, and the damage is significantly reduced comparedwith the model group.
     5. The function of the glycopeptides in resisting the ultraviolet (UV) rays was strongerunder the wavelength from280to315nm. UV damaged test in mice demonstrates that themouse ear index of smearing GSGPs group is similar with the index of smearing ediblevegetable oil group without UV irradiation reveals smearing GSGPs on the skin of mouseear may avoid UV injury.
     6. Caco-2cell absorption test reveals that GSGPs can be absorbed by Caco-2cell.
     GSGPs can be absorbed by HaCaT cell; meanwhile GSGPs have the ability of thegrowth-promoting for HaCaT cell. MTT colorimetric assay indicates that compared with control group, the livability ratio of HaCaT cell cultured for72h in the GSGPs of0.098mg/mL is145%.
     7. As indicators of pH, precipitation rate, sensory score, and solid content, throughsingle factor and orthogonal experiments the optimum production technology conditions ofhealth beverage containing GSGPs are: the ratio of blackcurrant juice and blueberry juice1:3(15mL:45mL), the ratio of GSGPs and oyster polysaccharide1:3(1.5mL:4.5mL),lemonjuice10mL, pectin0.1%, sterilization temperature95C,sterilization time10min. Theproduct manufactured by the optimum technology has better color, flavor and stability.
     The cream with GSGPs has capability of hygroscopicity under the low humiditycondition(RH=43%), which is3.8%; under the high humidity condition(RH=81%) thehygroscopicity rate is15.6%. The stability of the cream made of GSGPs meets therequirements of Chinese Industry Standard QB/T1684-93. There is no allergic reactionappeared on the skin of guinea pigs smeared by GSGPs cream, similar with the skin ofhuman subjects.
     The work is supported by National Natural Science Foundation Project (31071612)、Hunan Provincial Science and Technology Plan Project (2011FJ4098) and Science andTechnology Plan Project of Zhangjiajie (2011ZD16).
引文
1.勃朗M E.1957.鱼类生理学[M].北京:科学出版社:215-218.
    2.曹洁,余龙江,崔永明,等.2008.纯大鲵粉对小鼠抗疲劳作用及免疫功能的影响[J].四川动物,27(1):149-152.
    3.陈德经.2010.大鲵黏液、皮肤及肉中氨基酸分析[J].食品科学,31(18):375-376.
    4.陈冬冬,屠文震,杨芸.2010.薄芝糖肽针治疗系统性硬皮病的疗效分析及其对免疫功能的影响[J].中国中西医结合皮肤性病学杂志.9(6):355-357.
    5.陈富祺.2007.自体疣皮下包埋联合薄芝糖肽治疗扁平疣疗效观察[J].中国中西医结合皮肤性病学杂志,6(3):185.
    6.陈华友,耿旭,齐向辉.2009.枯草杆菌重组水蛭素的冷冻干燥工艺及热稳定性研究[J].安徽农业科学.37(35):17695-17697.
    7.陈钧辉,李俊,张太平,等编.生物化学实验(第四版)[M].北京:科学出版社,2008:59-62.
    8.陈素红,华波,吕圭源,等.复方拘祀提取物抗实验性肝损伤主要药效学及其作用机制研究.
    9.陈晓明,倪峰.2010.植物黄酮类化合物对机体免疫调节作用研究进展[J].福建中医学院学报,20(2):69-70.
    10.程远霞,陈素芝,谢秀英.2004.食品共晶点和共熔点试验研究[J].食品工业,(1):49-50.
    11.从建波,王长振,李妍.2003.褐藻硫酸多糖硫酸基含量测定—硫酸钡比浊法研究[J].解放军药学学报,19(3):181-183.
    12.杜光,方建国,魏世超.2005.枸杞糖肽对荷瘤小鼠放疗的增效作用研究[J].医药导报,24(8):674-675
    13.杜建刚,牛为民,赵宪钧.2010.三门峡市大鲵产业发展现状及对策探讨[J].渔业致富指南,(2):17-20.
    14.段琼芬,杨莲,李钦,等.2009.辣木油对小鼠抗紫外线损伤的保护作用[J].林产化学与工业,29(5):69-73.
    15.郭敏亮,陈军,姜湧明,等.1999.用豆粕生产大豆蛋白肽饮料[J].食品科学,154(10):1-3.
    16.范里楼鹏.1997.脑素肽活性乳液的研制[J].中国化妆品,(2):47-48.
    17.方富永苗艳丽黄燕等.2011.波纹巴非蛤肉复合酶水解肽的抗疲劳效果[J].食品科技,36(7):20-23.
    18.冯君,杨国宇,李宏基.2008. HPLC法测定牛奶中游离唾液酸和与低聚糖结合的唾液酸含量[J].食品科学,29(5):355-357.
    19.冯婷玉,薛长湖,孙通,等.2010.燕窝中唾液酸的DAD/FLD串联HPLC测定方法研究[J].食品科学,(8):233-236.
    20.傅颖,刘冬英,王茵.2008.复肝肽口服液对大鼠四氯化碳慢性肝损伤的保护作用[J].中国生物制品学杂志,21(6):513-515.
    21.高峰,赵龙凤.2011.干扰素联合薄芝糖肽治疗慢性乙型肝炎30例观察[J].医学信息(中旬刊).24(1):214
    22.高晗,杨国堂,孔瑾,等.2011.花生多肽复合饮料的研制[J].江苏农业科学,(1):320-321.
    23.高让保,杨文杰.2008.大鲵养殖主要问题的初步分析[J].养殖与饲料,(6):40-42.
    24.郭慧,邓文星,张映.2009.糖蛋白的研究进展[J].生物技术通报,(3):16-19.
    25.宫元娟,王博,林静,等.2004.香菇冷冻干燥工艺参数的试验研究[J].农业工程学报,20(1):226-229.
    26.管骁,姚惠源.2008.燕麦蛋白源ACE抑制肽脱盐工艺研究[J].农产品加工,142(7):147-149.
    27.韩宝芹,位晓娟,房子,等.2004.羧甲基壳聚糖中氨基葡萄糖含量测定方法的研究[J].中国海洋大学学报,34(5):811-815.
    28.贺继东,夏文水.2007.异硫氰荧光素标记壳聚糖的研究[J].安徽农业科学,35(34):10939-10940.
    29.侯进慧,朱必才,董玉玮.2004.中国大鲵人工繁育与药用价值的研究概况[J].水产养殖,25(6):34-36.
    30.黄春保,慈云祥,常文保.2001.异硫氰荧光素-人血清蛋白标记物化学发光反应的研究[J].分析科学学报.17(3)186-187.
    31.黄智慧,马爱军,王珉.2009.鱼类体表黏液分泌功能与作用研究进展[J].海洋科学,33(1):90-94.
    32.胡建平.2011.鱼皮胶原多肽口服液的研制[J].广西农业科学,(10):97-99.
    33.季阿敏,杨梅梅,张庆刚,等.2008.真空冷冻干燥工艺中沙棘果共晶点测定与分析[J].哈尔滨商业大学学报(自然科学版),24(6):752-754.
    34.姜水红,查圣华,谢丽芬.2009.燕窝中唾液酸含量测定方法的研究[J].中国生化药物杂志,30(5):315-317.
    35.江育林,张旻,景宏丽,高隆英.2011.患病中国大鲵中分离到一株虹彩病毒及其特性的研究[J].病毒学报,(3):274-281.
    36.兰洪明,李灿,黄晓欣,张艳.2010.中国大鲵产业化开发现状与潜力[J].百家争鸣,(2):321.
    37.李爱华,肖融.2006.两种测定反刍动物血清尿素方法探讨[J].甘肃畜牧兽医.189(4):2-5.
    38.李柏刚,曲会君,张雪.2010.薄芝糖肽预防抗结核药物肝损害的临床观察[J].医药导报,29(3):304-305.
    39.李海玲,彭书明,李凛,等.2008.4种常用蛋白浓度测定方法的比较[J].中国生化药物杂志,29(4):277-278.
    40.李林强,昝林森,任正东.2009.中国大鲵油脂肪酸组成、抗氧化及流变性研究[J].中国粮油学报,24(9):82-86.
    41.李锡泾.1983.植物糖蛋白的结构与功能[J].植物生理学通报,(1):5-9.
    42.李心刚,胡桂秋,黄晶.2005.冻干工艺中预冻温度的确定[J].承德石油高等专科学校学报.7(4):19-20.
    43.李雪妍.2010.薄芝糖肽配伍阿昔洛韦治疗婴幼儿疱疹性口腔炎的临床研究[J].内蒙古中医药,29(18):77-78
    44.李艳敏,赖健.2005.荔枝果汁冷冻浓缩结晶速率的研究[J].食品与机械,26(4):32-34.
    45.李亚荣,张素彦,胡春梅,等.2004.薄芝糖肽治疗老年中晚期恶性肿瘤的临床观察[J].中国老年学杂志,24(9):807.
    46.李勇编.2005.食品冷冻加工技术[M].第1版.北京:化学工业出版社:21-28.
    47.廖雅萍,刘秀丽,何大勇.2007.西替利嗪联合薄芝糖肽治疗慢性荨麻疹的疗效观察[J].中国医药导报,4(6):66.
    48.林志强.2011.薄芝糖肽配合化疗治疗晚期肺癌临床观察[J].中国医药指南,9(16):323-324.
    49.令媛,马宏宝,安钰,等.1996.镉诱导大鲵肝脏与肠金属硫蛋白的分离纯化与鉴定[J].北京大学学报(自然科学版),32(4):534-541.
    50.刘波,宋森,巩新.2008.一种利用DSA-FACE分析寡糖链的方法[J].生物技术通讯,19(6):885-888
    51.刘海,张嘉强,任鹏康,等.2011. HACCP在胶原蛋白寡肽果味饮料加工中的应用[J].现代食品科技,27(8):1007-1032.
    52.刘红英,薛长湖,李兆杰,等.2002.海带岩藻聚糖硫酸酯测定方法的研究[J].青岛海洋大学学报,32(2):236-240.
    53.刘桂敏,赵秀梅,陈菊娣,等.2004.刺参酸性粘多糖质控分析方法的研究[J].解放军预防医学杂志,22(2):107-109.
    54.刘轲,王琪琳,吕辉,等.2002.海带硫酸多糖的提取、纯化及其理性分析[J].中国生化药物杂志,23(3):114-116.
    55.刘璐,杜光,方建国.2007.两种枸杞糖肽促进小鼠脾淋巴细胞增殖作用比较[J].医药导报,26(2):130-132
    56.刘南勇,郭芮羽.2009.保护与开发:“鱼”与“熊掌”兼得[J].当代贵州,(21):8-39.
    57.刘绍,刘卉琳,周月华,等.2010.中国大鲵营养成分的分析[J].营养学报,32(2):198-200
    58.刘绍,阳爱生,彭国平,等.2007.饲养中国大鲵软骨与肌肉中几种重要矿物质的ICP-AES法测定与分析[J].食品工业科技,28(8):225-226.
    59.刘妍妍,张学玲,王宪青,等.2008.乳清多肽果汁饮料的研究[J].农产品加工,127(2):9-11.
    60.陆得漳.1996.脑素肽在化妆品中的应用[J].中国化妆品,(1):22-23.
    61.陆钊,刘晓虎,刘田,等.2009.猪硫酸软骨素的制备和含量测定[J].第四军医大学学报,30(20):2172-2175.
    62.罗凯绅.2008.浅析快速提高大鲵生长速度的要点[J].内陆水产,(4):33.
    63.罗庆华,刘英,张立云.2009.张家界市大鲵资源保护、增殖现状与对策[J].安徽农业科学,37(19):9023-9025.
    64.罗庆华,刘英,张立云,等.2009.湖南张家界市大鲵资源调查[J].四川动物,28(3):422-436.
    65.吕志华,赵峡,于广利,等.2002.硫酸多糖电泳方法的研究[J].中国生化药物杂志,23(1):17-18.
    66.马利华,贺菊萍,秦卫东,等.2007.槐花提取物抗氧化性能研究[J].食品科学,28(9):75-77.
    67.马然.2006.左氧氟沙星、甲硝唑联合薄芝糖肽防治化脓性阑尾炎术后感染[J].实用临床医学,7(2):49
    68.马小燕,陈易彬,李彦军.2009.酶法水解大鲵蛋白的工艺研究[J].中国酿造,(11):92-95.
    69.孟丽君,潘佩平.2002.金耳糖肽胶囊的Ⅱ期临床观察[J].中国食用菌,21(4):40-41.
    70.缪福俊,熊智,吴本行,等.2011.驴骨蛋白多肽对小白鼠抗疲劳作用的研究[J].食品工业科技,(11):411-413.
    71.彭亮跃,肖亚梅,骆剑,等.2007.中国大鲵不同组织同工酶的比较研究[J].水生生物学报,31(6):915—919
    72.彭维兵,何秋霞,刘可春,等.2011.花生肽对小鼠抗运动性疲劳的实验研究[J].山东科学,24(5):35-38.
    73.邱瑾丽,李引乾,周广辉,等.2010.“畜禽用多种微量元素注射液”对小鼠免疫功能的影响[J].西北农业学报,19(2):25-28.
    74.任丹丹,汪秋宽,张甜翠,等.2009.海带岩藻聚糖硫酸酯对四氯化碳致肝损伤小鼠的保护作用[J].华中农业大学学报,28(6):764-766.
    75.任国艳,李八方,侯玉泽,等.2009.海蜇头糖蛋白基本组成及结构[J].食品研究与开发,30(7):121-125.
    76.任国艳,李八方,赵雪,等.2008.海蜇头糖蛋白清除自由基活性及构效关系的初步研究[J].中国海洋药物,27(4):24-29
    77.沈兰瑛,张黎明.2010.甘露聚糖肽在皮肤科的合理应用[J].甘肃医药,29(1):98-100.
    78.盛家镛.1990.丝素肽在化妆品中的应用研究[J].苏州丝绸工学院学报,10(4):47-56.
    79.施立楠,吴军.2005.糖蛋白糖链的分析[J].生物技术通报,16(1):60-63.
    80.石岳香.2008.大鲵的生殖与发育观察[J].生物学通报,43(12):5-7.
    81.宋健,陶文沂,陈武勇.2008.酶法脱毛液中糖含量测定方法的比较[J].中国皮革,37(1):48-50
    82.宋鸣涛.1990.大鲵食性分析[J].动物学研究,11(3):992.
    83.孙丽娜,石波,梁平.2007.酶法制备寡聚半乳糖醛酸的研究[J].食品添加剂,4(3):194-197
    84.孙仁山,陈晓红,李文维,等.2009.薄芝糖肽的临床应用[J].时珍国医国药,20(8):2101-2102.
    85.唐秀锋,邬永忠,刘本祥,等.2008.大鲵人工繁殖技术初探[J].重庆水产,85(4):19-20.
    86.唐玉,蔺桂芬.1995.人参多糖和多抗甲素对动物红细胞变形能力的影响[J].首都医学院学报.16(3):204-205.
    87.王冰清,曾繁霞.2003.间苯二酚显色法测定重组人红细胞生成素原液中唾液酸含量[J].辽宁医药,18(2):19-21.
    88.王春丽,张琳,祖元刚,等.2011.双孢菇水提物抗疲劳作用研究.食品工业科技,(5):379-380
    89.王宏,温莹莹,郭又嘉,等.2011.薄芝糖肽治疗小儿反复呼吸道感染58例分析[J].中国误诊学杂志.11(10):2446
    90.王红燕,何祖新,刘鑫.2007.疲劳产生的机制及抗疲劳中药的研究进展.现代中医药,27(2):58-59.
    91.王华,姚亚平,王毕妮,等.2007.高梁籽粒提取物抗氧化活性的研究[J].食品与发酵工业,33(10):123-127.
    92.王慧桂,张锋.2009.大鲵皮及其制革[J].皮革科学与工程,19(3):60-62.
    93.王建华,沈其萍,何继波.2006.保健食品中半乳糖醛酸的测定[J].中国卫生检验杂志,16(5):526-527.
    94.王建文.2005a.大鲵保健食品及其生产方法:中国,200510136627.0[P].
    95.王建文.2005b.一种大鲵保健酒及制备方法:中国,200510136628.0[P].
    96.王建文.2005c.大鲵美容护肤品及其制备方法:中国,200510136629.X[P].
    97.王建文.2009a.大鲵皮革的生产方法及其产品:中国,200910043014.0[P].
    98.王建文.2009b.一种大鲵面条及其生产方法:中国,200910043477.7[P].
    99.王立新,郑尧,李锋刚,等.2011.大鲵皮肤cDNA文库ESTs分析及Dynll2基因的分离与表达[J].水产学报,35(6):801-808.
    100.王利锋,李学英,王大忠.2011.大鲵皮肤分泌液中抗菌肽的鉴定及生物活性研究[J].中国生化药物杂志,(32)4:269-272.
    101.王立锋,李学英,王大忠.2001.大鲵皮肤分泌液中抗菌肽对铜绿假单胞菌感染小鼠创面的抗菌作用[J].华西药学杂志,26(4):336-339.
    102.王宁,王增苏.1994.金耳糖肽胶囊治疗慢性肝炎,肝硬化31例[J].山西中医,10(5):11-12
    103.王日为,张丽霞,高吉刚.2002.茶叶中花青素类物质研究展望[J].茶叶科学技术,(4):4-8.
    104.王玮,尹宗宁,李铜铃,等.2004.异硫氰酸荧光素标记的蚓激酶纳米粒的分离[J].河南大学学报,23(2):22-23.
    105.王文平,郭祀远,李琳,等.2007.野木瓜多糖中糖醛酸含量测定[J].食品科学,(10):84-86.
    106.王晓露,邹文政,鄢庆枇,等.2008.病原性河流弧菌对青石斑鱼体表黏液黏附特性的研究[J].水产学报,32(3):441-447.
    107.王朝哗.2006.薄芝糖肽治疗肺癌53例疗效观察[J].中国医院药学杂志,26(9):1120.
    108.魏振承,徐志宏,池建伟,等.2009.短肽免疫增强型临床营养乳剂的配方和制备工艺研究[J].中国粮油学报,24(7):120-123.
    109.吴继萍,冯妮,李晓琳.2007.薄芝糖肽注射液治疗结直肠癌癌痛的临床研究[J].中国医药导报,4(8):92.
    110.吴杰连,张铂.2006.文蛤糖肽体外抗癌活动研究[J].药物生物技术,13(4):260-264.
    111.武履青.2010.开发氨基酸营养保健制剂提高国民健康素质[J].中国制药信息,26(6):38-40.
    112.吴园涛,孔恢礼.2007.海洋贝类蛋白资源酶解利用[J].中国生物工程杂志,27(9):120-125.
    113.毋瑾超,汪依凡,方长富.2007.贻贝酶解降压肽的降压活性及其安全性评价[J].天然产物研究与开发,(19):648-652.
    114.吴胜芳,王树英,陶冠军,等.2005.离子色谱法测定多糖水解液中的半乳糖醛酸和葡萄糖醛酸[J].食品与生物技术学报,24(4):86-88.
    115.吴园涛,孙恢礼.2008.海洋贝类蛋白资源酶解利用[J].中国生物工程杂志,27(9):120-125.
    116.向聪,马美湖.2002.畜骨综合利用与产品开发研究进展[J].肉类研究,124(6):78-84.
    117.向云翔.2007.保护大鲵资源发展新兴产业—对汉中大鲵产业兴起的调查与思考[J].汉中科技,(1):7-11.
    118.谢伟斌,陈锦成,林锥铧.2007.酶解低值虾蛋白制取功能多肽饮料的工艺技术研究[J].食品科技,(2):202-205.
    119.谢宗万编著.1996.全国中草药汇编(下册)第二版[M].北京:人民卫生出版社:453.
    120.辛泽华,乔志刚,沈国民,等.2004.中国大鲵(Andrias davidianus)7种组织器官蛋白水解酶的种类和活性分析[J].解剖学报,35(3):331—333.
    121.许会生,张铁军,赵广荣,等.2007.一种测定酸性多糖尿中糖醛酸和中性糖含量的改良方法[J].食品工业科技,28(07):197-199.
    122.徐美玲,赵德卿.2008.蓝莓花青素的提取及理化性质的研究[J].食品研究与开发,29(9):187-189.
    123.许青松,宫德正,谭成玉,等.2006.壳聚糖对四氯化碳致肝损伤小鼠的保护作用[J].中国海洋药物,25(5):31-33.
    124.徐苇,杨晓泉,齐军茹,等.2005.糖肽合成的研究进展[J].食品技术,(3):8-10.
    125.许艳梅,贾洪树.2004.薄芝糖肽单用及联合干扰素α-2b治疗慢性乙型肝炎疗效观察[J].临床内科杂志,21(6):425.
    126.徐云凤,赵雨,邢楠楠等.2011.人参蛋白对小鼠抗疲劳作用的研究[J].食品工业科技,(11):406-407
    127.颜成杰,彭丽华.2008.糖肽类抗生素研究进展[J].药学服务,54(6):15-18.
    128.阎东文.1993.关于硫酸根离子的定量测定方法[J].殷都学刊(自然科学版),(2):21-27.
    129.阎欲晓,粟桂娇,李小梅.2007.文蛤蛋白抗氧化活性肽的研究[J].食品工业科技,28(12):121-123.
    130.姚秀芬,程栋,王承明.2011.花生粗多糖对四氯化碳及酒精所致小鼠急性肝损伤的保护作用.食品科学,32(9):261-265.
    131.尹苗,安利国,杨桂文.2000.鲤鱼黏液细胞类型的研究[J].动物学杂志,35(1):8-10.
    132.尹晓平,姜红,高晓黎.2009.酶解天山马鹿血分离制备抗疲劳肽的研究[J].天然产物研究与开发,(21):391-394.
    133.杨志伟,郭文韬,黄世英,等.2009.人工养殖大鲵肉延缓黑腹果蝇衰老的实验研究[J].时珍国医国药,(4).
    134.杨芳,何智敏,詹显全,等.2004.大鲵肝脏组织定向cDNA文库的构建及鉴定[J].动物学报,50(3):475-478.
    135.杨国华,程红,付宏兰,等.2001.中国大鲵机械感受器的超微结构[J].动物学报,47(5):587-592.
    136.杨国武,张世伟,黄秀丽等.2010.唾液酸检测研究现状及其用于燕窝产品质控评析[J].检验检疫学报,20(2):70-73
    137.杨丽萍,杨慧荣,张勇,等.中国大鲵脑cDNA文库构建及促甲状腺激素β亚基基因cDNA的克隆和序列分析[J].2008.水产学报,32(4):507-516.
    138.杨育芳,梁琳琳,孙雪南,等.2006. B群链球菌荚膜多糖抗原的分离纯化工艺研究[J].中国生化药物杂志,27(3):166-168
    139.尹利辉,薛俊,林炳承.1996.糖蛋白、寡糖和糖肽的毛细管电泳分析[J].分析化学,24(12):1464-1468.
    140.尤久勇.牡蛎蛋白饮料色泽变化及其控制技术研究[D].广东海洋大学,2011.6
    141.余东勤,孙长铭.2009.陕西省大鲵资源现状及其经营利用探讨[J].陕西水利,(1):29-30.
    142.于丽萍,邹碧珍,李新玉,等.1998.真菌多糖对小鼠腹腔巨噬细胞免疫功能的影响[J].生物技术,8(2):38-40.
    143.云霞,韩学宏,农绍庄,等.2006.海参真空冷冻干燥工艺[J].中国水产科学,13(4):662-666.
    144.张昂,陆启玉,王留留.2010.鸡蛋中唾液酸含量的测定[J].农产品加工,205(4):69-70
    145.张红星,王启军,赵虎,等.2009.大鲵与其他优质水产品比较[J].海洋与渔业,(12):49-51.
    146.甄润英,马俪珍,李晓燕,等.2008.羊骨胶原多肽口服液的研制[J].食品研究与开发,29(7):69-72.
    147.杨兰花,王旭强.2011.80%大米多肽应用于化妆品的安全性研究[J].香料香精化妆品,(5):27-28.
    148.曾祥元,张莹.1987.多抗甲素对骨髓造血干细胞影响的实验研究[J].中华血液学杂志,8(9):531-532.
    149.张成桂,何正春,焦春香,等.2010.美洲大蠊抗癌活性成分体外抗氧化活性分析[J].时珍国医国药21(9):2248-2249.
    150.张俊堂.2010.薄芝糖肽治疗肺癌45例疗效观察[J].基层医学论坛.14(23):701-702
    151.张神虎.2003.大鲵的药用价值及人工养殖[J].特种经济动植物,(2):16.
    152.张思维,郑波,邹晓莉,等.2009.高效阴离子色谱法测定保健食品中的盐酸氨基葡萄糖[J].色谱,27(1):117-119.
    153.张威,何红波,谢宏图.2006.不同水解方法对土壤中性糖和氨基酸含量测定的影响[J].生态环境,15(5):1067-1071
    154.张伟.2007.薄芝糖肽治疗非酒精性脂肪性肝病疗效观察[J].中国现代医生,45(10):95.
    155.张溪,齐烈文,李萍等.2008.体外细胞模型和高效液相质谱连用分析预测黄芪的活性成分[J].分析化学,36(6):745-749.
    156.赵梅,于春娣,丁霄霖.2009.甘薯水溶性糖蛋白的分离纯化及结构初探[J].食品生物技术学报,28(1):76-80.
    157.赵小燕,张超,马越,等.2010.紫玉米花色苷对小鼠免疫功能的影响[J].湖北农业科学,49(8):1933-1936.
    158.赵营,翟德胜,陈西敬,等.2007.大鼠胆汁中酮洛芬相代谢物酮洛芬葡萄糖醛酸的测定方法[J].药物分析杂志,27(6):107-109.
    159.赵志凤,刘岳.2008.鲶鱼体表黏液特性的初步研究[J].山西农业科学,36(5):76-80.
    160.周永安,师英霞,刘建民.2009.阿德福韦联合薄芝糖肽治疗慢性乙型肝炎[J].临床研究,16(4):22-23
    161.邹巧根,王伟,宋喆,等.1986.云芝糖肽的结构组成分析[J].中国药科大学学报,12(4):239-246.
    162.朱新友,吴庆.1999.对羟联苯法测定尿素中乳酸的探讨[J].陕西医学检验,14(3):21-21.
    163. Aspmo S.I., Horn S.J., Eijsink V.G.H.2005. Enzymatic hydrolysis of Atlantic cod (Gadus morhuaL.) viscera[J]. Process Biochem.,(40):1957-1966.
    164. Balzarini J., Keyaerts E., Vijgen L., et a1.2006. Inhibition of feline (FIPV) and human(SARS)coronavirus by semisynthetic deriv-atives of glycopeptide antibiotics[J]. Antiviral Res,72(1):20-33.
    165. Batista I., Ramos C., Coutinho J.2010. Characterization of protein hydrolysates and lipids obtainedfrom black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of thehydrolysates produced[J]. Process Biochemistry,(45):18-24.
    166. Beeley J.G.1985. Glycoprotein and Proteoglycan techniques, as laboratory techniques inbiochemistry and molecular biology [M]. New York: Elsevier Amsterdam.
    167. Bertozzi C.R., Kiessling L.L.2001.Chemical glycobiology Science[M]:2357-2364.
    168. Brand W.W., Cuvelier M.E., Berset C.1995. Use of a free radical method to evaluate antioxidantactivity[J]. Lebensm Wiss Technol,28(1):25-30.
    169. Byun H.G., Lee J.K., Park H.G., et al.2009. Antioxidant peptides isolated from the marine rotifer,Brachionus rotundiformis [J]. Process Biochemistry,44(8):842-846.
    170. Concei o K., Bruni F.M., Antoniazzi M.M., et al.2007. Major biological effects induced by theskin secretion of the tree frog Phyllomedusa hypochondrialis[J]. Toxicon,49(7):1054-1062
    171. Conlon J. M., Ghaferi N. A., Abraham B., et al.2006. Antimicrobial peptides from the skin of theTsushima brown frog Rana tsushimensis[J]. Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology,143(1):42-49.
    172. Dahmer S., Schiller R.M.2008. Glucosamine[J]. American Family Physician,78(4):471-476.
    173. Debeer T., Vliegenthart J.F.G., Loffler A., et al.1995. The Hexopyranosyl Residue That IsC-Glycosidically Linked to the Side-Chain of Tryptophan-7in Human Rnase U-S IsAlpha-Marmopyranose[J]. Biochemistry,37(34):11785-11789.
    174. Dubois M., Gilles K.A., Hamilton I.K., et al.1956. Colorimetric method for determination of sugarsand related substances[J]. Anlyt.Chem.,28:350-356.
    175. GANDER J.E.1971. The occurrence of N,N-Dimethylethanolamine in the5-O-β-D-galacto-furanosyl-containing exocellular glycopeptide of penicillium charlesii[J]. Experiment Mycology,1(1-8).
    176. Gu R.Z., Li C.Y., Liu W.Y., et al.2011. Angiotensin I-converting enzyme inhibitory activity oflow-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin[J]. Food ResearchInternational,44(5):1536-1540.
    177. Hjelmeland K.1983. Skin mucus protease from rainbow trout, Salmo gairdneri Richardson, and itsbiological significance [J]. J Fish Biol,23:13-22.
    178. Hong J.H., Cha Y.S., Rhee S.J.2009. Effects of the Cellcultured Acanthopanax senticosus Extracton Antioxidative Defense System and Membrane Fluidity in the Liver of Type2Diabetes Mouse[J].J. Chin. Biochem. Nutr.,45:101-109.
    179. Hossany B.R., Johnston B.D., Wen X., et al.2009. Design, synthesis, and immunochemicalcharacterization of a chimeric glycopeptide corresponding to the shigella flexneri YO-polysaccharide and its peptide mimic MDWNMHAA [J]. Carbohydrate Research,344(12):1412-1427
    180. HU Q.L., WANG H., WANG Y.S., et a1.1991. Influences of Polyactin A on activity of humanmonocytes in vitro[J].Zhongguoaoli Xuehao,12(6):483-488.
    181. Ichimura T., Hu J.E., Aita D.Q.2003. Angiotensin I-converting enzyme inhibitory activity andinsulin secretion stimulative activity of fermented fish sauce[J]. Journal of Bioscience andBioengineering.96(5)496-499.
    182. Je J.Y., Qian Z.J., Byun H.G.2007. Purification and characterization of an antioxidant peptideobtained from tuna backbone protein by enzymatic hydrolysis[J]. Process Biochem,42:840–846.
    183. John M.C.1987. Ferrous-salt-promoted damage to deoxyribose and benzoate [J]. Biochem. J.(243):709-714.
    184. Kim D.O., Lee K.W., Lee H.J., et a1.2002. Vitamin C equivalent antioxidant capacity (VCEAC) ofphonemic physiochemical [J].Journal of Agricultural and Food Chemistry,50(13):3713.
    185. Kowalski R., Wojtczak M., Glogowski J., et al.2003. Gelatinolytic and anti-trypsin activities inseminal plasma of common carp: relationship to blood, skin mucus and spermatozoa [J]. AquatLiving Res,16:438-444.
    186. Ko S.C., Lee J.K., Byun H.G., et al.2012. Purification and characterization of angiotensinI-converting enzyme inhibitory peptide from enzymatic hydrolysates of Styela clava fleshtissue[J].Process Biochemistry,47(1):34-40.
    187. Lan S.C., Li D.F., Jiang J. C.1990. Call and skin glands secretion induced by stimulation ofmidbrain in uradele (Andrias davidianus)[J]. Brain Research,528(1):159-161.
    188. Li B., Chen F., Wang X., et al.2007. Isolation and identification of antioxidative peptides fromporcine collagen hydrolysate by consecutive chromatography and electrospray ionization–massspectrometry[J]. Food Chem,102:1135–1143.
    189. Lien T.F., Hsu Y.L., Lo D.Y..2009. Supplementary health benefits of soy aglycons of isoflavone byimprovement of serum biochemical attributes, enhancement of liver antioxidative capacities andprotection of vaginal epithelium of ovariectomizad rats[J]. Nutrition&Metabolis.6:15-22.
    190. Lin Y.J., Le G.W., Wang J.Y., et al.2010. Antioxidative peptides derived from enzyme hydrolysisof bone collagen after microwave assisted acid pre-treatment and nitrogen protection[J]. MolecularSciences,(11):4297-4308.
    191. Liu J.X., Xu X.Q., Xu C.H., et al.2007. Anti-infection peptidomics of amphibian skin[J]. Molecular&Cellular Proteomics,6(5):882-894.
    192. Meldal M., Bock K.1994. A general approach to the synthesis of O and N-linked glycopeptide [J].Glycocongugate,1994,11:59-63.
    193. Molchanova V., Chikalovets I., Li W., et al.2005.New GlcNAc/GalNAc-specific lectin from theascidian. Didemnum ternatanum[J]. Biochim. Biophys. Acta.,1723:82-90.
    194. Pajic I., Kljajic Z., Dogovic N., et al.2002. A novel lectin from the sponge haliclonacratera:isolation,characterization and biological activity[J]. Comparative Biochemistry andPhysiology. Part C,132:213-221.
    195. Park P.J., Jung W.K., Nam K.S., et al.2001. Putification and characterization of antioxidativepeptides from protein Hydrolysate of Lecithin-Free Egg Yolk[J]. JAOCS,78(6):651-656.
    196. Qian Z.J., Jung W.K., Byun H.G., et al.2008.Protective effect of an antioxidative peptide purifiedfrom gastrointestinal digests of oyster Crassostrea gigas against free radical induced DNAdamage[J]. Bioresource Technol,99:3365–3371.
    197. Qu W.J., Ma H.L., Pan Z.L.et al.2010.Preparation and antihypertensive activity of peptides fromPorphyra yezoensis[J]. Food Chemistry,123(1):14-20.
    198. Qu M, Kong L, Wang W, et al.2011. Preparation and characterization of skin secretionhydrolysates from giant salamander (Andrias davidianus)[C].2011International Conference onNew Technology of Agricultural Engineering. Zibo:931-934.
    199. Quaglia G.B., Orban E..1987. Enzymic solubilization of proteins of sardine (Sardina pilchardus) bycommercial proteases[J]. J. Sci. Food Agric.,(38):1-15.
    200. Rudd P.M., Elliott T., Cresswell P., et al.2001.Glycosylation and the immune system[J]. Science,5512(291):2370-2376.
    201. Serra C.P., C rtes S.F., Lombardi J.A..2005. Validation of a colorimetric assay for the in vitroscreening of inhibitors of angiotensin-converting enzyme (ACE) from plant extracts[J].Phytomedicine,12:424-432.
    202. Shibata S., Takeda T, Natori Y.1988. The Structure of Nephritogenoside-a NephritogenicGlycopeptide with Alpha-N-Glycosidic Linkage[J]. Journal of Biological Chemistry,263(25):12483-12485.
    203. Shimizu T., Hoshino H., Nishi S..2010. Anti-fatigue effect of dicethiamine hydrochloride is likelyassociated with excellent absorbability and high transformability in tissues as a vitamin B1.European Journal of Pharmacology,635:117-123.
    204. Sinha G M. A histochemical study of the mucou cells in the bucco-pharyngeal region of four Indianfreshwater fishes in relation to their origin, development, curarence and probable functions[J]. ActaHistochem Biol,1967,53S:217-233.
    205. SinghBains J., Singh J., Kamboj S.S., et al.2005. Mitogenic and anti-proliferative activity of alectin from the tubers of Voodoo lily (Sauromatum venosum)[J]. Biochimica et Biophysica Acta(BBA)-General Subjects.(1723):163-174
    206. Song L.Y., Li T.F., Yu R.M., et al.2008. Antioxidant activities of hydrolysates of arca subcrenataprepared in three proteases[J]. Marine Drugs,6:607-619.
    207. Sun L.P., Zhuang Y.L.2010. Characterization of the millard reaction of enzyme-hydrolyzed wheatprotein producing meaty aromas[J]. Food Bioprocess Technology,7.
    208. Talas Z.S., Ozdemir I., Yilmaz I.2008. The invetigation of the antioxidative properties of the novelsynthetic organoselenium compounds in some rat tissues[J]. Exp. Biol Med(Maywood),233(5):575-579.
    209. Talbot P., Shur B.D., Myles D.G.2003.Cell adhesion and fertilization: Steps in oocyte transport,sperm-zona pellucida interactions, and sperm-egg fusion[J]. Biology of Reproduction,68(1):1-9.
    210. Tang C.H., Wang X.S., Yang X.Q.2008. Enzymatic hydrolysis of hemp (Cannabis sativa L.)protein isolate by various proteases and antioxidant properties of the resulting hydrolysates[J]. Foodchemistry114(4):1484-1490.
    211. Varki A.1993. Biological Roles of Oligosaccharides-All of the Theories Are Correct[J].Glycobiology,3(2):97-130.
    212. Vliegenthart J.F.G, Casset F.1998. Novel forms of protein glycosylation[J]. Current Opinion inStructural Biology,8(5):565-571.
    213. Vongchan P., Warda M., Toyoda H.2005. Structural characterization of human liver heparinsulfate[J]. Biachimica et Biophysica Acta,1721:1-8.
    214. Wang J.P., Hu J.E., Cui J.Z.2008. Purification and identification of a ACE inhibitory peptide fromoyster proteins hydrolysate and the anti hypertensive effect of hydrolysate in spontaneouslyhypertensive rats[J]. Food Chemistry,111:302-308.
    215. Wang M.J., Wang Y., Wang A.L., et al.2010. Five novel antimicrobial peptides from skinsecretions of the frog, Amolops loloensis[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,155(1):72-76.
    216. Wieland F, Heitzer R., Schaefer W.1983. Asparaginylglucose-Novel Type of CarbohydrateLinkage[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica-Biological Sciences,80(18):5470-5474.
    217. Wijesekara I., Qian Z.J., Ryu B.M., et al.2011. Purification and identification of antihypertensivepeptides from seaweed pipefish (Syngnathus schlegeli) muscle protein hydrolysate[J]. FoodResearch International,44(3):703-707.
    218. Xue Z.H., Yu W.C., Wu M.C.2009. In vivo antitumor and antioxidative effects of a rapenseed mealprotein hydrolysate on an S180tumor-bearing murine model[J]. Biosci. Biotechnol. Biochem.73(11):2412-2415.
    219. Yamashita S., Furubayashi T., Kataoka M., et al.2000. Optimized conditions for prediction ofintestinal drug permeability using Caco-2cells monolayers by apical multidrugresistance-associated protein-2[J].European Journal of Pharmaceutical Science,(10):195-204.
    220. Yang B.C., Zhang X.M., Bao X.L., et al.2008. Glycopeptide derived from soybean β-conglycinininhibits the adhesion of Escherichia coli and Salmonella to human intestinal cells[J]. Food ResearchInternational,41(6):594-599.
    221. Yang H.L., Xu Wang, Xiuhong Liu, et al.2009. Antioxidant Peptidomics Reveals Novel SkinAntioxidant System[J]. Molecular&Cellular Proteomics,8(3):571-583.
    222. Yang L.P., Meng Z.N., Liu Y., et al.2010. Growth hormone and prolactin in Andrias davidianus:cDNA cloning, tissue distribution and phylogenetic analysis. General and ComparativeEndocrinology.165(2):177-180.
    223. Ye L.B., Zhang J.S., Ye X.J., et al.2008,Structural elucidation of the polysaccharide moiety of aglycopeptide(GLPCW-II)from Ganoderma lucidum fruiting bodies[J]. Carbohydrate Research,343(4):746-752.
    224. Yokoyama M., Tanaka H., Yoshihara S., et al.1986. A method for the identification of sulfatedglycopeptide by two-dimensional electrophoresis on cellulose acetate membrane[J]. Journal ofBiochemical and Biophysical Methods,12(4):239-246.
    225. Yu Y.K., Hu J.N., Miyaguchi Y.J..2006.Isolation and characterization of angiotensin I-convertingenzyme inhibitory peptides derived from porcine hemoglobin[J]. Peptides,27(11):2950-2956.
    226. Zhang Y., Liu W.T., Li G.Y., et al.2007. Isolation and characterizatioon of a novel pepsin-solublecollagen from the skin of grass carp (Ctenopharyngodon idella)[J]. Food Chemistry,103:906-912.
    227. Zhou J.W., Bjourson A.J., Coulter D.J.M..2007. Bradykinin-related peptides, including a novelstructural variant,(Val1)-b+radykinin, from the skin secretion of Guenther's frog, Hylaranaguentheri and their molecular precursors[J]. Peptides,28(4):781-789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700