碟式聚光太阳能热发电系统用斯特林发动机的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碟式聚光太阳能热发电技术近30年在国际上取得了长足的发展。碟式热发电系统由于具有光电转换效率高,使用灵活等优点,在可再生能源及分布式供能技术受到日益重视的今天,正引起越来越多的关注。太阳能斯特林发动机作为碟式热发电系统的核心动力设备,其优良程度直接决定整个系统的发电性能。
     本文首先简要叙述了斯特林发动机及其碟式热发电系统中的关键技术,然后对近年来国内外在碟式热发电技术领域取得的重要技术进展进行综述,并浅析了碟式热发电技术在中国的发展前景。
     本文的主要工作是对碟式太阳能热发电系统用斯特林发动机进行自主研制。首先从现有的斯特林发动机分析与设计方法着手研究,分析其各自的优点及局限性;然后引入一些斯特林发动机机型的实验测试数据,对经典的施密特分析法进行修正,发展出一套能够较为准确的预测斯特林发动机实际运转时热力性能的设计方法;另外,从质量、动量、能量守恒方程组出发,结合一系列动力学相关方程,并考虑到负载的启动特性,建立了一套分析斯特林机内部工质流动换热及热功转换过程的方法。该方法充分考虑到斯特林发动机从启动前预热过程到启动瞬时过程再到稳定运转过程的各个阶段中机器的工作特点。对斯特林发动机在实际工作过程中产生的主要损失因素进行了简要的定性分析。
     运用经过作者改进的施密特分析法,设计出一台千瓦级β型单缸斯特林发动机。该机的机械传动部分设计为菱形传动机构。建立了一套测试该机动力性能的实验平台并进行了实验。实验中使用一台汽油发动机在空载运行时排放的中高温废气作为热源驱动该斯特林机,用测功机测得该机的输出轴功率及扭矩随转速变化的特性关系。实验中该斯特林机的输出功率达到了3476W,对应的转速为1248RPM。实验中还研究了该斯特林机换热器系统中工质压力的变化特性,发现采集到的三个位置处工质的压力值呈同一正弦规律的周期性变化,这与采用施密特分析法计算得出的压力结果具有一致性;且三处压力变化曲线之间的相位差几乎为0。通过对压力的实验数据研究还发现,回热器两侧的压差是冷却器两端压差的两倍多;该结果也表明,采用叠网式多孔结构的回热器是造成斯特林机换热器系统内工质压力损失的主要原因。
     对碟式热发电系统中太阳能斯特林发动机用的集热器进行了研制。在充分分析碟式抛物面聚光镜的几何特性及存在的太阳能集热器接口问题后,设计出两款直接照射式的太阳能集热器。其中一款为采用U形夹层通道对工质进行加热的腔式集热器,数值仿真结果显示,它在工作过程中能够具有较均匀的壁面温度场分布,从而能够避免较大热应力的产生;设计出的另一款集热器以渐开线形状的吸热器管为特征,能够在有限的空间里高效率的接收太阳能。对设计出的这两款太阳能集热器分别做了试制工作。
     在本文对斯特林发动机及其太阳能集热器研制工作的基础上,建立了一套3kW级的碟式太阳能热发电系统。该系统具有开口直径为5m的碟式聚光镜,其焦点位置安装有本文自主研制并完成改造的3kW级太阳能斯特林发动机。已经初步完成了该系统的搭建,待负载系统以及控制系统加装完成后,即可对整套系统进行试运行调试。
The technology of dish solar power generation gets substantial progress internationally in the recent three decades. The dish solar power generation system is receiving more and more attention today due to its great importance attached to the renewable energy and distributed energy supply technology, and its advantages of high solar-electricity conversion efficiency and flexible application. The solar Stirling engine is the key power equipment in the dish solar power generation system, which directly determines the performance of the whole system.
     A brief introduction is made on the key technology of the Stirling engine and the dish solar power generation system at the beginning, and then the latest related international development in the technological fields is reviewed. The future development of the dish power generation technology in China is also briefly analyzed.
     The main work of this dissertation is to research and develop (R&D) a Stirling engine which can be used in the dish solar power generation system. The advantages and disadvantages of the existing design methods of Stirling engines are analyzed. Then the classic Schmidt analysis method is modified by using some experimental testing data of several internationally famous Stirling engines, and a design method that can precisely predict the performance of Stirling engines in operation is presented in this dissertation. In addition, a method for analyzing the fluid flow, the heat transfer and the energy conversion in the Stirling engine is provided by starting from the equation set of mass, momentum and energy conservation relations, by introducing a series of dynamic equations, and considering the characters of common loads like generators. The qualitative analysis on the main factors that cause the power loss of Stirling engines in real operation is also presented.
     A β-type single cylinder Stirling engine is developed by using the modified Schmidt analysis method. The rhombic mechanism is designed into the engine. An experimental system is built to test the performance of the developed Stirling engine, and a series of experimental tests are conducted. During the tests, waste gases with mid-high temperature exhausted from a gasoline engine at no-load running condition are used to drive the Stirling engine as the heat source. The output shaft power could reach3476W at the rotational speed of1248RPM.The pressure loss of the working fluid in the heat exchanger system of the Stirling engine is also studied. The recorded test data show that the loss between the inlet and outlet of the regenerator is more than twice that between the inlet and outlet of the cooler, so the porous metal regenerator is the major factor which causes the pressure loss of the working fluid. The pressure variation is approximately sinusoidally periodic, and the phase difference of the pressure values among the three different locations is almost zero.
     The solar receivers for the dish power system are also studied and designed. The problem at the interface between the sunlight collector and the solar receiver is studied firstly, and then two solar receivers are developed. One has the feature of U-shape channels to heat the internal working fluid, so the wall temperature could distribute more uniformly and avoid intense thermal stress according to the simulation results. The other one has the feature of involute heater tubes, which could receive more sunlight in a narrow space. The two solar receivers are both trial-produced.
     On the basis of the above work, a3kW dish solar power generation system is built. The system mainly includes a solar concentrator with its diameter of about5m and a solar Stirling engine with an indicated output power of about3kW near the focus point of the concentrator. This solar Stirling engine is reformed from the above-mentioned β-type Stirling engine.
引文
[1]G. Walker, Stirling engines, Oxford University Press,1980.
    [2]A. J. Organ, The air engine Stirling cycle power for a sustainable future, CR(?) Press and Woodhead Publishing Limited,2007.
    [3]J. Organ, Thermodynamics and Gas Dynamics of the Stirling Cycle Machine Cambridge University Press,1992.
    [4]金东寒,斯特林发动机技术,哈尔滨工程大学出版社,2009.
    [5]沈维道,童钧耕,工程热力学(第四版),高等教育出版社,2007.
    [6]I.Urieli and D. M. Berchowitz, Stirling cycle engine analysis, Adam Hilger Lt Bristol,1984.
    [7]M. Hargreaves, The Philips Stirling engine, Elsevier science publishers,1991.
    [8]国外金属材料选编—Inconel 718合金专辑Ⅲ,上钢五厂研究所情报室,1991.11.
    [9]冶金编,美国镍基高温合金,科学出版社,1978.
    [10]R. Adkins, Analysis of Heat Pipe Receivers for Point-Focus Solar Concentrator: Sandia National Laboratories (SNL),1988.
    [11]何梓年,太阳能热利用,中国科学技术大学出版社,2009.
    [12]罗运俊,何梓年,王长贵,太阳能利用技术,化学工业出版社,2005.
    [13]T. R. Mancini, Solar-Electric Dish Stirling System Development, SNL,1987.
    [14]B. Kongtragool and S. Wongwises, A four power-piston low-temperatur differential Stirling engine using simulated solar energy as a heat source. Sola Energy,2008,82:493-500.
    [15]A. R. Tavakolpour, A. Zomorodian and A. A. Golneshan, Simulatio construction and testing of a two-cylinder solar Stirling engine powered by flat-plate solar collector without regenerator. Renewable Energy,2008,33:77-87
    [16]I.Tlili, Y. Timoumi and S. B. Nasrallah, Analysis and design consideration e mean temperature differential Stirling engine for solar application, Renewabl Energy,2008,33:1911-1921.
    17]K. Makhkamov and D. B. Ingham. Two dimensional model of the air flow and temperature distribution in a cavity-type heat receiver of a solar Stirling engine, Journal of Solar Energy Engineering,1999,121:210-216.
    18]F. G. Granados, M. A. Silva and P. V. RuizHernandez, Thermal model of the eurodish solar Stirling engine, Journal of Solar Energy Engineering,2008,130: 011014-1-011014-8.
    19]F. Terada, T. Nakazato, J.Matsue,30-kW Class Small-size Stirling Engine (NS30S),Proceedings of the 2nd International Stirling engine conferfance,1986.
    20]I.Yamashita, A. Tanaka, A. Azetsu, et al, Fundamental Studies of Stirling Engine Systems and Components, Mechanical Engineering Laboratory,1987.
    21] Y. Haramura, "Heat transfer due to condensation of bubbles in subcooled liquid", Proc. of 43th National Heat Tansfer Symposium of Japan,2006 (Nagoya) F334.
    22] M. Ota and Y. Haramura, "Measurement of Gas Temeperature During Compression and Expansion Using Hot-wire Sensor", Proc. of 10th Symposium on Stirling Cycle,2006 (Yokohama) pp.79-80.
    23]M. Ota and Y. Haramura, "The Compensation Method of Temperature Measurement Using Resistance Wire", Proc. of 44th National Heat Tansfer Symposium of Japan,2007 (Nagasaki) C216.
    24] Y. Haramura, "Heat Transfer on the End Surface of short columnar Space due to Annular Jet and Suction Driven by the Displacer Motion", Proc. of 13th International Stirling Engine Conference,2007 (Tokyo), pp.130-135.
    25]M. Ota and Y. Haramura, "Heat Transfer During Compression and Expansion of Gas", Journal of Heat Transfer, Vol.130,2008 (032801).
    26] Y. Haramura and K. Kubota, "Heat transfer due to annular jet induced by displacer motion", JSME Annual conference 2008,2008 (Yokohama) Vol.3, pp. 107-108.
    27] Y. Haramura and A. Takimoto, "Bubble behavior in subcooled pool boiling of water", Proc. of 46th National Heat Tansfer Symposium of Japan,2009 (Kyoto). B1-131
    28] Y. Haramura and K. Nakamura, "Heat Transfer Due to Annular Jet Induced by Displacer Motion", Proc. of 13th Symposium on Stirling Cycle,2009 (Tokyo) pp 55-58.
    [29]Y. Haramura, "Heat Flux Distribution on a surface with both wet and drj regions", Proc. of 47th National Heat Tansfer Symposium of Japan,2010 (Sapporo).G231
    [30]Y. Haramura and K. Nakamura, "Heat transfer on the end surface of a cylinden due to a jet from an annular channel of the displacer",2010 (Groningen).
    [31]Y. Haramura and K. Nakamura, "Heat Transfer Due to Annular Jet Induced by Displacer Motion", Proc. of 14th Symposium on Stirling Cycle,2010 (Tokyo) pp. 81-84.
    [32]W. B. Stine and R. B. Diver, A Compendium of Solar Dish/Stirling Technology, SNL report,1994.
    [33]T. R. Mancini, Dish-Stirling Systems:An Overview of Development and Status, ASME Journal of Solar Energy Engineering,2003,125:135-151.
    [34]H. Carlsen, B. Jones, Progress Report-35kW Stirling Engine for Biomass. EuropeanStirling, Osnabruck, Germany,2000.
    [35]Sandia, Stirling energy systems set new world record for solar-to-grid conversion efficiency, http://www.stirlingenergy.com,2008.
    [36]C. W. FUNG, Solar Stirling engine systems for energy independence. http://worldharmonyforum.blogspot.com,2008.
    [37]P. Sharke冉冉升起的大型太阳能发电厂,工业设计,2008,09:44-46.
    [38]D. Allen and J. Cairelli, Test results of a 40 kW Stirling engine and comparison with the NASA-Lewis computer code predictions, Proceedings of the 20th Intersociety Energy Conversion Engineering Conference,1985.
    [39]S. Almstrom, C. Bratt and H. Nelving, Control systems for united Stirling 4-95 engine in solar application, United Stirling(Sweden) report,1981.
    [40]H. G. Nelving and W. H. Percival. Modifications and testing of a 4-95 Stirling engine for solar applications. JPL Parabolic Dish Solar Thermal Power Ann. Program Rev., Proc. p 179-189,1983.
    [41]D. R. Adkins, C. E. Andraka, J. B. Moreno, et al, Heat Pipe Solar Receivei Development Activities at Sandia National Laboratories. Renewable and Advanced Energy Conference forthe 21st Century Conference,1999.
    [42]K. Beninga, R. Davenport, J. Sellars, et al, Performance results for the SAIC/STM prototype dish/Stirling system, ASME International solar energy conference,1997.
    [43]E.B.James, D.L.Thomas, N.J.Lennart and M.G.Ted, The Detroit diesel corporation/STM, Inc. Program to develop stirling based commercial products, STM, Inc. report,1993.
    [44]S. Rawlinson and D. R. Gallup, On-sun testing of the STM 4-120 Stirling power conversion system, Proceedings of the 30th Intersociety Energy Conversion Engineering Conference,1995.
    45] A. Powell and K. S. Rawlinson, Performance mapping of the STM 4-120 kinematic Stirling engine using a statistical design of experiments method, Proceedings of the 28th Intersociety Energy Conversion Engineering Conference,1993.
    46]L. Linker and K. S. Rawlinson, Evaluation of the STM 4-120 kinematics Stirling engine, Proceedings of the 25th Intersociety Energy Conversion Engineering Conference,1990.
    47] C. E. Andraka, J. B. Moreno, R. B. Diver, et al, Reflux pool-boller as a heat-transport device for Stirling engines:on-sun test program results, Proceedings of the 25th Intersociety Energy Conversion Engineering Conference,1990.
    48] R. B. Diver, J. D. Fish, R. Levitan, et al, Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport, Solar Energy,1992,48:21-30.
    49]K.Khalili, T. M. Godett, R. J. Meijer and R. P. Verhey, Design and testing of a heat pipe gas combustion system for the STM 4-120 Stirling engine, Proceedings of the 24th Intersociety Energy Conversion Engineering Conference,1989.
    50] S. Rawlinson and D. R. Adkins, Design, Fabrication, and testing of a sodium evaporator for the STM 4-120 kinematic Stirling engine, SNL report,1995.
    51] W. Reinalter, S. Ulmer, P. Heller, et al, Detailed performance analysis of a 10 kW dish/Stirling system. Journal of Solar Energy Engineering,2008,12 011013-1-011013-6.
    [52]O. Goebel and D. Laing, Second generation sodium heat pipe receiver for USAB V-160 Stirling engine:development and on-sun test results, Proceedin of the 28th Intersociety Energy Conversion Engineering Conference,1993.
    [53]D. Laing and C. Trabing, Second Generation Sodium Heat Pipe Receiver for USAB V-160 Stirling Engine:Evaluation of On-Sun Test Results Using t Proposed IEA Guidelines and Analysis of Heat Pipe Damage, Journal of So Energy Engineering,1997,119:279-285.
    [54]D. Laing and M. Reusch, Hybrid sodium heat pipe receivers for dish/stirli systems, Proceedings of the 32th Intersociety Energy Conversion Engineeri Conference,1997.
    [55]D. Laing and M. Palsson, Hybrid Dish/Stirling Systems:Combustor and He Pipe Receiver Development, ASME Journal of Solar Energy Engineering,20( 124,176-181.
    [56]C. Kang, J. S. Kim, Y. H. Kang, et al, An experimental study on the heat trans: characteristics of the hybrid solar receiver for a dish concentrating syste Proceedings of ISES Solar World Congress 2007:Solar Energy and Hum Settlement,2007.
    [57]B.Thomas, Benchmark testing of micro-CHP units, Applied Thermal Engineeri 2008,28,2049-2054.
    [58]M.Palsson, Development and field test of a SOLO 161 Stirling engine bas micro-CHP unit with ultra-low emissions, at Seminar on Micro Combined He and Power in Denmark and Europe-with the ecopower unit as a starting poi 2001.
    [59]V. Kuhn, J. Klemes, and I. Bulatov, Micro CHP:Overview of select technologies, products and field test results, Applied Thermal Engineering,20( 28,2039-2048.
    [60]D. Paepe, P. D'Herdt, and D. Mertens, Micro-CHP systems for resident applications, Energy Conversion and Management,2006,47,3435-3446.
    [61]M.Palsson, On Premixed Gas Fuelled Stirling Engine Combustors w Combustion Gas Recirculation, Doctoral thesis, May 2002, Lund University, Sweden.
    2]朱辰元,自由活塞式热气机发电技术在世界上的发展,上海节能,2009.8.
    3]金东寒,热气机工作过程的模拟计算及其实验.武汉水运工程学院,1984.9.
    4]沈建平,金东寒,顾根香,Stirling发动机燃烧及换热分析.热能动力工程,1997.6.
    5]顾根香,四缸双作用热气机性能仿真研究,北京:中国舰船研究院,1998.
    6]吴张华,罗二仓等.1kWe碟式太阳能行波热声发电系统的研制,2010年中国特种发动机工程及应用学术会议论文集,2010.
    7]张耀明,太阳能热发电技术,前沿,2009.7.
    ]W. P. Teagan, Status of Markets for Solar Thermal Power Systems, Arthir D Little,2001.
    ]D. Aranda, Solar Stirling engine for remote power and disaster relief, Bachelor thesis, Florida International University,2010.
    8]王亦楠,对我国发展太阳能热发电的一点看法,中国能源,2006,28:5-10.
    ]杨勇平,分布式能量系统,化学工业出版社,2011.
    ]杨泰蓉,叶宏,王军,Tursunbaev I A,斯特林循环分析法的发展及1kWe斯特林机二级简化分析.太阳能学报,2008,29(8):999-1007.
    ]W. R. Martini, Stirling Engine Design Manual. University Press of the Pacific, 2004.
    ]姚征等,CFD通用软件综述,上海理工大学学报,Vo1.24,No.2,2002.
    ] K.Fischer, H. Lemrani and P. Stouffs, Dynamic Simulation of kinematic Stirling Engines:Coupled and Decoupled Analysis,30th IECEC Proceedings,1995.
    ] W. J. Koehler, S. V. Patankar and W. E. Ibele,Numerical Prediction of Turbulent Oscillating Flow and Associated heat Transfer, NASA-CR-187177,1991.
    ]D. Cedeon, Manifest:A Computer Program for 2-D Flow Modeling in Stirling Machines, NASA Contractor Report 182290,1989.
    [78]滨口和洋,户田富士夫,平田宏一著,曹其新,凌芳等译,斯特林引擎型制作,上海交通大学出版社,2010.
    [79]钱国柱,周增新,严善庆.热气机原理与设计,国防工业出版社,1987.
    [80]同济大学教学教研室,高等数学下册(第四版),高等教育出版社,19
    [81]陶文铨,数值传热学(第2版),西安交通大学出版社,2001.
    [82]http://www.stirlingenergy.com/
    [83]http://www.stirlingbiopower.com/
    [84]http://www.cleanergyindustries.com/
    [85]http://www.infiniacorp.com/
    [86]http://iee.ac.cn/cn/tynfd.php
    [87]http://www.huinong.gov.cn/Article/ShowInfol.asp?ID=20072

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700