太阳能碟式/碱金属热电转换系统中热管式吸热器对流热损失特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于能源和环境问题,以及对电力的需求不断增加,以清洁、可再生能源为资源的太阳能热发电技术已成为最有前途和最具挑战的技术之一。太阳能碟式热发电系统作为三大太阳能热发电系统(槽式、塔式和碟式)之一,具有高效率,模块化,自主运行,适用于多种能源形式(无论是太阳能或化石燃料,或两者混合)的优点。一方面,传统的以碟式/斯特林发电机等形式来实现热电转换的太阳能碟式热发电系统正受到挑战;另一方面,太阳能碟式热发电系统中的吸热器是太阳能向热能转换的关键部件,通常存在各种形式的热损失。其中,对流热损失是吸热器能量损失的重要组成部分,但由于机理复杂,计算难度大,是研究太阳能碟式热发电系统中吸热器热性能的重点和难点,也是当前太阳能领域的热点前沿课题。
     本文在大量文献调研和比较性研究的基础上,首先提出一种新的太阳能碟式热力循环系统—太阳能碟式/碱金属热电转换系统和一种能够实现等温光热转换的太阳能热管式吸热器。在此之后,以热管式吸热器为对象,采用三维数值模拟方法研究了热管式吸热器在有/无环境风条件下,其内部和采光口附近空气的流动和传热特征;在变物性条件下探讨了相关参数,如采光口的位置和大小、腔体的深径比、倾角、壁温以及环境风对热管式吸热器的自然或自然-强制混合对流热损失的影响规律;比较了热管式吸热器在有/无环境风条件下对流热损失特性的差异,揭示了环境风对吸热器对流热损失的影响规律以及由环境风引起的强制对流和腔体内自然对流的耦合特征。相应地,提出用于预测太阳能腔式吸热器的自然对流和混合对流热损失的Nusselt数关系式,并与已有模型进行比较。然后,根据数值计算结果,对太阳能碟式/碱金属热电转换系统的整体热-电转换性能进行评价,并详细讨论了其性能与各种参数之间的关系。最后,通过建立圆柱形腔式吸热器热损失特性实验台,采用电加热的方法,研究了倾角、热流密度和开口率等参数对圆柱形腔式吸热器热损失的影响。本文一方面可发展和丰富太阳能吸热器对流热损失理论,另一方面为太阳能碟式热发电系统设计和性能提高提供科学依据。所得主要结果如下:
     ①对于热管式吸热器在无风环境下的自然对流热损失,采用三维数值模拟方法研究表明:由于考虑了空气热物性随温度的变化,数值结果与实验结果更吻合;同时,吸热器自然对流热损失和对流换热系数随腔体壁面温度的升高而增大,而对流换热Nusselt数随腔体壁面温度的升高而减小。采光口位置对吸热器自然对流热损失的影响与倾角密切相关,而采光口大小对吸热器自然对流热损失的影响在不同的倾角下类似。当吸热器腔体的深径比减小时,腔体内部的对流区域和空气流速都增大,从而导致自然对流热损失增大。同时,定义修正的开口率,用以耦合深径比和采光口大小的共同影响。此外,实验研究发现:当输入热功率不变时,吸热器的自然对流热损失随着倾角的增大而减小,导热损失和辐射热损失随倾角的增大而增大。与恒壁温工况下的结果不同的是,吸热器在恒热流工况下,其自然对流热损失Nusselt数随着自然对流热流密度的增大而缓慢增大,而在恒壁温边界条件下,吸热器自然对流热损失Nusselt数随着壁温的增大而线性减小。此外,定热流工况下倾角对辐射热损失的影响比定壁温工况略大。
     ②对于热管式吸热器在有风环境下的自然-强制混合对流热损失,采用三维数值模拟方法研究表明:区别于无风环境下吸热器自然对流热损失随倾角增加而单调减小的规律,在有风环境下,太阳能吸热器混合对流热损失同时受到环境风和倾角的共同影响,且规律较为复杂。在某些环境风条件下,吸热器的混合对流热损失甚至小于无风环境下的自然对流热损失,且存在临界风速使混合对流热损失达到极小值。此外,当风速不断增加时,吸热器在不同倾角下的混合对流热损失差异越来越小。
     ③对于太阳能碟式/碱金属热电转换系统的整体热-电转换性能,理论计算表明:太阳能碟式/碱金属热电转换系统在有风环境下的整体热-电转换效率随运行温度的变化规律与无风环境下的情形非常相似。所不同的是,在无风环境下,太阳能碟式/碱金属热电转换系统的热-电转换效率峰值为20.7%;而在有风环境下,系统的热-电转换效率峰值降为19.0%。此外,太阳能碟式/碱金属热电转换系统的热-电转换效率随着风速的增加而降低,但风向的影响很小。鉴于太阳能碟式/碱金属热电转换系统的高效性,太阳能碟式/碱金属热电转换系统有望成为最具竞争力的太阳能利用技术之一。
Due to energy and environment problems, as well as increasing demand forelectricity, solar thermal power becomes one of the most promising and challengingtechnologies for its clean and renewable energy resource. Solar dish power system, asone of the three generic solar thermal power systems (trough, tower, and dish/enginesystems) is characterized by high efficiency, modularity, autonomous operation, and aninherent hybrid capability (the ability to operate on either solar energy or fossil fuel, orboth). On the one hand, the traditional solar dish thermal power systems such as thedish/Stirling system which directly converts the solar radiation into electricity are beingchallenged. On the other hand, solar receiver plays an important role in light–heatconversion for the dish/engine systems, and normally subjected to various modes ofheat loss. Among these, convection heat loss is a major contributor of the total energyloss of solar receiver. However, the convection heat loss mechanism of solar receiver isso complex that it is difficult to calculate. Therefore, the estimation of convection heatloss of solar receiver is a key input for the performance evaluation of solar dish powersystem; also, it is nowadays a priority research line in the field of solar energy.
     In this dissertation, on the basis of a thorough literature survey and a comparativestudy, firstly, a new conversion power unit—alkali metal thermal to electric converter(AMTEC) is proposed to cascade with the dish collector system, forming a new solarthermal power system, namely solar dish/AMTEC thermal power system. Meanwhile, anew configuration of heat-pipe receiver is introduced to realize isothermal light-heatconversion for the solar dish/AMTEC thermal power system. After that, taking the heat-pipe receiver as the object, three-dimensional numerical studies are performed to getinsight into the flow and heat transfer characteristics of air inside and in the vicinity ofthe receiver under no-wind and wind conditions. Based on the air thermophysicalproperty variations, the influence of relevant parameters, such as aperture position andsize, cavity aspect ratio, tilt angle, wall temperature and environmental wind on naturalor combined free-forced convection heat loss of the heat-pipe receiver is investigated.The combined convection heat loss of the heat-pipe receiver under wind condtion iscompared to the natural convection heat loss under no-wind condition. The impact ofwind on combined convection loss as well as the coupling characteristics of windinduced convection and the natural convection of air in the cavity are clearly presented, Accordingly, Nusselt number correlations that can estimate natural and combined free-forced convection heat loss with reasonable accuracy are proposed, and they arecompared with existing models. Then, based on the numerical results, the overallthermal-electric conversion efficiency of the solar dish/AMTEC thermal power systemis calculated; also, the relationship between the system efficiency and variousparameters is discussed in detail. Finally, an experiment using the electric heatingmethod is carried out to explore the effect of tilt angle, heat flux and aperture ratio etc.on the heat losses of a cylindrical cavity receiver. On the one hand, this dissertationenriches the theory of solar receiver convection heat loss; on the other hand, it providesscientific basis for the design and performance improvement of the solar dish thermalpower system. The main findings are as follows:
     ①For the natural convection heat loss of heat-pipe receiver under no-windcondition, three-dimensional numerical results reveal that, due to the air thermophysicalproperty variation with temperature, the numerical results agree better with theexperimental measurements. Meanwhile, the natural convection heat loss and theconvection heat transfer coefficient increases with increasing wall temperature whileNusselt number decreases as cavity wall temperature rises. The impact of apertureposition on the natural convection heat loss of receiver is closely related to tilt angle,while the aperture size has similar effect for different tilt angles. The expansion ofconvection zone together with the augmentation of velocity magnitude is mainlyresponsible for the increment of natural convection heat loss with decreasing cavityaspect ratio. Moreover, a modified definition of aperture ratio is introduced, aiming toreflect the combined effect of the cavity aspect ratio and aperture size. In addition,experimental investigation finds that, when the input power is constant, the naturalconvection heat loss decreases significantly as the tilt angle increases while theconduction heat loss and the radiation heat loss increase slightly. Different from theresults for the constant wall temperature condition, the natural convection heat loosNusselt number increases slowly with the increase of natural convection heat flux;while it decreases linearly with increasing wall temperature. In addition, the influenceof tilt angle on the radiation heat loss for constant heat flux condition is greater than thatfor constant constant wall temperature condition.
     ②For the combined free-forced convection heat loss of heat-pipe receiver underwind condition, three-dimensional numerical results show that, different from thediscipline that the natural convection heat loss decreases monotonically with increasing tilt angle under no-wind environment, the combined convection heat loss of receiver inwindy environment is affected by both the wind and the tilt angle, and is more complex.Under some certain wind conditions, the combined convection heat loss possibly bereduced below the natural convection value, and there exists critical wind speed thatminimizes the combined convection heat loss. Moreover, the combined convection heatloss of receiver at different inclinations becomes more and more indistinguishable aswind speed increases.
     ③For the overall thermal-electric conversion performance of solar dish/AMTECthermal power system, the theoretical calculations indicate that, the variation of theoverall thermal-electric conversion efficiency of solar dish/AMTEC thermal powersystem with the operating temperature in wind condition is very similar to that of no-wind condition. The difference is that, the maximum overall efficiency of the solardish/AMTEC thermal power system reduces from20.7%in no-wind condition to19.0%in the wind condition. Furthermore, the overall efficiency of solar dish/AMTEC thermalpower system decreases with increasing wind speed, while the wind direction showsvery little effect. In view of its high conversion efficiency, the solar dish/AMTECthermal power system has the potential to become one of the most competitivetechnologies of solar energy utilization.
引文
[1] Kalogirou SA. Solar thermal collectors and applications [J]. Progress in Energy andCombustion Science,2004,30(3):231-295.
    [2] Montes MJ, Abánades A, Martínez-Val JM. Performance of a direct steam generation solarthermal power plant for electricity production as a function of the solar multiple [J]. SolarEnergy,2009,83(5):679-689.
    [3] Yang M, Yang X, Yang X, Ding J. Heat transfer enhancement and performance of the moltensalt receiver of a solar power tower [J]. Applied Energy,2010,87:2808-2811.
    [4] Jin H, Hong H, Sui J, Liu Q. Fundamental study of novel mid-and low-temperature solarthermochemical energy conversion [J]. Science in China Series E: Technological Sciences,2009,52(5):1135-1152.
    [5] Nayak S, Tiwari GN. Energy and exergy analysis of photovoltaic/thermal intergraded with asolar greenhouse [J]. Energy and Buildings,2008,40:2015-2021.
    [6] Schwarzb zl P, Buck R, Sugarmen C, Ring A, Jesús Marcos Crespo M, Altwegg P, Enrile J.Solar gas turbine systems: design, cost and perspectives [J]. Solar Energy,2006,80(10):1231-1240.
    [7] Shinnar R, Citro F. Solar thermal energy: the forgotten energy source [J]. Technology inSociety,2007,29(3):261-270.
    [8] Wang Z, Li X, Yao Z, Zhang M. Concentrating solar power development in China [J]. ASMEJournal of Solar Energy Engineering,2010,132:021203(1-8).
    [9] Lu J, Ding J, Yang J. Heat transfer performance of an external receiver pipe under unilateralconcentrated solar radiation [J]. Solar Energy,2010,84:1879-1887.
    [10] Lu J, Ding J, Yang J. Heat transfer performance and exergetic optimization for solar receiverpipe [J]. Renewable Energy,2010,35:1477-1483.
    [11] Cui H, Xing Y, Guo Y, et al. Numerical simulation and experiment investigation on unit heatexchange tube for solar heat receiver [J]. Solar Energy,2008,82:1229-1234.
    [12] Shuai Y, Xia X-L, Tan H-P. Radiation performance of dish solar concentrator/cavity receiversystems [J]. Solar Energy,2008,82:13-21.
    [13] Xu E, Yu Q, Wang Z, Yang C. Modeling and simulation of1MW DAHAN solar thermalpower tower plant [J]. Renewable Energy,2011,36:848-857.
    [14] Xie WT, Dai YJ, Wang RZ. Numerical and experimental analysis of a point focus solarcollector using high concentration imaging PMMA Fresnel lens [J]. Energy Conversion andManagement,2011,52(6):2417-2426.
    [15] Li X, Kong W, Wang Z, Chang C, Bai F. Thermal model and thermodynamic performance ofmolten salt cavity receiver [J]. Renewable Energy,2010,35:981-988.
    [16] Ravi Kumar K, Reddy KS. Thermal analysis of solar parabolic trough with porous discreceiver [J]. Applied Energy,2009,86(9):1804-1812.
    [17] Mancini T, Heller P, Butler B, Osborn B, Schiel W, Goldberg V, Buck R, Diver R, AndrakaC, Moreno J. Dish-stirling systems: an overview of development and status [J]. Journal ofSolar Energy Engineering,2003,125(2):135-151.
    [18] Karabulut H, Yücesu HS, inar C, Aksoy F. An experimental study on the development of aβ-type Stirling engine for low and moderate temperature heat sources [J]. Applied Energy,2009,86(1):68-73.
    [19] Washom B. Parabolic dish Stirling module development and test results [C]. Paper No.849516, Proceedings of the19th IECEC, San Francisco, CA,1984.
    [20] Sandia, Stirling energy systems set new world record for solar-to-grid conversion efficiency.http://www.newswise.com/articles/view/537732/?sc=swhn.
    [21] Kribus A, Kaftori D, Mittelman G, Hirshfeld A, Flitsanov Y, Dayan A. A miniatureconcentrating photovoltaic and thermal system [J]. Energy Conversion&Management,2006,47(20):3582-3590.
    [22] Feuermann D, Gordon JM. High-concentration photovoltaic designs based on miniatureparabolic dishes [J]. Solar Energy,2001,70(5):423-430.
    [23] Holman JP. Heat transfer [M].8th edition, New York: McGraw-Hill Companies,1997.
    [24] McDonald CG. Heat loss from an open cavity. Contractor report [R]. Contract No: DE-AC04-94AL85000, Department of Energy, USA,1995.
    [25] Seo T, Ryu S, Kang Y. Heat losses from the receivers of a multifaceted parabolic solar energycollecting system [J]. KSME International Journal,2003,17(8):1185-1195.
    [26] Sendhil Kumar N, Reddy KS. Comparison of receivers for solar dish collector system [J].Energy Conversion and Management,2008,49:812-819.
    [27] Melchior T, Perkins C, Weimer AW, Steinfeld A. A cavity-receiver containing a tubularabsorber for high-temperature thermochemical processing using concentrated solar energy [J].International Journal of Thermal Sciences,2008,47:1496-1503.
    [28] Diver RB, Andraka CE, Moreno JB, Adkins DR, Moss TA. Trends in dish-stirling solarreceiver design [C].25th Intersociety Energy Conversion Engineering Conference (IECEC),Reno, NV, pp.12-17,1990.
    [29] Andraka CE, Moreno JB, Moss TA, Johansson S, Gallup DR, Cordeiro PG, Adkins DR,Rawlinson KS. Solar heat pipe testing of the stirling thermal motors4-120stirling engine [C].31th Intersociety Energy Conversion Engineering Conference (IECEC), Washington D.C., pp.1295–1300,1996.
    [30] Moreno JB, Modesto-Beato M, Rawlinson KS, Andraka CE, Showalter SK, Moss TA, MehosM, Baturkin V. Recent progress in heat-pipe solar receivers [C].36th Intersociety EnergyConversion Engineering Conference (IECEC), Savannah, GA, pp.565–572,2001.
    [31] Sanders Associates. Parabolic dish module experiment [R]. Sandia National Laboratories,Albuquerque, NM:1986. Report SAND85-7007.
    [32] Buck R, Heller P, Koch H. Receiver development for a dish-brayton system [C]. Proceedingsof the1996ASME International Solar Energy Conference, San Antonio, TX.
    [33] Leibfried U, Ortjohann J. Convective heat loss from upward and downward-facing cavitysolar receivers: measurements and calculations [J]. ASME Journal of Solar EnergyEngineering,1995,117:75-84.
    [34] Le Quere P, Humphery JA, Sherman FS. Numerical calculation of thermally driven two-dimensional unsteady laminar flow in cavities of rectangular cross section [J]. Numerical HeatTransfer, Part B,1981,4:249-283.
    [35] Le Quere P, Penot F, Mirenayat M. Experimental study of heat loss through naturalconvection from an isothermal cubic open cavity [R]. Sandia National Laboratories Report,SAND81-8014,1981.
    [36] Penot F. Numerical calculation of two-dimensional natural convection in isothermal opencavities [J]. Numerical Heat Transfer, Part B,1982,5:421-437.
    [37] Clausing AM. An analysis of convective losses from cavity solar central receivers [J]. SolarEnergy,1981,27(4):295-300.
    [38] Clausing AM. Convective losses from cavity solar-receivers--comparisons betweenanalytical predictions and experimental results [J]. ASME Journal of Solar EnergyEngineering,1983,105:29-33.
    [39] Clausing AM, Waldvogel JM, Lister LD. Natural convection from isothermal cubical cavitieswith a variety of side-facing apertures [J]. ASME Journal of Heat Transfer,1987,109:407-412.
    [40] Siebers DL, Kraabel JS. Estimating convective energy losses from solar central receivers [R].Sandia National Laboratories Report, SAND84-8717,1984.
    [41] Hess CF, Henze RH. Experimental Investigation of Natural Convection Losses from OpenCavities [J]. ASME Journal of Heat Transfer,1984,106:333-338.
    [42] Chan YL, Tien CL. Laminar natural convection in shallow open cavities [J]. ASME Journalof Heat Transfer,1986,108:305-309.
    [43] Sernas V, Kyriakides I. Natural convection in an open cavity [C]. Proceeding of7thInternational Heat Transfer Conference, vol.2, pp.275-286, Munchen, Germany,1982.
    [44] Chakroun W, Elsayed MM, Al-Fahed SF. Experimental measurements of heat transfercoefficient in a partially/fully open tilted cavity [J]. ASME Journal of Solar EnergyEngineering,1997,119:298-303.
    [45] Chan YL, Tien CL. A numerical study of two-dimensional laminar natural convection in ashallow open cavity [J]. International Journal of Heat and Mass Transfer,1985,28:603-612.
    [46] Chan YL, Tien CL. A numerical study of two-dimensional natural convection in square opencavities [J]. Numerical Heat Transfer, Part B,1985,8:65-80.
    [47] Miyamoto M, Keuhn TH, Goldstein RJ, Katoh Y. Two-dimensional laminar naturalconvection heat transfer from a fully or partially open square cavity [J]. Numerical HeatTransfer, Part A,1989,15:411-430.
    [48] Mohamad AA. Natural convection in open cavities and slots [J]. Numerical Heat Transfer,Part A,1995,27:705-716.
    [49] Angirasa D, Pourquie MJ, Nieuwstadt FT. Numerical study of transient and steady laminarbuoyancy-driven flows and heat transfer in a square open cavity [J]. Numerical Heat Transfer,Part A,1992,22:223-239.
    [50] Elsayed MM, Al-Najem NM, El-Refaee MM, Noor AA. Numerical study in fully open tiltedcavities [J]. Heat Transfer Engineering,1999,20:73-85.
    [51] Polat O, Bilgen E. Laminar natural convection in inclined open shallow cavities [J].International Journal of Thermal Sciences,2002,41:360-368.
    [52] Polat O, Bilgen E. Natural convection and conduction heat transfer in open shallow cavitieswith bounding walls [J]. Heat Mass Transfer,2005,41:931-939.
    [53] Nateghi M, Armfield SW. Natural convection flow of air in an inclined open cavity [J].Australian&New Zealand Industrial and Applied Mathematics Journal,2004,45: C870-C890.
    [54] Saha G, Saha S, Arif Hasan Mamun Md. A finite element method for steady-state naturalconvection in a square tilt open cavity [J]. ARPN Journal of Engineering and AppliedSciences,2007,2(2):41-49.
    [55] Bilgen E, Oztop H. Natural convection heat transfer in partially open inclined square cavities[J]. International Journal of Heat and Mass Transfer,200,48:1470-1479.
    [56] Sezai I, Mohamad AA. Three-dimensional simulation of natural convection in cavities withside opening [J]. International Journal of Numerical Methods for Heat&Fluid Flow,1998,8(7):800-813.
    [57] Hinojosa JF, Alvarez G, Estrada CA. Three-dimensional numerical simulation of the naturalconvection in an open tilted cubic cavity [J]. Revista Mexicana de Física,2006,52(2):111-119.
    [58] Showole RA, Tarasuk JD. Experimental and numerical studies of natural convection withflow separation in upward-facing inclined open cavities [J]. ASME Journal of Heat Transfer,1993,115:592-605.
    [59] Lin CX, Xin MD. Transient turbulence free convection in an open cavity [J]. Institution ofChemical Engineers Symposium Series,1992,1:515-521.
    [60] Angirasa D, Eggels JGM, Nieuwstadt FTM. Numerical simulation of transient naturalconvection from an isothermal cavity open on a side [J]. Numerical Heat Transfer, Part A,1995,28:755-768.
    [61] Elsayed MM, Chakroun W. Effect of aperture geometry on heat transfer in tilted partiallyopen cavities [J]. ASME Journal of Heat Transfer,1999,121:819-827.
    [62] Chakroun W. Effect of boundary wall conditions on heat transfer for fully opened tilted cavity[J]. ASME Journal of Heat Transfer,2004,126:915-923.
    [63] Koenig AA, Marvin M. Convection heat loss sensitivity in open cavity solar receivers [R].Final report, DOE Contract No: EG77-C-04-3985, Department of Energy, USA,1981.
    [64] Stine WB, McDonald CG. Cavity receiver convective heat loss [C]. Proceedings of theInternational Solar Energy Society (ISES) Solar World Conference, Kobe, Japan,1989.
    [65] Taumoefolau T, Lovegrove K. An experimental study of natural convection heat loss from asolar concentrator cavity receiver at varying orientation [C]. Proceedings of40th Conferenceof the Australia and New Zealand Solar Energy Society (ANZSES), Newcastle, Australia,2002.
    [66] Paitoonsurikarn S, Lovegrove K. Numerical investigation of natural convection loss in cavity-type solar receivers [C]. Proceedings of40th Conference of the Australia and New ZealandSolar Energy Society (ANZSES), Newcastle, Australia,2002.
    [67] Lovegrove K, Taumoefolau T, Paitoonsurikarn S, Siangsukone P, Burgess G, Luzzi A,Johnston G, Becker O, Joe W, Major G. Paraboloidal dish solar concentrators for multi-megawatt power generation [C]. Proceedings of the International Solar Energy Society (ISES)Solar World Conference, Goteborg, Sweden,2003.
    [68] Paitoonsurikarn S, Lovegrove K. On the study of convection loss from open cavity receiversin solar paraboloidal dish applications [C]. Proceedings of41st Conference of the Australiaand New Zealand Solar Energy Society (ANZSES), Melbourne, Australia,2003.
    [69] Paitoonsurikarn S, Taumoefolau T, Lovegrove K. Estimation of convection loss fromparaboloidal dish cavity receivers [C]. Proceedings of42nd Conference of the Australia andNew Zealand Solar Energy Society (ANZSES), Perth, Australia,2004.
    [70] Paitoonsurikarn S, Lovegrove K. A new correlation for predicting the free convection lossfrom solar dish concentrating receivers [C]. Proceedings of the44th Conference of theAustralia and New Zealand Solar Energy Society (ANZSES), Canberra, Australia,2006.
    [71] Paitoonsurikarn S, Lovegrove K, Hughes G, Pye J. Numerical investigation of naturalconvection loss from cavity receivers in solar dish applications [J]. ASME Journal of SolarEnergy Engineering,2011,133:021004(1-10).
    [72] Wang M, Siddiqui K. The impact of geometrical parameters on the thermal performance of asolar receiver of dish-type concentrated solar energy system [J]. Renewable Energy,2010,35:2501-2513.
    [73] Yeh KC, Hughes G, Lovegrove K. Modelling the convective flow in solar thermal receivers
    [C]. Proceedings of the43rd Conference of the Australia and New Zealand Solar EnergySociety (ANZSES), Dunedin, New Zealand,2005.
    [74] Taumoefolau T, Paitoonsurikarn S, Hughes G, Lovegrove K. Experimental investigation ofnatural convection heat loss from a model solar concentrator cavity receiver [J]. ASMEJournal of Solar Energy Engineering,2004,126:801-807.
    [75] Prakash M, Kedare SB, Nayak JK. Investigations on heat losses from a solar cavity receiver[J]. Solar Energy,2009,83:157-170.
    [76] Prakash M, Kedare SB, Nayak JK. Determination of stagnation and convective zones in asolar cavity receiver [J]. International Journal of Thermal Sciences,2010,49:680-691.
    [77] Yasuaki S, Fujimura K, Kunugi Akino TN, Natural convection in a hemispherical enclosureheated from below [J]. International Journal of Heat and Mass Transfer,1999,37:1605-1617.
    [78] Khubeiz JM, Radziemska E, Lewandowski WM. Natural convective heat-transfers from anisothermal horizontal hemispherical cavity [J]. Applied Energy,2002,73:261-275.
    [79] Kaushika ND. Viability aspects of paraboloidal dish solar collector systems [J]. RenewableEnergy,1993,3(6-7):787-793.
    [80] Kaushika ND, Reddy KS. Performance of a low cost solar paraboloidal dish steam generatingsystem [J]. Energy Conversion and Management,2000,41:713-726.
    [81] Sendhil Kumar N, Reddy KS. Numerical investigation of natural convection heat loss inmodified cavity receiver for fuzzy focal solar dish concentrator [J]. Solar Energy,2007,81:846-855.
    [82] Reddy KS, Sendhil Kumar N. An improved model for natural convection heat loss frommodified cavity receiver of solar dish concentrator [J]. Solar Energy,2009,83:1884-1892.
    [83] Reddy KS, Sendhil Kumar N. Combined laminar natural convection and surface radiationheat transfer in a modified cavity receiver of solar parabolic dish [J]. International Journal ofThermal Sciences,2008,47:1647-1657.
    [84] Reddy KS, Sendhil Kumar N. Convection and surface radiation heat losses from modifiedcavity receiver of solar parabolic dish collector with two-stage concentration [J]. Heat andMass Transfer,2009,45(3):363-373.
    [85] Reynolds DJ, Jance MJ, Behnia M, Morrison GL. An experimental and computational studyof the heat loss characteristics of a trapezoidal cavity absorber [J]. Solar Energy,2004,76:229-234.
    [86] Ma RY. Wind effects on convective heat loss from a cavity receiver for a parabolicconcentrating solar collector [R]. Sandia National Laboratories Report, SAND92-7293,1993.
    [87] Paitoonsurikarn S, Lovegrove K. Effect of paraboloidal dish structure on the wind near acavity receiver [C]. Proceedings of the44th Conference of the Australia and New ZealandSolar Energy Society (ANZSES), Canberra,2006.
    [88] Fang JB, Wei JJ, Dong XW, Wang YS. Thermal performance simulation of a solar cavityreceiver under windy conditions [J]. Solar Energy,2010,85:126-138.
    [89] Tan T, Chen Y, Chen Z, Siegel N, Kolb GJ. Wind effect on the performance of solid particlesolar receivers with and without the protection of an aerowindow [J]. Solar Energy,2009,83:1815-1827.
    [90] Kim K, Moujaes SF, Kolb GJ. Experimental and simulation study on wind affecting particleflow in a solar receiver [J]. Solar Energy,2010,84:263-270.
    [91] Bonnet S, Alaphilippe M, Stouffs P. Thermodynamic solar energy conversion: reflections onthe optimal solar concentration ratio [J]. International Journal of Energy, Environment andEconomics,2006,12(3):141-152.
    [92] http://www.iee.ac.cn/Website/index.php?hannelID=474.
    [93] Tanaka K. Concept design of solar thermal receiver using alkali metal thermal to electricconverter (AMTEC)[J]. Current Applied Physics,2010,10: S254-S256.
    [94] Laing D, Palsson M. Hybrid dish/Stirling systems: combustor and heat pipe receiverdevelopment [J]. ASME Journal of Solar Energy Engineering,2002,124:176-181.
    [95] Laing D, Reusch M, Brost O. Hybrid sodium heat pipe receiver for dish/Stirling systems [C].Proceedings of10th International Heat Pipe Conference, Stuttgart, Germany,1997.
    [96] Gui X, Qu W, Lin B, Yuan X. Two-dimensional transient thermal analysis of a phase-change-material canister of a heat-pipe receiver under gravity [J]. Journal of Thermal Science,2010,19:160-166.
    [97] Levy GC, Hunt TK, Sievers RK. AMTEC: Current status and vision [C]. Proceedings of the32th Intersociety Energy Conversion Engineering Conference, Vol.2, pp.1152-1155,1997.
    [98] Kummer JT, Weber N. Thermo-electric generator [P]. U. S. Patent No.3458356,1968.
    [99] El-Genk MS, Tournier JM. AMTEC/TE static converters for high energy utilization, smallnuclear power plants [J]. Energy Conversion and Management,2004,45:511-535.
    [100] Weber N. A thermoelectric device based on beta-alumina solid electrolyte [J]. EnergyConversion,1974,14:1-7.
    [101] Cole T. Thermoelectric energy conversion with solid electrolytes [J]. Science,1983,221:915-920.
    [102] Williams RM, Loveland ME, Jeffries-Nakamura B, Underwood ML, Bankston CP, Leduc H,Kummer, JT. Kinetics and transport at AMTEC electrodes-I. The interfacial impedancemodel [J]. Journal of the Electrochemical Society,1990,137(6):1709-1716.
    [103] Bankston CP, Cole T, Khanna SK, Thakoor AP. Alkali metal thermoelectric conversion(AMTEC) for space nuclear power systems [C]. Proceedings of the1st Symposium on SpaceNuclear Power Systems, Vol.2, pp.393-402,1984.
    [104] U. S. Department of Energy. Nuclear Energy Research Initiative. Novel, integratedreactor/power conversion system (LMR-AMTEC)[R]. Project Number:99-0198, ResearchGrant Number: DE-FG03-99SF21987,2003.
    [105] Angelino G, Invernizzi C. Binary conversion cycles for concentrating solar power technology[J]. Solar Energy,2008,82(7):637-647.
    [106] Patankar SV. Numerical heat transfer and fluid flow [M]. Washington DC: Hemisphere,1980.
    [107] Irvine JTF, Liley P E. Steam and gas tables with computer equations [M]. Academic press,1984.
    [108] Shih TH, Liou WW, Shabbir A., Yang Z, Zhu J. A new k-ε eddy viscosity model for highReynolds number turbulent flows [J]. Computers&Fluids,1995,24:227-238.
    [109] Launder BE, Spalding DB. The numerical computation of turbulent flows [J]. ComputerMethods in Applied Mechanics and Engineering,1974,3:269-289.
    [110] Alaphilippe M, Bonnet S, Stouffs P. Low power thermodynamic solar energy conversion:coupling of a parabolic trough concentrator and an Ericsson engine [J]. International Journalof Thermodynamics,2007,10(1):37-45.
    [111] Segal A, Epstein M. Optimized working temperatures of a solar central receiver [J]. SolarEnergy,2003,75(6):503-510.
    [112] Palavras I, Bakos GC. Development of a low-cost dish solar concentrator and its applicationin zeolite desorption [J]. Renewable Energy,2006,31(15):2422-2431.
    [113] Wu YC, Wen LC. Solar receiver performance of point focusing collector system [C]. ASMEWinter Annual Meeting, San Francisco, CA,1978.
    [114] Tournier JM, El-Genk MS, Schuller M, Hausgen P. An analytical model for liquid-anode andvapor-anode AMTEC converters [C]. Space Technology and Applications InternationalForum1997, AIP Conference Proceedings, vol.387, pp.1543-1552.
    [115] Underwood ML, Williams RM, Ryan MA, Jeffries-Nakamura B, O’Connor D. An AMTECvapor-vapor, series connected cell [C]. Proceedings of the9th Symposium on Space NuclearPower Systems, AIP Conference Proceedings, vol.246, pp.1331-1337,1992.
    [116] Tournier JM, El-Genk MS. An electric model of a vapor anode, multi-tube alkali-metalthermal-to-electric converter [J]. Journal of Applied Electrochemistry,1999,29(11):1263-1275.
    [117] Steinbruck M, Heinzel V, Huber F, Peppler W, Hill H, Voss M. Investigations of beta-alumina solid electrolytes for application in AMTEC cells [C]. Proceedings of the28thIntersociety Energy Conversion Engineering Conference, vol.1, pp.780-799,1993.
    [118] Siegel R, Howell JR. Thermal radiation heat transfer [M].2nd ed. New York: Hemisphere,1981.
    [119] Ryan MA, Shields VB, Cortez RH, Lara L, Homer ML, Williams RM. Lifetime of AMTECelectrodes: molybdenum, rhodium-tungsten, and titanium nitride [C]. Space Technology andApplications International Forum2000, AIP Conference Proceedings, vol.504, pp.1377-1382.
    [120] Ryan MA, Williams RM, Lara L, Fiebig BG, Cortez RH, Kisor AK, Shields VB, Homer ML.Advances in electrode materials for AMTEC [C]. Space Technology and ApplicationsInternational Forum2001, AIP Conference Proceedings, vol.552, pp.1088-1093.
    [121] Bilgen E. Passive solar massive wall systems with fins attached on the heated wall andwithout glazing [J]. ASME Journal of Solar Energy Engineering,2000,122(1):30-34.
    [122] Stephane A, Patrice C, Gilles F. Design and simulation of a solar chemical reactor for thethermal reduction of metal oxides: case study of zinc oxide dissociation [J]. ChemicalEngineering Science,2007,62:6323-6333.
    [123] Hinojosa JF, Cabanillas RE, Alvarez G, Estrada CE. Nusselt number for the naturalconvection and surface thermal radiation in a square tilted open cavity [J]. InternationalCommunications in Heat and Mass Transfer,2005,32:1184-1192.
    [124]费业泰.误差理论与数据处理(第6版).中国北京:机械工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700