微纳米线热物性测量方法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米纤维广泛应用于航天航空、能源转换等领域,其热性能已成为研究的热点之一。由于空间分辨率的限制及接触热阻等因素的影响,宏观尺度下的热测试方法已无法满足微纳米线的测量要求,因此开发微纳米尺度下的热物性测量方法具有重要意义。本文研发了变长度稳态T形法和3ω-T形法,测量了微米线热导率、热扩散率等热物性参数,进而探讨了界面材料对测量结果的影响。
     基于稳态T形法,通过改变热沉的位置,得到了同一根待测线不同长度对应的总热阻,实现了待测线热导率、铂黑胶节点接触热阻以及待测线表面发射率的同时测量。热阻分析表明,热线热阻是待测线总热阻的4倍时,测量灵敏度最大。室温下得到不同金属线的表面发射率均与文献值吻合;碳纤维热导率为400 W m-1 K-1,不确定度小于25 W m-1 K-1;铂黑胶节点的接触热阻约为103~104 K W-1,且随待测线尺寸及热导率的增大而减小。
     研发了3ω-T形法及其虚拟锁相实验系统,进一步测量了待测线吸热系数及节点热阻抗。结果表明:节点热阻抗可以简化为界面材料的稳态热阻与比例系数的乘积,当节点热阻抗小于待测线时,由于界面材料提高了待测线与热线间的热量交换能力,导致热线温度振荡量减小;当节点热阻抗远大于待测线时,节点热阻抗与接触热阻相当;采用不同界面材料得到的待测线吸热系数相同。
     采用3ω-T形法测量了交叉铂线间干节点接触热阻随温度的变化,并揭示了T形结构中交叉圆柱节点的变形机理。考虑热线弯曲变形以及微观接触点塑性变形的影响,能够解释接触热阻随温度升高而下降的实验结果,拟合得到的载荷指数与文献值吻合很好。结果表明:微观接触热阻占总节点热阻的比重随着温度下降及表观接触面积的增大而增大,在室温下约占30%。
     研究了三种功能材料的热输运特性,结果表明:纳米多孔金线孔壁内部缺陷随着退火温度的升高而增加,导致热导率减小;随着热处理温度升高,碳纤维内部声子与缺陷间的散射减弱,热导率峰值位置将向低温偏移,对应的比热减小;由于受到界面热阻、长径比等因素限制,多壁碳纳米管并不能明显提高复合材料的热导率。
Micro/nanofibers have wide applications in areas such as aerospace, energy conversion and etc. The researches on their thermophysical properties have become hot topics. Due to the limitation of the spatial resolution and the presence of the thermal contact resistance, the thermometry applied in the macroscale can no longer meet the requirement of the measurement of the micro/nanowires, therefore, it is critical importance to develop more reliable experimental methods. In this dissertation, the changing length T type probe and the 3ω-T type method are developed to measure the thermal properties, including the thermal conductivity and the thermal diffusivity, of the microwires, and the effect of the interstitial material on the experiemental results is also clarified.
     Based on the steady-state T type probe, in the same contact condition of the junction between the heating wire and the test wire, by measuring the total thermal resistances with various lengths of the same test wire, the thermal conductivity and the surface emissivity of the fine wire, and the thermal contact resistance of the platinum black junction are simultenously obtained. Thermal resistance analysis shows that for best sensitivity, the thermal resistance of the heating wire should be four times that of the test wire. This method is verified by measuring the surface emissivities of the metallic wires, and the results agree well with the reference values. The thermal conductivity of a carbon fiber is obtained to be 400 W m-1 K-1 at room temperature, and the uncertainty is less than 25 W m-1 K-1. The thermal contact resistance of platinum black junction is obtained to be about 103~104 K W-1, which decreases with increasing diameter and thermal conductivity of the test wire.
     The 3ω-T type method is proposed and the experimental system based on virtual lock-in is established to simultaneously measure the thermal effusivity of the test wire and the thermal impedance of the junction. It is found that the thermal impedance of the junction can be simplified to be the product of the steady-state thermal resistance and a ratio function. The thermal impedance of the interstitial material is similar to the thermal contact resistance, if the former is much larger than the thermal impedance of the test wire, while the interstitial material with relative smaller thermal impedance gives a decrease of the temperature oscillation of the heating wire, because the corresponding interstitial material will enhance the ability to absorb energy from the heating wire. However, the same value of the thermal effusivity of the test wire is obtained with different interstitial materials.
     Using the 3ω-T type method, the temperature dependence of the thermal resistance of a bare junction between two crossed platinum wires is measured, and the deformation mechanism of the microscopic contacts is confirmed. The thermal contact resistance is found to decrease as the temperature increases from 100 to 200K, then the trend slows down, which can be explained by considering both the bending effect of the heating wire and the plastic deformation of the microscopic contacts, and the fitted conductance-load exponent also agrees well with the reference value. The microscopic thermal resistance covers about 30% of the total thermal contact resistance of the junction at room temperature, and the ratio is found to increase as the nominal contact area increases and the temperature decreases.
     The characteristics of the thermal transport in three functional materials are inverstigated. As the annealing temperature increases, new defects in the ligament of the nanoporous Au will be introduced, resulting in a decrease of the thermal conductivity. The phonon scattering against defects in carbon fibers will be depressed as the heat treatment temperature increases, so the peak of the thermal conductivity shifts to lower temperature, and the corresponding specific heat is smaller. Due to the effects of the interfacial thermal resistance, the apect ratio of multiwalled carbon nanotube and etc, no noticeable enhancement in the thermal conductivity of the composite material is observed. Key words: micro/nanowire; 3ω-T type method; thermal contact resistance; thermal conductivity; thermal diffusivity
引文
[1] Guo Z Y, Li Z X. Size effect on microscale single-phase flow and heat transfer. Int J Heat Mass Transfer, 2003, 46: 149-159.
    [2]刘静.微米/纳米尺度传热学.北京:科学出版社, 2006.
    [3] Tien C L, Majumdar A, Gerner F M. Microscale energy transport. Washington DC: Taylor& Francis, 1998.
    [4] Uyemura J P. Introduction to VLSI circuits and systems.周润德,译.北京:电子工程出版社, 2004.
    [5] Nelson L A, Sekhon K S, Frita J E. Derect heat pipe cooling of semiconductor devices. Proceedings of the 3rd International Heat Pipe Conference, 1978.
    [6]过增元.当前国际传热界的热点-微电子器件的冷却.中国自然科学基金, 1988, 2: 20-25.
    [7] Foll H. Electronic materials. http://www.tf.uni-kiel.de/matwis/amat/elmat_en/index.html.
    [8] Krishnan S, Garimella S V, Chrysler G M, et al. Towards a thermal Moore’s law. IEEE Trans Adv packaging, 2007, 30(3): 462-473.
    [9] Yang B, Wang P, Bar-Cohen A. Mini-contact enhanced thermoelectric cooling of hot spot in high power devices. IEEE Transaction on Components and Packaging Technologies, 2007, A30: 432-438.
    [10] Goldsmid H J. Thermoelectric refrigeration. New York: Plenum, 1964.
    [11] Loffe A F. Semiconductor thermmoelements and thermoelectric cooling. London: Infosearch Ltd, 1957.
    [12] Ashcroft N W, Mermin N D. Solid state physics. Philadelphia: Saunders, 1976.
    [13] Majumdar A. Thermoelectricity in semiconductor nanostructures. Science, 2004, 303: 777-778.
    [14] Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin film thermoelectric devices with high room temperature figures of merit. Nature, 2001, 413: 597-602.
    [15] Harman T C, Taylor P J, Walsh M P, et al. Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297: 2229-2232
    [16] Chen G, Dresselhaus M S, Dresselhaus G, et al. Recent developments in thermoelectric materials. Int Mat Rev, 2003, 48(1): 45-66.
    [17] Slack G A. New Materials and Performance Limits for Thermoelectric Cooling. In: Rowe D M(Ed.), CRC handbook of thermoelectrics. Boca Raton: CRC press, 1995.
    [18] Chen G. Nanoscale heat transfer and nanostructured thermoelectrics. IEEE Transactions on Components and Packaging Technologies, 2006, 29(2): 238-246.
    [19] Hicks L D. Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B, 1993, 47(19): 12727-12731.
    [20] Goldsmid H J, Nolas G S. A review of the new thermoelectric materials. Proceeding of IEEE International Symposium on Thermoelectrics, Beijing, China, 2001: 1-6.
    [21] Sun X, Zhang Z, Dresselhaus M S. Theoretical modeling of thermoelectricity in Bi nanowires. Appl Phys Lett, 1999, 74: 4005-4007.
    [22] Binging G, Rohrer H, Gerber C, et al. Surface studies by scanning tunneling microscopy. Phys Rev Lett, 1982, 49 (1): 57-61.
    [23] Feynman R P. There’s plenty of room at the bottom. Engineering and Science, 1960, 23(5): 22-26.
    [24] Wang Z L. Energy harvesting for self-powered nanosystems. Nano Research, 2008, 1: 1-8.
    [25] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56?58.
    [26] Martel R, Schmidt T, Shea H R, et al. Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, 1998, 73 (17): 2447-2479.
    [27] White C T, Todorov T N. Carbon nanotubes as long ballistic conductors. Nature, 1998, 393: 240-242.
    [28] Treacy M M J, Ebbesen T W, Gibson J M. Exceptional high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381: 678-680.
    [29] Matsumoto K, Kinosita S, Gotoh Y, et al. Ultralow biased field emitter using single-wall carbon nanotube directly grown onto silicon tip by thermal chemical vapor deposition. Appl Phys Lett, 2001, 78: 539-540.
    [30] Berber S, Kwon Y K Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett, 2000, 84: 4613-4616.
    [31] Park J, Pasupathy A N, Goldsmith J I, et al. Columb blockade and the Kondo effect in single-atom transistors. Nature, 2002, 417: 722-725.
    [32] Postma H W C, Teepen T, Yao Z, et al. Carbon nanotube single-electron transistors at room temperature. Science, 2001, 293: 76-79.
    [33] Modi A, Koratkar N, Lass E, et al. Miniaturized gas ionization sensors using carbon nanotubes. Nature, 2003, 424: 171-174.
    [34] Li Y L, Kinloch I A, Windle A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004, 304: 276-278.
    [35] Huang H, Liu C H, Wu Y, et al. Aligned carbon nanotube composite films for thermal management. Adv Mater, 2005, 17: 1652-1656.
    [36] Winey K I, Vaia R A. Polymer nanocomposites. MRS Bulletin, 2007, 32: 314-319.
    [37] Hone J, Whitney M, Piskoti C, et al. Thermal conductivity of single-walled carbon nanotubes. Phys Rev B, 1999, 59: R2514.
    [38] Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 2001 87: 215502.
    [39] Yi W, Lu L, Zhang D L. Linear specific heat of carbon nanotubes. Phys Rev B, 1999, 59(14): R9015-R9018.
    [40] Lu L, Yi W, Zhang D L. 3 omega method for specific heat and thermal conductivity measurements. Rev Sci Instrum, 2001, 72: 2996-3003.
    [41] Fujii M, Zhang X, Xie H, et al. Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett, 2005, 95:065502.
    [42] Wang Z L, Tang D W, Li X B, et al. Length-dependent thermal conductivity of an individual single wall carbon nanotube. Appl Phys Lett, 2007, 91: 123119.
    [43] Shi L, Li D Y, Yu C, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. ASME J Heat Trans, 2003, 125: 881-888.
    [44] Taketoshi N, Baba T, Ono A. Development of a thermal diffusivity measurement system for metal thin films using a picosecond thermoreflectance technique. Meas Sci Technol, 2001, 12: 2064-2073.
    [45] Hsu i-K, Kumar R, Bushmaker A, et al. Optical measurement of thermal transport in suspended carbon nanotubes. Appl Phys Lett, 2008, 92: 063119.
    [46] Li Q W, Liu C H, Wang X S, et al. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnology, 2009, 20: 145702.
    [47] Cahill D G, Ford W K, Goodson K E, et al. Nanoscale thermal transport. J Appl Phys, 2003, 93(2): 793-818.
    [48]陈则韶,葛新石,顾毓沁.量热技术与热物性测定.合肥:中国科学技术大学出版社, 1990.
    [49]曹玉章,邱绪光.实验传热学.北京:国防工业出版社, 1998.
    [50]王喜世,伍小平,秦俊,等.用红外热成像方法测量火焰温度的实验研究.激光与红外, 2001(3): 101-104.
    [51]郁曾期, Moore C A,胡英,等.材料表面温度的激光拉曼测量方法.中国激光, 1985, 12(8): 492-494.
    [52] Ju Y S, Goodson K E. Short-time-scale thermal mapping of microdevices using a scanning thermoreflectance technique. ASME J Heat Trans, 1998, 120: 306-313.
    [53] Paoloni S, Walther H G. Photothermal radiometry of infrared translucent materials. J Appl Phys, 1997, 82(1): 101-106.
    [54]张国斌,石军岩,施朝淑,等.光声技术在固体材料热扩散率测量中的应用.物理, 2000, 29(7): 616-619.
    [55] Doebelin E. Measurement systems: application and design. 3rd ed. New York: McGraw-Hill, 1985.
    [56] Pohl D W, Denk W, Lanz M. Optical stethoscopy: image recording with resolutionλ/20. Appl Phys Lett, 1984, 44: 651-653.
    [57] Majumdar A. Scanning thermal microscopy. Ann Rev Mater Sci, 1999, 29: 505-585.
    [58]包成玉,冯文源,刘锡明.激光荧光法测量气体温度的实验研究.清华大学学报:自然科学版, 1996, 36(6): 40-43.
    [59]游伯坤.温度测量与仪表:热电偶和热电阻.北京:科学技术文献出版社, 1990.
    [60] Rieke V, Pauly K B. MR thermometry. J Magn Reson Imaging, 2008, 27(2): 376-390.
    [61] Nosek J, Zelenka J. Quartz strip resonators as a temperature sensor. Ultrasonics, 2001, 39 (6): 465-468.
    [62] Hiatt J. A method of detecting hot spots on semiconductors using liquid crystals. In: IEEE Proceedings of International Reliability Physics Symposium, 19th Annual, Florida, USA, 1981: 130-133.
    [63]奥奇西克.热传导.俞昌铭,译.北京:高等教育出版社, 1983.
    [64] Eesley G L. Observation of nonequilibrium electron heating in copper. Phys Rev Lett, 1983, 51(23): 2140-2143.
    [65] Rochais D, Houdec H, Enguehard F, et al. Microscale thermal characterization at temperatures up to 1000oC by photoreflectance microscopy. Application to the characterization of carbon fibers. J Phys D: Appl Phys, 2005, 38: 1498-1503.
    [66] Bisson J F, Fournier D. Application of infrared microscopy to thermal diffusivity measurement in refractories at various temperature. High Temp-High Press, 1998, 30: 205-210.
    [67] Heremans J, Rahim I, Dresselhaus M S. Thermal conductivity and raman spectra of carbon fibers. Phys Rev B, 1985, 32(10): 6742-6747.
    [68] Pradere C, Goyheneche J M, Batsale J C, et al. Thermal diffusivity measurements on a single fiber with microscale diameter at very high temperature. Int J Therm Sci, 2006, 45(5): 443-451.
    [69] Nysten B, Piraux L, Issi J P. Thermal conductivity of pitch-derived fibers. J Phys D: Appl Phys, 1985, 18: 1307-1310.
    [70] Piraux L, Nysten B, Haquenne A, et al. The temperature variation of the thermal conductivity of benzene-derived carbon fibers. Solid State Commun, 1984, 50(8): 697-700.
    [71] Yamane T, Katayama S I, Todoki M. Thermal diffusivity measurement of single fibers by an ac calorimetric method. J Appl Phys, 1996, 80(8): 4358-4365.
    [72] Gallego NC, Edie D D,Nysten B, et al. The thermal conductivity of ribbon-shaped carbon fibers. Carbon, 2000, 38(7): 1003-1010.
    [73]王照亮,唐大伟,郑兴华,等. 3ω法测量单根碳纤维导热系数和热容.工程热物理学报, 2007, 28(3): 490-492.
    [74] Zhang X, Fujiwara S, Fujii M. Short-hot-wire method for measurement of the thermal conductivity of a fine fiber. High Temp-High Press, 2000, 32: 493-500.
    [75] May P W, Portman R, Rosser K N. Thermal conductivity of CVD diamond fibers and diamond fiber-reinforced epoxy composites. Diam Relat Mater, 2005, 14: 598-603.
    [76] Halland L R, Smith R C. Analysis of temperature fluctuations in ac heated filaments. J Appl Phys, 1966, 37(12): 4528-4536.
    [77] Birge N O. Specific-heat spectroscopy of glycerol and propylene glycol near the glass transition. Phys Rev B, 1986, 34(3): 1631-1642.
    [78] Cahill D G, Pohl R O. Thermal conductivity of amorphous solids above the plateau. Phys Rev B, 1987, 35(8): 4067-4073.
    [79] Cahill D G. Thermal conductivity measurement from 30 to 750K: the 3ωmethod. Rev Sci Instrum, 1990, 61(2): 802-808.
    [80] Jonsson U G, Andersson O. Investigations of the low- and high-frequency response of 3-ωsensors used in dynamic heat capacity measurements. Meas Sci Technol, 1998, 9: 1873-1885.
    [81] Putnam S A, Cahill D G, Ash B J, et al. High-precision thermal conductivity measurements as a probe of polymer/nanoparticle interfaces. J Appl Phys, 2003, 94(10): 6785-6788.
    [82] Choi T Y, Poulikakos D, Tharian J, et al. Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-omega method. Nano Letters, 2006, 6(8): 1589-1593.
    [83] Hou J, Wang X, Vellelacheruvu P, et al. Thermal characterization of single-wall carbon nanotube bundles using the self-heating 3ωtechnique. J Appl Phys, 2006, 100: 124314.
    [84] Chen F, Shulman J, Xue Y, et al. Thermal conductivity measurement under hydrostatic pressure using the 3ωmethod. Rev Sci Instrum, 2004, 75(11): 4578-4584.
    [85] Choi S R, Kim J, Kim D. 3ωmethod to measure thermal properties of electrically conducting small-volume liquid. Rev Sci Instrum, 2007, 78: 084902.
    [86] Cahill D G, Katiyar M, Abelson J R. Thermal conductivity of a-Si: H thin films. Phys Rev B, 1994, 50(9): 6077-6081.
    [87] Lee S-M, Cahill D G. Heat transport in thin dielectric films. J Appl Phys, 1997, 81(6): 2590-2595.
    [88] Yu Y S, Kurabayashi K, Goodson K E. Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating. Thin Solid Films, 1999, 339: 160-164.
    [89] Borca-Tasciuc T, Kumar A R, Chen G. Data reduction in 3ωmethod for thin-film thermal conductivity determination. Rev Sci Instrum, 2001, 72(4): 2139-2147.
    [90] Yamane T, Nagai N, Katayama S I, et al. Measurement of thermal conductivity of silicon dioxide thin films using a 3ωmethod. J Appl Phys, 2002, 91(12): 9772-9776.
    [91] Raudzis C E, Schatz F, Wharam D, et al. Extending the 3 method for thin film analysis to high frequencies. J Appl Phys, 2003, 95(10): 6051-6055.
    [92] Olson B W, Graham S, Chen K. A practical extension of the 3ωmethod to multilayer structures. Rev Sci Instrum, 2005, 76: 053901.
    [93] Ahmed S, Liske R, Wunderer T, et al. Extending the 3ωmethod to the MHz range for thermal conductivity measurements of diamond thin films. Diam Relat Mater, 2006, 15: 389-393.
    [94]张立伟,马灵芝,唐祯安,等.一种用于测量SiO2薄膜热导率的测量方法.测控技术, 2001, 20(8): 25-27.
    [95]陈震,杨决宽,庄苹,等. InGaAs/InGaAsP超晶格薄膜导热系数测试.科学通报, 2006, 13: 1601-1605.
    [96]葛树林,杨决宽,毕可东,等.采用3ω法测量多壁纳米碳管悬浮液的导热系数.功能材料与器件学报, 2008, 14(1):70-74.
    [97]王照亮,唐大伟.利用3ω法同时测量Nd:YAG晶体及其表面SiO2/ZrO2增透膜导热系数.传感技术学报, 2006, 19(5): 1545-1549.
    [98] Wang Z L, Tang D W, Zheng X H. Simultaneous determination of thermal conductivities of thin film and substrate by extending 3ω-method to wide-frequency range. Appl Surf Sci, 2007, 253: 9024-9029.
    [99]陈艳婕,张鹏,王如竹.低温下用3ω法测量热导率的研究.低温技术, 37(9): 16-21.
    [100]丰平,王太宏. 3ω方法及其在纳米材料器件表征中的应用.物理学报, 2003, 52(9): 2249-2253.
    [101]杜洛金.固体热物理性质导论-理论和测量.奚同庚,译.北京:中国计量出版社, 1987.
    [102] Clausing M, Chao B T. Thermal contact resistance in a vacuum environment. ASME J Heat Trans, 1965, 87:243-251.
    [103] Greenwood J A, Tripp J H. The elastic contact of rough spheres, ASME J Appl Mech, 1967, 34: 153-159.
    [104] Cooper M G, Mikic B B, Yovanovich M M. Thermal contact conductance. Int J Heat Mass Trans, 1968, 12: 279-300.
    [105] Mikic B. Thermal contact conductance: theoretical considerations. Int J Heat Mass Trans, 1974, 17: 205-214.
    [106] McGee G R, Schankula M H, Yovanovich M M. Thermal resistance of cylinder-flat contacts: theoretical analysis and experimental verification of a line-contact model. Nucl Eng Des, 1985, 86: 369-381.
    [107] Majumdar A, Tien C L. Fractal network model for contact conductance. ASME J Heat Trans, 1991, 113: 516-525.
    [108] Lambert M A, Fletcher L S. Thermal contact conductance of spherical rough metals. ASME J Heat Trans, 1997, 119: 684-690.
    [109] Sridhar M R, Yovanovich M M. Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments. ASME J Heat Trans, 1996, 118: 3-9.
    [110]顾慰兰.一种随机表面间接触热阻的计算方法.航空动力学报, 1995, 10(3): 53-58.
    [111]赵兰萍,徐烈.用轮廓离散法研究粗糙度表面间的接触导热.低温工程, 2000, 6(118): 52-57.
    [112]王安良,阳春信.小波变换方法评价曲线的分形特征.机械工程学报, 2002, 38(5): 80-85.
    [113] Zhao J F, Wang A L, Yang C X. Prediction of thermal contact conductance based on the statistics of the roughness profile characteristics. Int J Heat Mass Trans, 2005, 48: 974-985.
    [114] Mal’kov V A. An investigation of temperature dependence of thermal contact resistance. Heat transfer-Soviet Research, 1974, 6 (4): 92-100.
    [115] Gmelin E, Asen-Palmer M, Reuther M, et al. Thermal boundary resistance of mechanical contacts between solids at sub-ambient temperatures. J Phys D: Appl Phys, 1999, 32: R19-R43.
    [116] Zhang X, Cong P Z, Fujii M. A study on thermal contact resistance at the interface of two solids. Int J Thermophys, 2006, 27 (3): 880-895.
    [117]顾慰兰.接触热阻的实验研究.南京航天航空大学学报, 1992, 24(1): 46-52.
    [118]徐烈,张涛,赵兰萍,等.双热流法测定低温真空下固体界面的接触热阻.低温工程, 1999, 4(110): 185-189.
    [119]殷晓静,张欣欣, Degiovanni A.测量双层薄同心圆筒接触热阻的瞬态脉冲法.钢铁, 2000, 35(5): 60-62.
    [120]钟明,程曙霞,王伟平,等.测定双层组合介质接触热阻.强激光与粒子束, 2002, 14(1): 11-15.
    [121] Fletcher L S. Recent developments in contact conductance heat transfer. ASME J Heat Trans, 1988, 110:1059-1070.
    [122] Sridhar M R, Yovanovich M M. Review of elastic and plastic contact conductance models: comparison with experiment. J Thermophys Heat Trans, 1994, 8: 633-640.
    [123]张涛,徐烈,熊炜,等.接触热阻研究中理论模型的比较与分析.低温与超导, 1998, 26 (2) : 58-64.
    [124] Madhusudana C V. Thermal contact conductance. New York: Springer, 1996.
    [125] Yovanovich M M, Marotta E E. Thermal spreading and contact resistances. In: Bejan K, Kraus D (Eds.), Heat Transfer Handbook. New York: Wiley, 2003.
    [126] Greenwook J A, Williamson J B P. Contact of nominally flat surfaces. Proc R Soc, 1966, A295: 300-319.
    [127] Whitehouse D J, Archard J F. The properties of random surfaces of significance in their contact. Proc R Soc, 1970, A316: 97-121.
    [128] Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contact mechanic of surfaces. ASME J Tribology, 1990, 112(1): 205-216.
    [129] Wang Z L, Tang D W, Zhang W G. Simultaneous measurements of the thermal conductivity, thermal capacity and thermal diffusivity of an individual carbon fiber. J Phys D: Appl Phys, 2007, 40: 4686-4690.
    [130] Chang C W, Okawa D, Garcia H, et al. Breakdown of Fourier’s law in nanotube thermal conductors. Phys Rev Lett, 2008, 101: 075903.
    [131]殷晓静,Degiovanni A.闪光法测试同心圆柱套筒间接触热阻的研究.计量学报, 1996, 17(2): 120-124.
    [132] Hu H P, Wang X W, Xu X F. Generalized theory of the photoacoustic effect in a multilayer material. J Appl Phys, 1999, 86(7): 3953-3958.
    [133] Lyeo H K, Cahill D G. Thermal conductance of interfaces between highly dissimilar materials. Phys Rev B, 2006, 73: 144301.
    [134] Zhang X, Fujiwara S, Fujii M. Measurement of thermal conductivity and electrical conductivity of a single carbon fiber, Int J Thermophys, 2000, 21(4): 493-500.
    [135] McGee T D. Principles and methods of temperature measurement. New York: John Wiley& Sons, 1988.
    [136] Incropera F P, DeWitt D P. Fundamentals of heat and mass transfer. New York: Wiley, 2002.
    [137] Zhang X, Xie H Q, Fujii M, et al. Experimental study on thermal characteristics of suspended platinum nanofilm sensors. Int J Heat Mass Trans, 2006, 49: 3879-3883.
    [138] Wang J L, Gu M, Zhang X, et al. Temperature dependence of the thermal conductivity of individual pitch-derived carbon fibers. New Carbon Mater, 2008, 23(3): 259-264.
    [139] Flynn D R. Measurement of thermal conductivity by steady-state methods in which the sample is heated directly by passage of an electric current. In: Tye R P (Eds.), Thermal conductivity, Vol. 1. London: Academic, 1969.
    [140]杨世铭,陶文铨.传热学.北京:高等教育出版社, 1998.
    [141] David R L. CRC handbook of chemistry and physics. 85th ed. Boca Raton: CRC Press, 2004.
    [142] Rhim Y R, Zhang D, Rooney M, et al. Changes in the thermophysical properties of microcrystalline cellulose as function of carbonization temperature. Carbon, 2009, 48: 31-40.
    [143]沙定国.误差分析与测量不确定度评定.北京:中国计量出版社, 2003.
    [144] Holman J P. Experimental methods for engineers. New York: McGraw-Hill, 2001.
    [145] Healy J J, De-Groot J J, Kestin J. The theory of the transient hot-wire method for measuring thermal conductivity. Physica, 1976, 82C: 392-408.
    [146]王补宣,虞维平.热线法同时测定含湿多孔介质导热系数和导温系数的实验技术.工程热物理学报, 1986, 7(4): 381-386.
    [147] Zhang X, Fujii M. Simultaneous measurements of the thermal conductivity and thermal diffusivity of molten salts with a transient short-hot-wire method. Int J Thermophys, 1999, 21(1): 71-84.
    [148] Carslaw H S, Jaeger J C. Conduction of heat in solids. 2nd ed. Oxford: Oxford University Press, 1959.
    [149] Dames C, Chen G. 1ω, 2ω, and 3ωmethods for measurements of thermal properties. Rev Sci Instrum, 2005, 76: 124902.
    [150] Dames C, Chen S, Harris C T, et al. A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope. Rev Sci Instrum, 2007, 78: 104903.
    [151] Schnelle W, Engelhardt J, Gmelin E. Specific heat capacity of Apiezon N high vacuum grease and of duran borosilicate glass. Cryogenics, 1999, 39: 271-275.
    [152] Apiezon Products M&I Materials Ltd. Apiezon N cryogenic high vacuum grease data sheet [EB/OL]. (2005-08-01). http://www.apiezon.com/cryogenics.htm.
    [153]汪建.电路原理.北京:清华大学出版社, 2007.
    [154] Hu X J, Padilla A A, Xu J, et al. 3-omega measurements of vertically oriented carbon nanotubes on silicon. ASME J Heat Trans, 2006, 128: 1109-1113.
    [155] Tong T, Majumdar A. Reexamining the 3-omega technique for thin film thermal characterization. Rev Sci Instrum, 2006, 77: 104902.
    [156]李念强.数据采集技术与系统设计.北京:机械工业出版社, 2009.
    [157]侯国屏,王珅,叶齐鑫. Labview7.1编程与虚拟仪器设计.北京:清华大学出版社, 2005.
    [158]张金波,陆昊,梁瑞宇,等.电力电量参数测量系统的设计.计算机测量与控制, 2004, 14(3): 223-227.
    [159]袁杰,伊林,陈文兰,等.利用锁相飞秒激光对碘分子R(59)8-4超精细跃迁的绝对频率测量.量子电子学报, 2008, 25(1): 1-6.
    [160] Rosenthal L A. Thermal response of bridgewires used in electroexplosive devices. Rev Sci Instrum, 32(9): 1033-1036.
    [161]何玲平,陈波,杨林,等.基于虚拟锁相的原位光学测量技术.光学精密工程, 2008, 16(9): 1677-1681.
    [162] Rosencwaig A, Gersho A. Theory of the photoacoustic effect with solids. J Appl Phys, 1975, 47(1): 64-69.
    [163] Balderas-Lopez J A, Gutierrez-Juarez G, Jaime-Fonseca M R, et al. Measurements of thermal effusivity of liquids using a conventional photoacoustic cell. Rev Sci Instrum, 1999, 70(4): 2069-2071.
    [164] Balderas-Lopez J A. Thermal effusivity measurements for liquids: self-consistent photoacoustic methodology. Rev Sci Instrum, 2007, 78: 064901.
    [165] Birge N O, Nagel S R. Wide-frequency specific heat spectrometer. Rev Sci Instrum, 1987, 58(8): 1464-1470.
    [166] Frank R, Drach C, Fricke J. Determination of thermal conductivity and specific heat by a combined 3ω/decay technique. Rev Sci Instrum, 1992, 64(3): 760-765.
    [167] Battaglia J L, Kusiak A, Rossignol C, et al. Thermal diffusivity and effusivity of thin layers using time-domain thermoreflectance. Phy Rev B, 2007, 76: 184110.
    [168] Hatori K, Taketoshi N, Baba T, et al. Thermoreflectance technique to measure thermal effusivity distribution with high spatial resolution. Rev Sci Instrum, 2005, 76: 114901.
    [169] Dadarlat D, Visser H, Bicanic D. An improved inverse photopyroelectric cell for measurement of thermal effusivity: application to fatty acids and triglycerides. Meas Sci Technol, 1995, 6: 1215-1219.
    [170]高光宁,张欣欣,于帆,等.平面热源法测量均质固体材料的蓄热系数.计量学报, 2001, 22(2): 106-110.
    [171] Sandoval-Romero G E, Garcia-Valenzuela A, Sanchez-Perez C, et al. Device for characterization of thermal effusivity of liquids using photothermal beam deflection. Rev Sci Instrum, 2007, 78: 104901
    [172] Danielson G C, Sidles P H. Thermal diffusivity and other non-steady-state methods. In: Tye R P (Eds.), Thermal conductivity, Vol. 2. London: Academic, 1969.
    [173] Sundqvist B. thermal diffusivity and thermal conductivity of Chromel, Alumel, and Constantan in the range 100-450K. J Appl Phys, 1992, 72(2): 539-945.
    [174] Mahrami M, Culham J R, Yananovich M M, et al. Review of thermal joint resistance models for nonconforming rough surfaces. Appl Mech Rev, 2006, 59: 1-12.
    [175] Holm R. Electric contacts. 4th ed. Berlin: Springer, 1979: 367.
    [176] Roark R J. Formulas for stress and strain. 3rd ed. New York: McGraw-Hill, 1954.
    [177] Farraro R, McLellan R B. Temperature dependence of the Young’s modulus and shear modulus of pure nickel, platinum, and molybdenum. Metal Trans A, 1977, 8: 1563-1565.
    [178] Petty E R. A low-temperature inflection in the temperature-dependence of hardness of pure metals. J Inst Matals, 1960, 89: 123-124.
    [179] Person H O. Handbook of Carbon, Graphite, Diamond, and Fullerenes. Park Ridge NJ: Noyes, 1993.
    [180]贺福.碳纤维以及应用技术.北京:化学工业出版社, 2004.
    [181] Lu T J, Stone H A, Ashby M F. Heat transfer in open-cell metal foams. Acta Mater, 1998, 46: 3619-3635.
    [182] Nakajima H. Fabrication, properties and application of porous metals with directional pores. Prog Mater Sci, 2007, 52: 1091-1173.
    [183] Ding Y, Chen M W. Nanoporous metals for catalytic and optical applications. MRS Bulletin, 2009, 34: 569-576.
    [184]张文彦,奚正平,方明,等.纳米孔结构金属多孔材料研究进展.稀有金属材料与工程, 2008, 37(7): 1129-1133.
    [185] Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying. Nature, 2001, 410: 450-453.
    [186] Ding Y, Chen M W, Erlebacher J. Metallic mesoporous nanocomposites for electrocatalysis. J Am Chem Soc, 2004, 126(22): 6876-6877.
    [187] Ziman J M. Electrons and phonons. Oxford: Clarendon, 1960.
    [188] Raimondi R. Electronic thermal conductivity of disordered metals. Phys Rev B, 2004, 70: 155109.
    [189] Tripathi V, Loh Y J. Thermal conductivity of a granular metal. Phys Rev Lett, 2006, 96: 046805.
    [190] Hill R W, Proust C, Taillefer L, et al. Breakdown of Fermi-liquid theory in a copper-oxide superconductor. Nature, 2001, 414:711-715.
    [191] Zhang X, Xie H, Fujii M, et al. Thermal and electrical conductivity of a suspended platinum nanofilm. Appl Phys Lett, 2005, 86: 171912.
    [192] Zhang Q G, Cao B Y, Zhang X, et al. Influence of grain boundary scattering on the electrical and thermal conductivities of polycrystalline gold nanofilms. Phys Rev B, 2006, 74(13): 134109.
    [193] V?lklein F, Reith H, Cornelius T W, et al. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires. Nanotechnology, 2009, 20: 325706.
    [194] Ou M N, Yang T J, Harutyunyan S R, et al. Electrical and thermal transport in single nickel nanowire. Appl Phys Lett, 2008, 62: 063101.
    [195] Seker E, Gaskins J T, Bart-Smith H, et al. The effects of post-fabrication annealing on the mechanical properties of freestanding nanoporous gold structures. Acta Mater, 2007, 55: 4593-4602.
    [196] Maaroof A I, Gentle A, Smith G B, et al. Bulk and surface plasmons in highly nanoporous gold films. J Phys D: Appl Phys, 2007, 40: 5675-5682.
    [197]徐彩霞.纳米多孔金属材料的设计,制备与催化性能研究[博士学位论文].济南:山东大学物理化学专业, 2009.
    [198] Rasband W. ImageJ, Version 1.33u. Maryland: National Institutes of Health, 2004. http://rsb.info.nih.gov/ij/.
    [199] Song D W, Shen W N, Dunn B, et al. Thermal conductivity of nanoporous bismuth thin films. Appl Phys Lett, 2004, 84:1883-1885.
    [200] Szelagowski H, Arvanitidis I, Seetharaman S. Effective thermal conductivity of porous strontium oxide and strontium carbonate samples. J Appl Phys, 1999, 85(1): 193-198.
    [201] Gesele G, Linsmeier J, Drach V, et al. Temperature-dependent thermal conductivity of porous silicon. J Phys D: Appl Phys, 1997, 30: 2911-2916.
    [202] Parida S, Kramer D, Volkert C A, et al. Volume change during the formation of nanoporous gold by dealloying. Phys Rev Lett, 2006, 97: 035504.
    [203] Fujita T, Qian L H, Inoke K, et al. Three-dimensional morphology of nanoporous gold. Appl Phys Lett, 2008, 92: 251902.
    [204] Kittel C. Introduction to solid state physics. 7th ed. New York: Wiley, 1996.
    [205] Edie D D. The effect of processing on the structure and properties of carbon fibers. Carbon, 1998, 36: 345-362.
    [206] Riggs D M, Shuford R J, Lewis R W. Graphite fibers and composites. In: George Lubin (Eds.), handbook of composites. New York: Van Nostrand Reinhold, 1982.
    [207] Chieu T C, Dresselhaus M S, Endo M. Raman studies of benzene-derived graphite fibers. Phys Rev B, 1982; 26: 5867-5877.
    [208] Oberlin A. Carbonization and graphitization. Carbon, 1984, 22: 521-541.
    [209] Hamada T, Furuyama M, Sajiki Y, et al. Structure and electric properties of pitch-based carbon fibers heat-treated at various temperatures. J Mater Res, 1990, 5: 570-577.
    [210] Jones S P, Fain C C, Edie D D. Structural development in mesophase pitch based carbon fibers produced from naphthalene. Carbon, 1997, 35: 1533-1543.
    [211] Korai Y, Hong S H, Mochida I. Development of longitudinal mesoscopic textures in mesophase pitch-based carbon fibers through heat treatment. Carbon, 1999, 37: 203-211.
    [212] Ogale A A, Lin C, Anderson D P, et al. Orientation and dimensional changes in mesophase pitch-based carbon fibers. Carbon, 2002; 40: 1309-1319.
    [213] Pradere C, Batsale J C, Goyheneche J M, et al. Thermal properties of carbon fibers at very high temperature. Carbon, 2009, 47: 737-743.
    [214] Pradere C, Batsale J C, Dilhaire S, et al. Specific-heat measurement of single metallic, carbon, and ceramic fibers at very high temperature. Rev Sci Instrum, 2005, 76(6): 4901-4906.
    [215] Kelly B T. Physics of Graphite. London: Applied Science, 1981.
    [216] Saito R, Dresselhaus D, Dresselhaus M S. Physical properties of carbon nanotubes. London: Imperial College Press, 1998.
    [217] Winey K I, Kashiwagi T, Mu M F. Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bulletin, 2007, 32: 348-353.
    [218] Yu C H, Shi L, Yao Z, et al. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett, 2005, 5(9): 1842-1846.
    [219] Biercuk M J, LIaguno M C, Radosavljevic M, et al. Carbon nanotube composites for thermal management. Appl Phys Lett, 2002, 80(15): 2767-2769.
    [220] Choi E S, Brooks J S, Eaton D L, et al. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys, 2003, 94(9): 6034-6039.
    [221] Kashiwagi T, Grulke E, Hilding J, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer, 2004, 45: 4227-4239.
    [222] Huang H, Liu C H, Wu Y, et al. Aligned carbon nanotube composite. Adv Mat, 2005, 17: 1652-1656.
    [223] Yu A P, Mikhail E, Elena B, et al. Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl Phys Lett, 2006, 89: 133102.
    [224] Zhang X, Fujii M. Measurements of the thermal conductivity and thermal diffusivity of polymers. Poly Eng Sci, 2003, 43(11): 1755-1764.
    [225] Patton R D, Pittman C U, Wang L, et al. Vapor grown carbon fiber composites with epoxy and poly(pheylene sulfide) matrices. Composites, 1999, A30:1081-1091.
    [226] Du F M, Guthy C, Kashiwagi T, et al. An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity. J Poly Sci, 2006, B44: 1513-1519.
    [227] Kim S W, Kim J K, Lee S H, et al. Thermophysical properties of multi-walled carbon nanotube-reinforced polypropylene composites. Int J Thermophy, 2006, 27(1): 152-160.
    [228] Weidenfeller B, Hofer M, Schilling F R. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Composites, 2004, A35: 423-429.
    [229] Gojny F H, Wichmann M, Fiedler B, et al. Evalution and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer, 2006, 47: 2036-2045.
    [230] Nan C W, Liu G, Lin Y H, et al. Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett, 2004, 85(16): 3546-3551.
    [231]周湘文.碳纳米管/橡胶复合材料的研究[博士学文论文].北京:清华大学机械工程系, 2006.
    [232] Shalin R E. Polymer matrix composites. New York: Chapman & Hall, 1995.
    [233] Choi S U S, Zhang Z G, Lockwood F E, et al. Anomalous thermal conductivity enchancement in nanotube suspensions. Appl Phys Lett, 2001, 79(14): 2252-2254.
    [234] Huxtable S T, Cahill D G, Shenogin S, et al. Interfacial heat flow in carbon nanotube suspensions. Nat Mater, 2003, 2: 731-734.
    [235] Shenogin S, Bodapati A, Xue L, et al. Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl Phys Lett, 2004, 85(12): 2229-2231.
    [236] Wilson O M, Hu X Y, Cahill D G, et al. Colloidal metal particles as probes of nanoscale thermal transport in fluids. Phys Rev B, 2002, 66: 224301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700