太阳星云的演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们加入非均匀粘滞以及从分子云核坍缩来的质量流入研究太阳星云的形成、结构、和演变。计算中应用了被接受的最新的非均匀粘滞,还有从恒星形成理论中得出的合适的质量流入。在粘滞的计算中,我们考虑了磁转动不稳的效应。星云面密度和其它物理量的径向分布显著不同于以前的星云模型,那些模型或者没有考虑非均匀粘滞,或者没有加入质量流入。我们发现,由于云核是从内向外开始坍缩,星云从内边界处开始形成,然后由于粘滞向外扩展。与均匀粘滞情况不同,面密度不是半径的单调函数。由于非均匀粘滞的存在,在1.5AU附近有面密度的极小值出现。在坍缩结束之前,除暂时最小值的移动以及星云的逐渐扩展之外,面密度维持它的大体形态,原因是从坍缩来的质量供给抵消了被吸入原太阳的质量损失,并提供星云扩展所需的质量。我们的计算证实了Jin的那个早期论点,认为非均匀粘滞可以解释类木行星之间的质量差别和气体组成差别。我们的星云计算结果显示,在半径大于0.3AU处,星云温度低于1200K。即使是在星云内部,从分子云中来的难熔物质也能存活,难熔聚合物能形成。我们研究发现,星云面密度是非单调的,在火星区域有一极小值。这自然与行星质量分布符合,尤其是火星处的质量下降。
The origin of the solar system is one of the most important questions in science. The standard theory of the origin of the solar system in the modern era is the nebula hypothesis. Therefore, to understand the history of the solar system, an extensive work needs to be done on the numerical simulation of the evolution of the solar nebula.
     The current knowledge suggests that the viscosity in the solar nebula is not uniform and calculations of the nebula evolution with constantαmay miss useful information about the history of the solar system. It is pointed out that the angular momentum transport (AMT) mechanism can be the magnetohydrodynamic (MHD) turbulence driven by the magnetorotational instability (MRI). Considering the effect of ohmic diffusion on the MRI in the solar nebula, it is pointed out that in the outer region of the nebula, the surface density is low enough for cosmic rays to penetrate and the ionization is high enough that the MRI can survive. The MRI can also survive in the inner region due to thermal ionization. But the MRI cannot survive in the intermediate region between these two regions, and the viscosity drops significantly. The AMT is nonuniform and cannot be described with a uniformα.
     It is suggested that nebula models of uniform viscosity do not match the planet mass distribution. Based on a constantαviscosity, Hartmann et al. obtained a similarity solution and showed that surface density decreases outward with radius. Jin calculated heavy element masses of the planets with the solution. Comparing these masses with the observed masses of the terrestrial planets and heavy element masses of Jovian planets given by current planet model, Jin showed that constantαviscosity cannot account for the planet mass distribution.
     In the standard star formation theory, stars are thought to form from molecular cloud cores by gravitational collapse. Systems of star+disk are formed from the collapse. The systems go through infall, viscous, and clearing stages. In most of previous work of the solar nebula evolution, the emphasis has been on the viscous stage. In this work, we investigate the nebula evolution during both infall and viscous stages by including the mass influx onto the nebula from the gravitational collapse.
     In this work, we investigate the formation, structure, and evolution of the solar nebula by including nonuniform viscosity and the mass influx from the gravitational collapse of the molecular cloud core. The calculations are done by using currently accepted viscosity, which is nonuniform, and probable mass influx from star formation theory. In the calculation of the viscosity, we include the effect of magnetorotational instability. The radial distributions of the surface density and other physical quantities of the nebula are significantly different from nebula models with constantαviscosity and the models which do not include the mass influx.
     The main results of the numerical calculations are summarized as the following.
     (1) In previous models, an artificial initial condition is assumed and then an isolated nebula adjusts to a self-similar solution. The mass of the nebula decreases due to the accretion onto the protostar. In order to understand the nebula evolution, we have to take into account the initial conditions. Unlike previous calculations, in the present calculation, the nebula starts to form from the inner boundary and then expands outward due to viscous expansion. (2) In models with uniformα, the surface density is a monotonic function of the heliocentric distance. In our model, there are minimums (the TM and SM) near 1.5 AU due to viscosity difference between the inner region and the intermediate region. (3) Apart from the TM movement and the gradual expansion, the general shape ofΣis sustained before the infall stops because the mass supply from the collapse offsets mass loss accreted onto the protosun and provides mass needed for the nebula expansion. This feature is strikingly different from the evolution of an isolated nebula where the nebula mass andΣdecrease with time. (4) Whenωis high, the nebula becomes gravitationally unstable in some durations. When the nebula is unstable,Σdistribution takes the one with uniformαcaused by the instability. When it is stable,Σdistribution takes the one with nonuniformα. (5) If at one time, the surface density has a distribution like current planet mass, our numerical calculations demonstrate that the inflow time of the gas is shorter than the slow capture time for Uranus and Neptune and the inflow time is longer than the slow capture time for Jupiter and Saturn. The gas already flows inward to the Jupiter–Saturn region before Uranus and Neptune finish slow capture. Hence, Uranus and Neptune did not reach the rapid accretion, but Jupiter and Saturn went through the rapid accretion. Therefore, our calculations confirm Jin’s early suggestion that this explains the differences in mass and gas content among Jovian planets. (6) We find that the surface density in the nebula is not monotonic and that there is a minimum in the Mars region. This naturally fits the planet mass distribution, especially the Mars drop. We suggest that the existence of this minimum leads to the low mass of Mars in the following three ways. (a) The low surface density of the Mars region gives a low mass supply, and (b) it gives a low rate of planetesimal formation from dust. (c) The low surface density in the Mars region preferentially makes Mars a leftover protoplanet without gaining much mass during chaotic growth, the last stage of planet formation.
引文
[1] Williams, J. G., & Benson, G. S. Resonances in the Neptune-Pluto System [J].The Astronomical Journal, 1971, 76: 167
    [2] Gladman, B., & Duncan, M. On the fates of minor bodies in the outer solar system [J].The Astronomical Journal, 1990, 100: 1680-1693.
    [3] Oort, J. H. The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin [J].Bulletin of the Astronomical Institutes of the Netherlands, 1950, 11: 91-110.
    [4] Heisler, J., & Tremaine, S. The influence of the galactic tidal field on the Oort comet cloud [J].Icarus, 1986, 65: 13-26.
    [5] Weissman, P. R. The Oort cloud [J].Nature, 1990, 344: 825-830.
    [6] Duncan, M., Quinn, T., & Tremaine, S. The origin of short-period comets [J].The Astrophysical Journal, 1988, 328: L69-L73.
    [7] Duncan, M. J., & Quinn, T. The long-term dynamical evolution of the solar system [J].Annual Review of Astronomy and Astrophysics, 1993, 31: 265-295.
    [8] Hubbard, W. B., & Marley, M. S. Optimized Jupiter, Saturn, and Uranus interior models [J].Icarus, 1989, 78: 102-118.
    [9] Pollack, J. B. Origin and History of the Outer Planets: Theoretical Models and Observations L Contraints [J].Annual Review of Astronomy and Astrophysics, 1984, 22: 389-424.
    [10] Landgraf, W. The mass of Ceres [J].Astronomy and Astrophysics, 1988, 191: 161-166.
    [11] Dohnanyi, J. S. Collisional Model of Asteroids and Their Debris [J].Journal of Geophysical Research, 1969, 74: 2531
    [12] Capaccioni, F., Cerroni, P., Coradini, M., di Martino, M., & Farinella, P. Asteroidal catastrophic collisions simulated by hypervelocity impact experiments [J].Icarus, 1986, 66: 487-514.
    [13] Scholl, H. Dynamics of Asteroids [J].The Evolution of the Small Bodies of the Solar System, 1987, 53
    [14] Wood, J. A. Chondritic meteorites and the solar nebula [J].Annual Review of Earth and Planetary Sciences, 1988, 16: 53-72.
    [15] Soderblom, L. A., Condit, C. D., West, R. A., Herman, B. M., & Kreidler, T. J. Martian planetwide crater distributions - Implications for geologic history and surface processes [J].Icarus, 1974, 22: 239-263.
    [16] Cameron, A. G. W. The formation of the sun and planets [J].Icarus, 1962, 1: 13-69.
    [17] Cassen, P., & Moosman, A. On the formation of protostellar disks [J].Icarus, 1981, 48: 353-376.
    [18] Terebey, S., Shu, F. H., & Cassen, P. The collapse of the cores of slowly rotating isothermal clouds [J].The Astrophysical Journal, 1984, 286: 529-551.
    [19] Morfill, G. E., Tscharnuter, W., & Voelk, H. J. Dynamical and chemical evolution of the protoplanetary nebula [J].Protostars and Planets II, 1985, 493-533.
    [20] Tscharnuter, W. M. A collapse model of the turbulent presolar nebula [J].Astronomy and Astrophysics, 1987, 188: 55-73.
    [21] Beckwith, S. V. W., & Sargent, A. I. The occurrence and properties of disks around young stars [J].Protostars and Planets III, 1993, 521-541.
    [22] Walter, F. M., Brown, A., Mathieu, R. D., Myers, P. C., & Vrba, F. J. X-ray sources in regions of star formation. III - Naked T Tauri stars associated with the Taurus-Auriga complex [J].The Astronomical Journal, 1988, 96: 297-325.
    [23] Shu, F. H., Adams, F. C., & Lizano, S. Star formation in molecular clouds - Observation and theory [J].Annual Review of Astronomy and Astrophysics, 1987, 25: 23-81.
    [24] Lin, D. N. C., & Papaloizou, J. On the dynamical origin of the solar system [J].Protostars and Planets II, 1985, 981-1072.
    [25] Cameron, A. G. W. Origin of the solar system [J].Annual Review of Astronomy and Astrophysics, 1988, 26: 441-472.
    [26] Ruden, S. P., & Pollack, J. B. The dynamical evolution of the protosolar nebula [J].The Astrophysical Journal, 1991, 375: 740-760.
    [27] Kerridge, J. F., & Matthews, M. S. Meteorites and the early solar system [J].Meteorites and the Early Solar System, 1988
    [28] Weidenschilling, S. J. The distribution of mass in the planetary system and solar nebula [J].Astrophysics and Space Science, 1977, 51: 153-158.
    [29] Hayashi, C. Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula [J].Progress of Theoretical Physics Supplement, 1981, 70: 35-53.
    [30] Lissauer, J. J. Timescales for planetary accretion and the structure of the protoplanetary disk [J].Icarus, 1987, 69: 249-265.
    [31] Hayashi, C., Nakazawa, K., & Adachi, I. Long-Term Behavior of Planetesimals and the Formation of the Planets [J].Publications of the Astronomical Society of Japan, 1977, 29: 163-196.
    [32] Mizuno, H. Formation of the Giant Planets [J].Progress of Theoretical Physics, 1980, 64: 544-557.
    [33] Bodenheimer, P., & Pollack, J. B. Calculations of the accretion and evolution of giant planets The effects of solid cores [J].Icarus, 1986, 67: 391-408.
    [34] Barshay, S. S., & Lewis, J. S. Chemistry of primitive solar material [J].Annual Review of Astronomy and Astrophysics, 1976, 14: 81-94.
    [35] Stevenson, D. J. Cosmochemistry and structure of the giant planets and their satellites [J].Icarus, 1985, 62: 4-15.
    [36] Edgeworth, K. E. The origin and evolution of the Solar System [J].Monthly Notices of the Royal Astronomical Society, 1949, 109: 600-609.
    [37] Goldreich, P., & Ward, W. R. The Formation of Planetesimals [J].The Astrophysical Journal, 1973, 183: 1051-1062.
    [38] Weidenschilling, S. J., & Cuzzi, J. N. Formation of planetesimals in the solar nebula [J].Protostars and Planets III, 1993, 1031-1060.
    [39] Adachi, I., Hayashi, C., & Nakazawa, K. The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. [J].Progress of Theoretical Physics, 1976, 56: 1756-1771.
    [40] Weidenschilling, S. J. Aerodynamics of solid bodies in the solar nebula [J].Monthly Notices of the Royal Astronomical Society, 1977, 180: 57-70.
    [41] Lin, D. N. C., & Papaloizou, J. Tidal torques on accretion discs in binary systems with extreme mass ratios [J].Monthly Notices of the Royal Astronomical Society, 1979, 186: 799-812.
    [42] Ryu, D., & Goodman, J. Convective instability in differentially rotating disks [J].TheAstrophysical Journal, 1992, 388: 438-450.
    [43] Kumar, P., Narayan, R., & Loeb, A. On the Interaction of Convection and Rotation in Stars [J].The Astrophysical Journal, 1995, 453: 480
    [44] Balbus, S. A., Hawley, J. F., & Stone, J. M. Nonlinear Stability, Hydrodynamical Turbulence, and Transport in Disks [J].The Astrophysical Journal, 1996, 467: 76
    [45] Balbus, S. A., & Hawley, J. F. A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution [J].The Astrophysical Journal, 1991, 376: 214-233.
    [46] Cameron, A. G. W. 1976, in The Origin of the Solar System, ed. S. F. Dermot(Chichester: Wiley), 49
    [47] Lynden-Bell, D., & Pringle, J. E. The evolution of viscous discs and the origin of the nebular variables. [J].Monthly Notices of the Royal Astronomical Society, 1974, 168: 603-637.
    [48] Cameron, A. G. W. Physics of the primitive solar accretion disk [J].Moon and Planets, 1978, 18: 5-40.
    [49] Lin, D. N. C., & Papaloizou, J. On the structure and evolution of the primordial solar nebula [J].Monthly Notices of the Royal Astronomical Society, 1980, 191: 37-48.
    [50] Lin, D. N. C. Convective accretion disk model for the primordial solar nebula [J].The Astrophysical Journal, 1981, 246: 972-984.
    [51] Lin, D. N. C., & Bodenheimer, P. On the evolution of convective accretion disk models of the primordial solar nebula [J].The Astrophysical Journal, 1982, 262: 768-779.
    [52] Ruden, S. P., & Lin, D. N. C. The global evolution of the primordial solar nebula [J].The Astrophysical Journal, 1986, 308: 883-901.
    [53] Jin, L. The Evolution of the Solar Nebula with Nonuniform Viscosity and Planet Masses [J].Bulletin of the American Astronomical Society, 2004, 37: 377
    [54] Nakamoto, T., & Nakagawa, Y. Formation, early evolution, and gravitational stability of protoplanetary disks [J].The Astrophysical Journal, 1994, 421: 640-650.
    [55] Shu, F. H. Self-similar collapse of isothermal spheres and star formation [J].The Astrophysical Journal, 1977, 214: 488-497.
    [56] Cassen, P., & Summers, A. Models of the formation of the solar nebula [J].Icarus, 1983, 53: 26-40.
    [57] Reyes-Ruiz, M., & Stepinski, T. F. Evolution of magnetized protoplanetary disks [J].The Astrophysical Journal, 1995, 438: 750-762.
    [58] Hueso, R., & Guillot, T. Evolution of protoplanetary disks: constraints from DM Tauri and GM Aurigae [J].Astronomy and Astrophysics, 2005, 442: 703-725.
    [59] Shakura, N. I., & Sunyaev, R. A. Black holes in binary systems. Observational appearance. [J].Astronomy and Astrophysics, 1973, 24: 337-355.
    [60] Jin, L. Damping of the Shear Instability in Magnetized Disks by Ohmic Diffusion [J].The Astrophysical Journal, 1996, 457: 798
    [61] Gammie, C. F. Layered Accretion in T Tauri Disks [J].The Astrophysical Journal, 1996, 457: 355
    [62] Armitage, P. J., Livio, M., & Pringle, J. E. Episodic accretion in magnetically layered protoplanetary discs [J].Monthly Notices of the Royal Astronomical Society, 2001, 324: 705-711.
    [63] Terquem, C. E. J. M. L. J. New Composite Models of Partially Ionized Protoplanetary Disks [J].The Astrophysical Journal, 2008, 689: 532-538.
    [64] Reyes-Ruiz, M. Evolution of protoplanetary discs driven by the MRI, self-gravity and hydrodynamical turbulence [J].Monthly Notices of the Royal Astronomical Society, 2007, 380: 311-319.
    [65] McKee, C. F., & Ostriker, E. C. Theory of Star Formation [J].Annual Review of Astronomy and Astrophysics, 2007, 45: 565-687.
    [66] Lissauer, J. J. Planet formation [J].Annual Review of Astronomy and Astrophysics, 1993, 31: 129-174.
    [67] Lin, D. N. C., & Papaloizou, J. On the structure and evolution of the primordial solar nebula [J].Monthly Notices of the Royal Astronomical Society, 1980, 191: 37-48.
    [68] Bryden, G., Lin, D. N. C., & Ida, S. Protoplanetary Formation. I. Neptune [J].The Astrophysical Journal, 2000, 544: 481-495.
    [69] Jin, L. Nonuniform viscosity in the solar nebula and large masses of Jupiter and Saturn [J].Astronomy and Astrophysics, 2004, 423: L5-L8.
    [70] Goodman, A. A., Benson, P. J., Fuller, G. A., & Myers, P. C. Dense cores in dark clouds. VIII - Velocity gradients [J].The Astrophysical Journal, 1993, 406: 528-547.
    [71] Papaloizou, J. C. B., & Lin, D. N. C. Theory Of Accretion Disks I: Angular Momentum Transport Processes [J].Annual Review of Astronomy and Astrophysics, 1995, 33: 505-540.
    [72] Stone, J. M., Gammie, C. F., Balbus, S. A., & Hawley, J. F. Transport Processes in Protostellar Disks [J].Protostars and Planets IV, 2000, 589
    [73] Balbus, S. A. Enhanced Angular Momentum Transport in Accretion Disks [J].Annual Review of Astronomy and Astrophysics, 2003, 41: 555-597.
    [74] Toomre, A. On the gravitational stability of a disk of stars [J].The Astrophysical Journal, 1964, 139: 1217-1238.
    [75] Lin, D. N. C., & Pringle, J. E. A viscosity prescription for a self-gravitating accretion disc [J].Monthly Notices of the Royal Astronomical Society, 1987, 225: 607-613.
    [76] Lin, D. N. C., & Pringle, J. E. The formation and initial evolution of protostellar disks [J].The Astrophysical Journal, 1990, 358: 515-524.
    [77] Balbus, S. A., & Hawley, J. F. Instability, turbulence, and enhanced transport in accretion disks [J].Reviews of Modern Physics, 1998, 70: 1-53.
    [78] Fleming, T., & Stone, J. M. Local Magnetohydrodynamic Models of Layered Accretion Disks [J].The Astrophysical Journal, 2003, 585: 908-920.
    [79] Dubrulle, B., Marié, L., Normand, C., Richard, D., Hersant, F., & Zahn, J.-P. An hydrodynamic shear instability in stratified disks [J].Astronomy and Astrophysics, 2005, 429: 1-13.
    [80] Klahr, H. H., & Bodenheimer, P. Turbulence in Accretion Disks: Vorticity Generation and Angular Momentum Transport via the Global Baroclinic Instability [J].The Astrophysical Journal, 2003, 582: 869-892.
    [81] Richard, D. On non-linear hydrodynamic instability and enhanced transport in differentially rotating flows [J].Astronomy and Astrophysics, 2003, 408: 409-414.
    [82] Dubrulle, B. Differential rotation as a source of angular momentum transfer in the solar nebula [J].Icarus, 1993, 106: 59
    [83] Zeldovich, Y. B. On the Friction of Fluids Between Rotating Cylinders [J].Royal Society of London Proceedings Series A, 1981, 374: 299-312.
    [84] Zahn, J.-P. Convective penetration in stellar interiors [J].Astronomy and Astrophysics, 1991, 252: 179-188.
    [85] Richard, D., & Zahn, J.-P. Turbulence in differentially rotating flows. What can belearned from the Couette-Taylor experiment [J].Astronomy and Astrophysics, 1999, 347: 734-738.
    [86] Ezer, D., & Cameron, A. G. W. The Contraction Phase of Solar Evolution [J].Stellar Evolution, 1966, 203
    [87] Chiang, E. I., & Goldreich, P. Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks [J].The Astrophysical Journal, 1997, 490: 368
    [88] Friedjung, M. Accretion disks heated by luminous central stars [J].Astronomy and Astrophysics, 1985, 146: 366-368.
    [89] Adams, F. C., & Shu, F. H. Infrared spectra of rotating protostars [J].The Astrophysical Journal, 1986, 308: 836-853
    [90] Pollack, J. B., McKay, C. P., & Christofferson, B. M. A calculation of the Rosseland mean opacity of dust grains in primordial solar system nebulae [J].Icarus, 1985, 64: 471-492.
    [91] Bell, K. R., & Lin, D. N. C. Using FU Orionis outbursts to constrain self-regulated protostellar disk models [J].The Astrophysical Journal, 1994, 427: 987-1004.
    [92] Bell, K. R., Cassen, P. M., Klahr, H. H., & Henning, T. The Structure and Appearance of Protostellar Accretion Disks: Limits on Disk Flaring [J].The Astrophysical Journal, 1997, 486: 372
    [93] Draine, B. T., & Lee, H. M. Optical properties of interstellar graphite and silicate grains [J].The Astrophysical Journal, 1984, 285: 89-108.
    [94] Beckwith, S. V. W., & Sargent, A. I. Particle emissivity in circumstellar disks [J].The Astrophysical Journal, 1991, 381: 250-258.
    [95] Bath, G. T., & Pringle, J. E. The evolution of viscous discs. I - Mass transfer variations [J].Monthly Notices of the Royal Astronomical Society, 1981, 194: 967-986.
    [96] Kenyon, S. J., Hartmann, L. W., Strom, K. M., & Strom, S. E. An IRAS survey of the Taurus-Auriga molecular cloud [J].The Astronomical Journal, 1990, 99: 869-887.
    [97] Pringle, J. E. Accretion discs in astrophysics [J].Annual Review of Astronomy and Astrophysics, 1981, 19: 137-162.
    [98] Beckwith, S. V. W., Sargent, A. I., Chini, R. S., & Guesten, R. A survey for circumstellar disks around young stellar objects [J].The Astronomical Journal, 1990, 99: 924-945.
    [99] Ohashi, N., Kawabe, R., Ishiguro, M., & Hayashi, M. Observations of 11 protostellar sources in Taurus with Nobeyama millimeter array - Growth of circumstellar disks [J].The Astronomical Journal, 1991, 102: 2054-2065.
    [100] Ohashi, N., Hayashi, M., Kawabe, R., & Ishiguro, M. The Nobeyama Millimeter Array Survey of Young Stellar Objects Associated with the Taurus Molecular Cloud [J].The Astrophysical Journal, 1996, 466: 317
    [101] Laughlin, G., & Bodenheimer, P. Nonaxisymmetric evolution in protostellar disks [J].The Astrophysical Journal, 1994, 436: 335-354.
    [102] Laughlin, G., & Rozyczka, M. The Effect of Gravitational Instabilities on Protostellar Disks [J].The Astrophysical Journal, 1996, 456: 279
    [103] Laughlin, G., Korchagin, V., & Adams, F. C. Spiral Mode Saturation in Self-gravitating Disks [J].The Astrophysical Journal, 1997, 477: 410
    [104] Laughlin, G., Korchagin, V., & Adams, F. C. The Dynamics of Heavy Gaseous Disks [J].The Astrophysical Journal, 1998, 504: 945
    [105] Agnor, C. B., Canup, R. M., & Levison, H. F. On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation [J].Icarus, 1999, 142: 219-237.
    [106] Chambers, J. E. Making More Terrestrial Planets [J].Icarus, 2001, 152: 205-224.
    [107] Quintana, E. V., & Lissauer, J. J. Terrestrial planet formation surrounding close binary stars [J].Icarus, 2006, 185: 1-20.
    [108] Barbieri, M., Marzari, F., & Scholl, H. Formation of terrestrial planets in close binary systems: The case of alpha Centauri A [J].Astronomy and Astrophysics, 2002, 396: 219-224.
    [109] Quintana, E. V., Lissauer, J. J., Chambers, J. E., & Duncan, M. J. Terrestrial Planet Formation in the α Centauri System [J].The Astrophysical Journal, 2002, 576: 982-996.
    [110] Safronov, V. S. On the gravitational instability in flattened systems with axial symmetry and non-uniform rotation [J].Annales d'Astrophysique, 1960, 23: 979
    [111] Youdin, A. N., & Shu, F. H. Planetesimal Formation by Gravitational Instability [J].The Astrophysical Journal, 2002, 580: 494-505.
    [112] Dominik, C., Blum, J., Cuzzi, J. N., & Wurm, G. Growth of Dust as the Initial Step Toward Planet Formation [J].Protostars and Planets V, 2007, 783-800.
    [113] Cruikshank, D. P., Barucci, M. A., Emery, J. P., Fernández, Y. R., Grundy, W. M., Noll, K. S., & Stansberry, J. A. Physical Properties of Transneptunian Objects [J].Protostars and Planets V, 2007, 879-893.
    [114] Meyer, M. R., Backman, D. E., Weinberger, A. J., & Wyatt, M. C. Evolution of Circumstellar Disks Around Normal Stars: Placing Our Solar System in Context [J].Protostars and Planets V, 2007, 573-588.
    [115] Wetherill, G. W., & Stewart, G. R. Accumulation of a swarm of small planetesimals [J].Icarus, 1989, 77: 330-357.
    [116] Ohtsuki, K., Stewart, G. R., & Ida, S. Evolution of Planetesimal Velocities Based on Three-Body Orbital Integrations and Growth of Protoplanets [J].Icarus, 2002, 155: 436-453.
    [117] Stewart, G. R., & Wetherill, G. W. Evolution of planetesimal velocities [J].Icarus, 1988, 74: 542-553.
    [118] Kokubo, E., & Ida, S. Oligarchic Growth of Protoplanets [J].Icarus, 1998, 131: 171-178.
    [119] Wetherill, G. W. Formation of the earth [J].Annual Review of Earth and Planetary Sciences, 1990, 18: 205-256.
    [120] Lissauer, J. J. Urey prize lecture: On the diversity of plausible planetary systems [J].Icarus, 1995, 114: 217-236.
    [121] Laskar, J. On the Spacing of Planetary Systems [J].Physical Review Letters, 2000, 84: 3240-3243.
    [122] Wetherill, G. W. Formation of the terrestrial planets [J].Annual Review of Astronomy and Astrophysics, 1980, 18: 77-113.
    [123] Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas [J].Icarus, 1996, 124: 62-85.
    [124] Thommes, E. W., Duncan, M. J., & Levison, H. F. Oligarchic growth of giant planets [J].Icarus, 2003, 161: 431-455.
    [125] Weidenschilling, S. J. Formation of the Cores of the Outer Planets [J].Space Science Reviews, 2005, 116: 53-66.
    [126] Goldreich, P., Lithwick, Y., & Sari, R. Final Stages of Planet Formation [J].The Astrophysical Journal, 2004, 614: 497-507.
    [127] Goldreich, P., Lithwick, Y., & Sari, R. Planet Formation by Coagulation: A Focus onUranus and Neptune [J].Annual Review of Astronomy and Astrophysics, 2004, 42: 549-601.
    [128] Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System [J].Nature, 2005, 435: 459-461.
    [129] Hollenbach, D. J., Yorke, H. W., & Johnstone, D. Disk Dispersal around Young Stars [J].Protostars and Planets IV, 2000, 401
    [130] Ikoma, M., Nakazawa, K., & Emori, H. Formation of Giant Planets: Dependences on Core Accretion Rate and Grain Opacity [J].The Astrophysical Journal, 2000, 537: 1013-1025.
    [131] Bodenheimer, P., Hubickyj, O., & Lissauer, J. J. Models of the in Situ Formation of Detected Extrasolar Giant Planets [J].Icarus, 2000, 143: 2-14.
    [132] Alibert, Y., Mordasini, C., & Benz, W. Migration and giant planet formation [J].Astronomy and Astrophysics, 2004, 417: L25-L28.
    [133] Alibert, Y., Mousis, O., Mordasini, C., & Benz, W. New Jupiter and Saturn Formation Models Meet Observations [J].The Astrophysical Journal, 2005, 626: L57-L60.
    [134] Hubickyj, O., Bodenheimer, P., & Lissauer, J. J. Accretion of the gaseous envelope of Jupiter around a 5 10 Earth-mass core [J].Icarus, 2005, 179: 415-431.
    [135] Greenzweig, Y., & Lissauer, J. J. Accretion rates of protoplanets. II - Gaussian distributions of planetesimal velocities [J].Icarus, 1992, 100: 440-463.
    [136] Kary, D. M., Lissauer, J. J., & Greenzweig, Y. Nebular gas drag and planetary accretion [J].Icarus, 1993, 106: 288
    [137] Fernandez, J. A., & Ip, W.-H. Some dynamical aspects of the accretion of Uranus and Neptune - The exchange of orbital angular momentum with planetesimals [J].Icarus, 1984, 58: 109-120.
    [138] Hahn, J. M., & Malhotra, R. Orbital Evolution of Planets Embedded in a Planetesimal Disk [J].The Astronomical Journal, 1999, 117: 3041-3053.
    [139] Thommes, E. W., Duncan, M. J., & Levison, H. F. The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System [J].Nature, 1999, 402: 635-638.
    [140] Levison, H. F., Morbidelli, A., Gomes, R., & Backman, D. Planet Migration in Planetesimal Disks [J].Protostars and Planets V, 2007, 669-684.
    [141] Dones, L., Weissman, P. R., Levison, H. F., & Duncan, M. J. Oort cloud formation and dynamics [J].Comets II, 2004, 153-174.
    [142] Stevenson, D. J., & Lunine, J. I. Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula [J].Icarus, 1988, 75: 146-155.
    [143] Klahr, H., & Bodenheimer, P. Formation of Giant Planets by Concurrent Accretion of Solids and Gas inside an Anticyclonic Vortex [J].The Astrophysical Journal, 2006, 639: 432-440.
    [144] Durisen, R. H., Cai, K., Mejía, A. C., & Pickett, M. K. A hybrid scenario for gas giant planet formation in rings [J].Icarus, 2005, 173: 417-424.
    [145] Inaba, S., Wetherill, G. W., & Ikoma, M. Formation of gas giant planets: core accretion models with fragmentation and planetary envelope [J].Icarus, 2003, 166: 46-62.
    [146] Inaba, S., & Ikoma, M. Enhanced collisional growth of a protoplanet that has an atmosphere [J].Astronomy and Astrophysics, 2003, 410: 711-723.
    [147] Mizuno, H. Formation of the Giant Planets [J].Progress of Theoretical Physics, 1980, 64: 544-557.
    [148] Stevenson, D. J. Formation of the giant planets [J].Planetary and Space Science, 1982, 30: 755-764.
    [149] Lissauer, J. J. Timescales for planetary accretion and the structure of the protoplanetary disk [J].Icarus, 1987, 69: 249-265.
    [150] Showalter, M. R. Visual detection of 1981S13, Saturn's eighteenth satellite, and its role in the Encke gap [J].Nature, 1991, 351: 709-713.
    [151] Porco, C. C., et al. Cassini Imaging Science: Initial Results on Saturn's Rings and Small Satellites [J].Science, 2005, 307: 1226-1236.
    [152] D'Angelo, G., Kley, W., & Henning, T. Orbital Migration and Mass Accretion of Protoplanets in Three-dimensional Global Computations with Nested Grids [J].The Astrophysical Journal, 2003, 586: 540-561.
    [153] Bate, M. R., Lubow, S. H., Ogilvie, G. I., & Miller, K. A. Three-dimensional calculations of high- and low-mass planets embedded in protoplanetary discs [J].Monthly Notices of the Royal Astronomical Society, 2003, 341: 213-229.
    [154] Udry, S., Fischer, D., & Queloz, D. A Decade of Radial-Velocity Discoveries in the Exoplanet Domain [J].Protostars and Planets V, 2007, 685-699.
    [155] Perri, F., & Cameron, A. G. W. Hydrodynamic instability of the solar nebula in the presence of a planetary core [J].Icarus, 1974, 22: 416-425.
    [156] Boss, A. P. Giant planet formation by gravitational instability. [J].Science, 1997, 276: 1836-1839.
    [157] Boss, A. P. Evolution of the Solar Nebula. IV. Giant Gaseous Protoplanet Formation [J].The Astrophysical Journal, 1998, 503: 923
    [158] Lissauer, J. J., & Stevenson, D. J. Formation of Giant Planets [J].Protostars and Planets V, 2007, 591-606.
    [159] Chambers, J. E., & Wetherill, G. W. Making the Terrestrial Planets: N-Body Integrations of Planetary Embryos in Three Dimensions [J].Icarus, 1998, 136: 304-327.
    [160] Nagasawa, M., Thommes, E. W., Kenyon, S. J., Bromley, B. C., & Lin, D. N. C. The Diverse Origins of Terrestrial-Planet Systems [J].Protostars and Planets V, 2007, 639-654.
    [161] Wetherill, G. W., & Stewart, G. R. Formation of planetary embryos - Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination [J].Icarus, 1993, 106: 190
    [162] Weidenschilling, S. J., Spaute, D., Davis, D. R., Marzari, F., & Ohtsuki, K. Accretional Evolution of a Planetesimal Swarm [J].Icarus, 1997, 128: 429-455.
    [163] Chambers, J. E., & Cassen, P. The effects of nebula surface density profile and giant-planet eccentricities on planetary accretion in the inner solar system [J].Meteoritics and Planetary Science, 2002, 37: 1523-1540.
    [164] Kenyon, S. J., & Bromley, B. C. Terrestrial Planet Formation. I. The Transition from Oligarchic Growth to Chaotic Growth [J].The Astronomical Journal, 2006, 131: 1837-1850.
    [165] Raymond, S. N., Quinn, T., & Lunine, J. I. Terrestrial Planet Formation in Disks with Varying Surface Density Profiles [J].The Astrophysical Journal, 2005, 632: 670-676.
    [166] Kokubo, E., Kominami, J., & Ida, S. Formation of Terrestrial Planets from Protoplanets. I. Statistics of Basic Dynamical Properties [J].The Astrophysical Journal, 2006, 642: 1131-1139.
    [167] Scott, E. R. D. Meteoritical and dynamical constraints on the growth mechanisms and formation times of asteroids and Jupiter [J].Icarus, 2006, 185: 72-82.
    [168] Wood, J. A. The Beginning: Swift and Violent [J].Space Science Reviews, 2000, 92: 97-112.
    [169] Umebayashi, T. The Densities of Charged Particles in Very Dense Interstellar Clouds [J].Progress of Theoretical Physics, 1983, 69: 480-502.
    [170] Bontemps, S., Andre, P., Terebey, S., & Cabrit, S. Evolution of outflow activity around low-mass embedded young stellar objects [J].Astronomy and Astrophysics, 1996, 311:858-872.
    [171] Ohashi, N. 1999, Star Formation 1999, in Proc. Star Formation 1999, Nagoya, Japan, 1999 June 21–25, ed. T. Nakamoto (Nobeyama: Nobeyama Radio Observatory), 129
    [172] Hirano, N., Ohashi, N., Dobashi, K., Shinnaga, H., & Hayashi, M. Unveiling the Circumstellar Structure of Deeply Embedded Protostars -- an NMA Survey for Dynamical Infalling Envelopes in Nearby Star-forming Regions-- [J].8th Asian-Pacific Regional Meeting, Volume II, 2002, 141-142.
    [173] Belloche, A., André, P., Despois, D., & Blinder, S. Molecular line study of the very young protostar IRAM 04191 in Taurus: infall, rotation, and outflow [J].Astronomy and Astrophysics, 2002, 393: 927-947.
    [174] Wilking, B. A., Lada, C. J., & Young, E. T. IRAS observations of the Rho Ophiuchi infrared cluster - Spectral energy distributions and luminosity function [J].The Astrophysical Journal, 1989, 340: 823-852.
    [175] Barsony, M., Schombert, J. M., & Kis-Halas, K. The LkH-alpha 101 infrared cluster [J].The Astrophysical Journal, 1991, 379: 221-231.
    [176] Barsony, M., & Kenyon, S. J. On the origin of submillimeter emission from young stars in Taurus-Auriga [J].The Astrophysical Journal, 1992, 384: L53-L57.
    [177] van Dishoeck, E. F., Blake, G. A., Draine, B. T., & Lunine, J. I. The chemical evolution of protostellar and protoplanetary matter [J].Protostars and Planets III, 1993, 163-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700