体外诱导人脂肪组织来源的干细胞向角膜上皮样细胞分化的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.分离、培养和鉴定不同供体性状(手术切除脂肪组织块及吸脂术脂肪悬液)的人脂肪组织来源的干细胞(ADSCs)。观察其生物学特性、干细胞活性的差异。
     2.体外模拟角膜上皮生长、分化的微环境,对不同方法提取的人ADSCs进行单独/联合诱导,探讨其向角膜上皮样细胞分化的潜在能力,及诱导分化的可行途径。
     方法:
     1.改良方法分离、纯化人ADSCs,使用改良的体外扩增培养液进行体外培养。
     2.MTT法测定ADSCs增殖曲线。流式细胞仪检测传3~5代的CD29、CD34、CD49d、CD105、CD106表达率。进行成脂、成骨多向诱导,2周后用油红O及碱性磷酸酶法鉴定分化能力。对2种性状提取之细胞的表型及增殖、分化能力进行比较。
     3.应用CFDA SE标记人ADSCs。采用组织块培养法体外提取大鼠角膜上皮细胞,并制作无上皮、内皮细胞的大鼠角膜基质,用于ADSCs的联合诱导。
     4.CFDA SE标记的人ADSCs与大鼠角膜上皮细胞各自爬片,并列培养于同一体系,观察人ADSCs迁徙情况。
     5.在不同培养液体系(角质细胞培养体系、间充质细胞体外扩充培养体系及上述二者等积混合的中间体系)内添加梯度浓度0~50ng/mL EGF,及50ng/mL EGF基础上添加的10,20ng/mLbFGF,对ADSCs进行单独诱导。采取光镜、电镜、免疫组织化学染色、免疫荧光染色的手段,观察诱导21d后ADSCs形态学的改变及角膜特异性蛋白AE5(CK3/CK12)的表达情况,比较不同培养体系及不同浓度生长因子对ADSCs诱导作用的差异。
     6.在Transwell体系上层放置大鼠角膜上皮细胞或角膜基质,下层放置人ADSCs,选择不添加/添加40ng/mL EGF的角质细胞培养体系对人ADSCs进行联合诱导,采用免疫荧光染色法观察诱导30d后ADSCs细胞角蛋白谱AE1和角膜特异性蛋白AE5的表达情况,比较添加/不添加EGF、单独诱导/角膜上皮细胞联合诱导/角膜基质联合诱导对人ADSCs诱导成功率的差异。
     7.单独诱导2种性状提取的ADSCs,比较诱导后30d二者AE1、AE5阳性率差异。
     结果:
     1.不论脂肪块还是脂肪悬液,均可通过上述方法获取大量高纯度的ADSCs。但后者的操作流程更为省时、省力,获取的细胞量相对较多。流式细胞仪测定传3代至传5代的ADSCs,两个不同供体性状的细胞均为CD34~-、CD106~-、CD29~+、CD49d~+、CD105~+。皮下组织块来源的ADSCs传3代的表型CD29~+、CD49d~+细胞分别占82.5%和8.0%,传至5代逐渐增加为89.4%、70.1%;CD105~+细胞则稳定于80%左右。吸脂术提取的ADSCs传3~5代的表型较为稳定,CD29~+、CD49d~+、CD105~+表达分别在99%、40%、80%左右,与皮下组织块组比较,传3~5代的CD29和传5代的CD49d阳性率有统计学差异(P<0.01)。MTT比色法显示,ADSCs增殖活性随传代次数增加而增加。另外,ADSCs分别进行成脂/成骨体外诱导,2周后油红O、碱性磷酸酶染色,均见阳性结果,皮下组织块组2者阳性率分别为81.6%、26.5%,吸脂术组为64.6%、29.3%。
     2.CFDA SE标记的ADSCs在营养状态欠佳的角膜上皮细胞诱导下迁徙、并逐渐包绕、替代后者。另外,角质细胞培养体系培养下的ADSCs向角膜上皮样细胞分化的阳性率具有EGF浓度依赖性;bFGF则对分化有抑制性作用。而另2个体系对各浓度EGF、bFGF对ADSCs诱导作用均为阴性。
     3.相同培养体系作用下的不同诱导组,以添加EGF刺激下的角膜基质联合诱导组AE5~+ ADSCs的比例最高,可达97.7%,AE1表达则为0,提示向成熟的角膜上皮样细胞分化。其次为单独诱导组,AE5~+比率为75.4%(添加EGF)、46.0%(未添加EGF),AE1~+比率为86.0%(添加EGF)、96.5%(未添加EGF),分化欠成熟。未添加EGF刺激下的角膜基质联合诱导组AE5、AE1阳性率最低,分别为2.4%、51.2%。
     4.角质细胞培养体系下,皮下组织块组在EGF的刺激下AE5~+100%、AE1~-0%,而无EGF的作用下则分别为16.6%、97.7%。该组细胞分化能力强于吸脂术组。
     结论:
     1.本研究通过改良的方法,成功地从人皮下脂肪组织及吸脂术废弃液中分离、培养了高纯度脂肪组织来源的干细胞,并经体外条件诱导证实具备多向分化潜能,可以作为一种优良的组织工程、细胞治疗和基因治疗的种子细胞。
     2.本研究中,在Transwell体系内,添加40ng/mL EGF的角质细胞培养液联合角膜基质进行诱导,是体外诱导ADSCs向角膜上皮样细胞分化的最佳方法。另外,皮下脂肪组织来源的ADSCs具备更好的分化能力,更适用于将来的临床治疗;而吸脂术提取的细胞由于工序相对简单、来源更为充足,更适用于实验室研究。
     3.CFDA SE是一种稳定的细胞示踪剂,可作为今后体内动物实验的细胞示踪的很好手段。
Objective:
     1.To isolate,cultivate and identify human adipose-derived stem cells(ADSCs) which from adipose tissue masses and processed lipoaspirate.To observe their biological characteristics and activities as stem cells.
     2.To explore the possibility and the best method of ADSCs transdifferentiated into corneal epithelial-like cells by single inducing and co-culture inducing in simulating the vegetating microenvironment of corneal epithelial cells.
     Methods:
     1.The subcutaneous tissue masses-derived and processed lipoaspirate-derived ADSCs were isolated and purifed with improved methods,and cultured with modified medium in vitro.
     2.The growth curves were drawn by MTT colorimetry.Phenotypes including CD29、CD34、CD49d、CD105、CD106 were identified by flow cytometry at passage 3,4 and 5.Adipogenesis and osteogenesis tests were put into practice,and identified by Oil Red O stain and alkaline phosphatase activity tests.Contrasted the differences of phenotypes,proliferation and differentiation abilities were compared between 2 sources of ADSCs.
     3.The human ADSCs were marked with CFDA SE.And rat corneal epithelial cells (CECs) were isolated by tissue culture process,and made the corneal stroma tissue masses.They would be used into co-cultured induction in the following steps.
     4.The human ADSCs and rat CECs were placed together in the same plate which grown on slips,and co-cultured 3 weeks,observed the migration ability of human ADSCs.
     5.Single induced group of ADSCs were cultured with several kinds of mediums, including Keratinocyte medium(KM),Dulbecco's Modified Eagle Medium/F12(DMEM/F12) and KM+DMEM/F12(1:1),and stimulated with different concentrations of growth factors.Observed the morphological changes under phase contrast microscope and electron microscope.Immunohistochemical and immunofluorescent staining of AE5(CK3/CK12),the specific protein of cornea, were taken at the same time.Contrasted the transdifferentiated ability of ADSCs in different mediums and with different concentrations of growth factors.
     6.Placed rat CECs or corneal stroma tissue masses into the upper section of Transwell co-culture system,while human ADSCs into the under section,and co-culture with KM for 30 days,added 40ng/mL EGF in them or free.Observed the expressions of AE1(broad spectrum of CytoKeratins) and AE5 by immunofluorescent staining. Evaluated the expressing differences of AE1 and AE5 between the groups of EGF-added and free,single and co-cultured induction,and CECs co-culture induction and corneal stroma tissue masses co-culture induction.
     7 The 2 sources of single induced groups for 30 days,and contrasted their expressing differences of AE1 and AE5.
     Results:
     1.Large amounts of ADSCs were obtained from both 2 kinds of isolated processes, tissue masses and processed lipoaspirate,and with high purity.However,the operation of the latter process was more time- and strength-saving,while gained more cells.The phenotypes of ADSCs at passage 3~5 are CD34~-,CD106~-,CD29~+,CD49d~+ and CD105~+.CD29~+,CD49d~+ cells rates of subcutaneous tissue masses-derived ADSCs at passage 3 accounted for 82.5%and 8.0%,and gradually increased to 89.4%,70.1% at passage 5,while CD105~+ cells rates of each passage ADSCs were about 80%. Processed lipoaspirate-derived ADSCs at passage 3~5 expressed more stable phenotype,which spread approximately 99%、40%、80%of CD29~+、CD49d~+、CD105~+; And compared with the subcutaneous tissue-derived ADSCs,the positive rate of CD29 at passage 3~5 and CD49d at passage 5 had a significant difference(P<0.01).MTT colorimetry showed,ADSCs proliferative activity improved gradually following the increased of passage.After two weeks' adipogenic/osteogenic induction in vitro,the oil red O staining and alkaline phosphatase activity test showed positive results. Positive rates of subcutaneous tissue-derived ADSCs were 81.6%,26.5%,while another derivative were 64.6%,29.3%.
     2.CFDA SE-labeled ADSCs migrated obviously,and gradually enveloped and replaced the ECEs with induced by poor nutrition of CECs.The AE5 expression rate of ADSCs cultured in KM system presented a dose-dependence of EGF;while bFGF inhibited the differentiation.ADSCs cultured in the other two systems were negative either with or without growth factor.
     3.Among the different induced groups that cultured with KM,AE5-positive rate of the corneal stroma Transwell co-culture induction group which added EGF reached top to 97.7%,and AE1-positive expression was 0%,which prompted to mature corneal epithelial-like cells.The single induction group was the second top,that AE5~+ cells occupied 75.4%(add EGF),46.0%(EGF free),AE1~+ cells accounted for 86.0%(add EGF),96.5%(EGF free),premature.ADSCs co-culture induced by the corneal stroma with EGF free showed the least positive rate of AE5(2.4%),AE1(51.2%).
     4.subcutaneous tissue-derived ADSCs were single induced with KM and added 40ng/mL EGF,which expression was 100%AE5~+ rate,and 0%AE1~-,on the other hand,EGF free group were 16.6%,97.7%.It suggested that the differentiation capacity of this source was stronger than liposuction group.
     Conclusion:
     1.We could isolate more quantity and purer ADSCs from subcutaneous tissue and Processed lipoaspirate adipose liquid with improved process methods.And it was evidenced with multi-lineage differentiation potential abilities and could be used in engineering researches,cell and gene therapies in the future.
     2.Following the results of our study,the KM contained 40ng/mL EGF co-culture corneal stroma co-induction in Transwell system could be the best way to make ADSCs have a transdifferention to corneal epithelial-like cells.In addition,the subcutaneous adipose tissue-derived ADSCs have the better differential ability that could be more suitable for future clinical treatment than processed lipoaspirate-derived ADSCs.Howere, processed lipoaspirate-derived ADSCs have less simple isolated process and are more adequate,so it may be more suitable for laboratory research.
     3.CFDA SE is a stable cell tracer,and can be used as the tracer of in vivo animal experiments in future.
引文
1 Dua HS, Azuara-Blanco A. Autologous limbal transplantation in Patients with unilateral corneal stem cell deficiency [J]. Br J Ophthalmol, 2000, 84: 273-278.
    
    2 Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells [J]. N Engl J Med, 2000, 343: 86-93.
    
    3 Shimazaki J, Yang HY, Tsubota K. Amniotic membrane transplantation for ocular surface reconstruction in patients with chemical and thermal burns [J]. Ophthalmology 1997;104: 2068 -2076.
    
    4 Tseng SC, Prabhasawat P, Barton K, Gray, Meller D. Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with LSCs cell deficiency [J]. Arch Ophthalmol 1998; 116:431- 441.
    
    5 Fukuda K, Chikama T, Nakamura M, Nishida T. Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva [J]. Cornea 1999; 18: 73-79.
    
    6 Du Y, Chen J, Funderburgh JL, Zhu X, Li L. Functional reconstruction of rabbit corneal epithelium by human limbal cells cultured on amniotic membrane [J]. Mol Vis 2003; 9: 635- 643.
    
    7 Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells [J]. N Engl J Med 2000; 343: 86 -93.
    
    8 Solomon A, Ellies P, Anderson DF, Touhami A, Grueterich M, Espana EM, Ti SE, Goto E, Feuer WJ, Tseng SC. Long-term outcome of keratolimbal allograft with or without penetrating keratoplasty for total LSCs cell deficiency [J]. Ophthalmology 2002; 109: 1159-1166.
    
    9 Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium [J]. Lancet 1997; 349: 990-993.
    
    10 Schwab IR, Reyes M, Isseroff RR. Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease[J].Cornea 2000;19:421-426.
    11 黄冰,王智崇,葛坚,陈系古,刘敬波,范志刚,陶靖,刘炳乾,郭芬芬.利用皮肤干细胞的横向分化重建角膜上皮的初步研究[J].中华医学杂志,2004,84(10):838-842.
    12 Hayashida Y,Nishida K,Yamato M,Watanabe K,Maeda N,Watanabe H,Kikuchi A,Okano T,Tano Y.Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature responsive culture surface[J].Invest Ophthalmol Vis Sci,2005,46(5):1632-1639.
    13 Inatomi T,Nakamura T,Koizumi N,Sotozono C,Yokoi N,Kinoshita S.Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation[J].Am J Ophthalmol,2006,141(2):267-275.
    14 Nakamura T,Endo K,Cooper LJ,Fullwood NJ,Tanifuji N,Tsuzuki M,Koizumi N,Inatomi T,Sano Y,Kinoshita S.The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane[J].Invest Ophthalmol Vis Sci,2003,44(1):106-116.
    15 Nishida K,Yamato M,Hayashida Y,Watanabe K,Yamamoto K,Adachi E,Nagai S,Kikuchi A,Maeda N,Watanabe H,Okano T,Tano Y.Corneal reconstruction with tissue engineered cell sheets composed of autologous oral mucosal epithelium[J].N Engl J Med,2004,351(12):1187-1196.
    16 赵晓玉,吕岚,韩斌,蔺琪,张旭,邱波.组织工程口腔黏膜上皮治疗角膜缘干细胞缺陷症的实验研究[J].眼科研究.2007,25(8):568-573.
    17 Friedenstein AJ,Petrakova KV,Kurolesova AI,Frolova GP.Heterotopic of bone marrow.Analysis of precursor cells for osteogenic and hematopoietic tissues[J].Transplantation,1968,6(2):230-247.
    18 Jiang Y,Jahagirdar BN,Reinhardt RL,Schwartz RE,Keene CD,Ortiz-Gonzalez XR,Reyes M,Lenvik T,Lund T,Blackstad M,Du J,Aldrich S,Lisberg A,Low WC,Largaespada DA,Verfaillie CM.Pluripotency of mesenchymal stem cells derived from adult marrow[J].Nature,2002,418(6893):41-49.
    19 Yanling Ma,Yongsheng Xu,Zhifeng Xiao,Wei Yang,Chun Zhang,E.Song,Yiqin Du, Lingsong Li.Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells[J].Stem Cells.2006;24(2):315-321.
    20 Ye J,Yao K,Kim JC.Mesenchymal stem cell transplantation in a rabbit comeal alkali bum model:engraftment and involvement in wound healing[J].Eye.2006;20(4):482-490.
    21 郭彤,王薇,张君,陈雪,李炳震,李凌松.骨髓间充质干细胞移植治疗眼表损害的初步实验研究[J].中华眼科杂志.2006;42(3):246-250.
    22 姜廷帅,蔡莉,惠延年,闫峰.大鼠骨髓间充质干细胞体外可诱导分化为角膜上皮细胞[J].国际眼科杂志,2007,7(2):339-341.
    23 黄丹平,葛坚,高楠,卢蓉,高前应.诱导骨髓间质干细胞分化为角膜上皮样细胞的初步研究[J].中国病理生理杂志.2007,23(5):999-1003.
    24 顾绍峰,付小兵,洪晶.体外诱导人骨髓间充质干细胞向角膜上皮干细胞分化的初步研究[J].眼科研究.2008,26(7):512-516.
    25 易敬林,杨海军.人间充质干细胞横向诱导分化为角膜上皮细胞及角膜缘干细胞的体外研究[J].眼科新进展.2008,28(7):505-510.
    26 Rao MS,Mattson MP.Stem cells and aging:expanding the possibilities[J].Mech Ageing Dev 2001;122:713-734.
    27 Zuk PA,Zhu M,Mizuno H,Huang J,Futrell JW,Katz AJ,Benhaim P,Lorenz HP,Hedrick MH.Multilineage cells from human adipose tissue:implications for cell-based therapies[J].Tissue Engineer,2001,7(2):211-228.
    28 Zuk PA,Zhu M,Ashjian P,De Ugarte DA,Huang JI,Mizuno H,Alfonso ZC,Fraser JK,Benhaim P,Hedrick MH.Human adipose tissue is a source of multipotent stem cells[J].Molecular Biology of the Cell,2002,13(12):4279-4295.
    29 James B.Mitchell,Kevin Mclntosh,Sanjin Zvonic,Sara Garrett,Z.Elizabeth Floyd,Amy Kloster,Yuan Di Halvorsen,Robert W.Storms,Brian Goh,Gail Kilroy,Xiying Wu,Jeffrey M.Gimble.Immunophenotype of human adipose-derived cells:temporal changes in stromal-associated and stem cell-associated markers[J].Stem Cells,2006,24:376-385.
    30 Strem BM,Hicok KC,Zhu M,Wulur I,Alfonso Z,Schreiber RE,Fraser JK,Hedrick MH.Multipotential differentiation of adipose tissue-derived stem cells[J].Keio J Med,2005,54(3):132-141.
    
    31 Brzoska M, Geiger H, Gauer S, Baer P. Epithelial differentiation of human adipose tissue-derived adult stem cells [J]. Biochem Biophys Res Commun, 2005, 330(1): 142-150.
    
    32 Garcia-Olmo D, Garcia-Arranz M, Garcia LG, Cuellar ES, Blanco IF, Prianes LA, Montes JA, Pinto FL, Marcos DH, Garcia-Sancho L. Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn's disease: a new cell-based therapy [J]. Int J Colorectal Dis, 2003,18(5):451-454.
    
    33 Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA. A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation [J]. Dis Colon Rectum, 2005,48(7): 1416-1423.
    
    34 Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, Hedrick MH, Berthold L, Howaldt HP. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report [J]. J Craniomaxillofac Surg, 2004, 32(6): 370-373.
    
    35 Arnalich-Montiel F, Pastor S, Blazquez-Martinez A, Fernandez-Delgado J, Nistal M, Alio JL, De Miguel MP. Adipose-Derived Stem Cells Are a Source for Cell Therapy of the Corneal Stroma [J]. Stem Cells. 2008; 26: 570-579.
    
    36 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999,284(5411): 143-147.
    
    37 De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick MH, Fraser JK. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow [J]. Immunol Lett, 2003, 89(2-3): 267-270.
    
    38 Li TS, Ito H, Hayashi M, Furutani A, Matsuzaki M, Hamano K. Cellular expression of integrin-beta 1 is of critical importance for inducing therapeutic angiogenesis by cell implantation [J]. Cardiovasc Res, 2005, 65(1): 64-72.
    
    39 Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells [J]. J Cell Physiol,2001,189(1):54-63.
    
    40 Barry FP, Boynton RE, Haynesworth S, Murphy JM, Zaia J. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105) [J]. Biochem Biophys Res Commun,1999,265(1): 134-139.
    
    41 Dennis JE, Carbillet JP, Caplan AI, Charbord P. The STRO-1+ marrow cell population is multipotential [J]. Cells Tissues Organs,2002,170(2-3): 73-82.
    
    42 Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, Sen A, Willingmyre GD, Gimble JM. Yield of human adipose-derived adult stem cells from liposuction aspirates [J]. Cytotherapy, 2004; 6(1):7-14.
    
    43 Devine SM. Mesenchymal stem cells: will they have a role in the clinic? [J]. J Cell Biochem (Suppl), 2002, 38: 73-79.
    
    44 Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multi-potential adult stem cells in colonies of human marrow stromal cells [J]. Proc Natl Acad Sci, 2001; 98(14):7841-7845.
    
    45 Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogente differentiation of cultured human mesenchymal stem cells from marrow [J]. Tissue Eng,1998,4(4):415-428.
    
    46. Sen A, Lea-Currie YR, Sujkowska D, Franklin DM, Wilkison WO, Halvorsen YD, Gimble JM. The adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous [J]. J Cell Biochem, 2001, 81(2):312-319.
    
    47 Wickham MQ, Erickson GR, Gimble JM, Vail TP, Guilak F. Multipotent stromal cells derived from the infrapatellar fat pad of the knee [J]. Clin Orthop,2003, 412(7):196-212.
    
    48 Dragoo JL, Samimi B, Zhu M, Hame SL, Thomas BJ, Lieberman JR, Hedrick MH, Benhaim P. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads [J]. J Bone Joint Surg Br, 2003; 85(5): 740-747.
    
    49 Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, Paschalis EP, Wilkison WO, Gimble JM. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells [J]. Tissue Eng,2001; 7(6):729-741.
    
    50 Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, Weber RM, Ewerbeck V, Richter W. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells [J]. Arthritis Rheum, 2003,48(2): 418-429.
    
    51 Huang JI, Zuk PA, Jones NF, Zhu M, Lorenz HP, Hedrick MH, Benhaim P. Chondrogenic potential of multipotential cells from human adipose tissue [J]. Plast Reconstr Surg, 2004; 113(2):585-594.
    
    52 Bacou F, el Andalousi RB, Daussin PA, Micallef JP, Levin JM, Chammas M, Casteilla L, Reyne Y, Nougues J. Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle [J]. Cell Transplant, 2004,13(2): 103-111.
    
    53 Rangappa S, Fen C, Lee EH, Bongso A, Sim EK. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes [J]. Ann Thorac Surg, 2003, 75(3): 775-779.
    
    54 Rodriguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells [J]. Proc Natl Acad Sci USA, 2006,103(32):12167-12172.
    
    55 Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells [J]. Circulation, 2004,110(3):349-355.
    
    56 Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells [J]. Circulation. 2004,109 (5):656-663.
    
    57 Talens-Visconti R, Bonora A, Jover R, Mirabet V, Carbonell F, Castell JV, Gomez-Lechon MJ. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J Gastroenterol [J]. 2006, 12(36):5834-45.
    60 Paunescu V,Deak E,Herman D,Siska IR,Tanasie G,Bunu C,Anghel S,Tatu CA,Oprea TI,Henschler R,R(u|¨)ster B,Bistrian R,Seifried E.In vitro differentiation of human mesenchymal stem cells to epithelial lineage[J].J Cell Mol Med,2007,11(3):502-508.
    61 Ashjian PH,Elbarbary AS,Edmonds B,DeUgarte D,Zhu M,Zuk PA,Lorenz HP,Benhaim P,Hedrick MH.In vitro differentiation of human processed lipoaspirate cells into early neural progenitors[J].Plast Reconstr Surg,2003,111(6):1922-1931.
    62 Dua HS,Saini JS,Azuara-Blanco A,Gupta P.Limbal stem cell deficiency:concept,aetiology,clinical presentation,diagnosis and management[J].India J Ophthalmol,2000,48:83-92.
    63 Pires RT,Chokshi A,Tseng SC.Amniotic membrane transplantation or conjunctival limbal autograft for limbal stem cell deficiency induced by 5-fluorouracil in glaucoma surgeries[J].Cornea,2000,19:284-287.
    64 Ellies P,Anderson DF,Topuhami A,Tseng SC.Limbal stem cell deficiency arising from systemic chemotherapy[J].Br J Ophthalmol,2001,85:373-374.
    65 Moll R,Franke WW,Schiller DL,Geiger B,Krepler R.The catalog of human cytokeratins:patterns of expression in normal epithelia,tumors and cultured cells[J].Cell,1982,31(1):11-24.
    66 Schermer A,Galvin S,Sun TT.Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells[J].J Cell Biol,1986,103(1):49-62.
    67 Shiraishi A,Converse RL,Liu CY,Zhou F,Kao CW,Kao WW.Identification of the cornea-specific keratin 12 promoter by in vivo particle-mediated gene transfer[J].Invest Ophthalmol Vis Sci,1998,39(13):2554-61.
    68 赵晓玉,吕岚.角膜上皮重建的研究进展[J].眼科新进展,2007,27(4):315-317,320.
    69 Wilson SE,Walker JW,Chwang E,He YG.Hepatocyte growth factor(HGF),keratinocyte growth factor(KGF),their receptors,FGF receptor-2,and the cells of the cornea[J].Invest Opthalmol Vis Sci,1993,34:2544-2561.
    70 Li DQ, Tsing SC. Differential regulation of cytokine and receptor transcript expression in human corneal and limbal fibroblasts by epidermal growth factor, transforming growth factor-alpha, platelet-derived growth factor B, and interleukin-1 beta [J]. Invest Opthalmol Vis Sci, 1997, 37: 2068-2080.
    
    71 J S Rubin, A M Chan, D P Bottaro, W H Burgess, W G Taylor, A C Cech, D W Hirschfield, J Wong, T Miki, P W Finch. A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor [J]. Proc Natl Acad Sci, 1991,88:415-419.
    
    72 Marchese C, Rubin J, Ron D, Faggioni A, Torrisi MR, Messina A, Frati L, Aaronson SA. Human keratinocytes: diffrerntiation respinse distinguishes KGF from EGF family [J]. J Cell Physiol, 1990,144: 326-332.
    
    73 Matsumoto K, Hashimoto K, Yoshikawa K, Nakamura T. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor [J]. Exp Cell Res, 1991,196:114-120.
    
    74 Wilson SE, Weng J, Chwang EL, Gollahon L, Leitch AM, Shay JW. Hepatocytegrowth factor (HGF), keratinocyte growth factor (KGF), and their receptors in human breast cellsalld tissues: alternative HGF and KGF receptors [J]. Molecular and Cellular Biology Res, 1994,(40):337-350.
    
    75 Joyce NC, Zieske JD. Transforming growth factor-beta receptor expression in human cornea [J]. Invest Ophthalmol Vis Sci, 1997; 38 :1922-1928.
    
    76 Nishida K, Sotozono C, Adachi W, Yamamoto S, Yokoi N, Kinoshita S. Transforming growth factor-beta 1, -beta 2 and -beta 3 mRNA expression in human cornea [J]. Curr Eye Res, 1995; 14 :235-241.
    
    77 Fretto LJ, Snape AJ, Tomlinson JE, Seroogy JJ, Wolf DL, LaRochelle WJ, Giese NA. Mechanism of platelet-derived growth factor (PDGF) AA, AB and BB binding to a and PDGF receptor[J]. Journal of Biological Chemistry, 1993 Feb 15;268(5):3625-31.
    
    78 C. Stephen Foster, Dimitri T. Azar, Claes H. Dohlman. Smolin and Thoft's The Cornea: Scientific foundations and clinical practice [M]. America: Lippincott Williams & Wilkins, Inc. 2004: 107.
    79 王军琳,刘元,金岩,吕红兵,赵宇,王新文,董蕊.表皮生长因子促进真皮成纤维细胞生长的机制[J].中国临床康复,2003,7(14):2016.
    80 Wilkie AO,Patey SJ,Kan SH.FGFs,their receptors,and human limb malformations:clinical and molecular correlations[J].AmJ Med Genet,2002,112(3):266-278.
    81 Alzheimer C,Werner S.Fibroblast growth factors and neuroprotection[J].Adv Exp Med Biol,2002,513:335-351.
    82 Rohrer B,Tai J,Stell WK.Basic fibroblast growth factor,its high and low affinity receptors and their relationship to form-deprivation myopia in the chick[J].Neuro Sci,1997,79(3):775-787.
    83 Witkowski JM.Curr Protoc Cytom,America:John Wiley & Sons,Inc.2008,25.
    84 Li DQ,Tseng SC.Differential regulation of cytokine and receptor transcript expression in human corneal and limbal fibroblast by epidermal growth factor,transforming growth factor -α,platelet-derived growth factor B and interleukin-1β[J].Invest Ophthalmol Vis Sci,1996;37:2068-2080.
    85 Kruse FE,Tseng SC.Proliferative and differentiative response of corneal and limbal epithelium to extracellular calcium in serum-free clonal cultures[J].J Cell Physiol,1992,151(2):347-360.
    86 Sunil Pancholi,Andrew Tullo,Asud Khaliq,David Foreman,Mike Boulton.The effects of growth factors and conditioned media on the proliferation of human corneal epithelial cells and keratocytes[J].Graefe's Arch Clin Exp Ophthalmol,1998,236:1-8.
    87 Kurpakus MA,Stock EL,Jones JCR.The role of the basement membrane in differential expression of keratin proteins in epithelial cells[J].Developmental Biology,1992,150:243-255.
    88 王智崇,黄冰.角膜基质诱导胚胎干细胞定向分化的初步实验研究[J].眼科学报,1999,15:195-198.
    89 Yu L,Ge J,Wang ZC,Huang B,Yu K,Long C,Chen X.Preliminary experimental study of induced differentiation of embryonic stem cells into corneal epithelial cells [J].Eye Sci,2001,17:138-143.
    90 Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature, 2002,416: 545-548.
    
    91 Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 2002,416: 542-545.
    1 Thomson J A,Itskovitz-Eldor J,Shapiro S S,et al.Embryonic stem cell lines derived from human blastocysts.Science,1998,282(5391):1145-1147.
    2 Weissman I L.Stem cells:units of development,units of regeneration,and units in evolution.Cell,2000,100(1):157-168.
    3 Zuk PA,Zhu M,Ashjian P,et al.Human adipose tissue is a source of multipotent stem cells.Molecular Biology of the Cell,2002,13(12):4279-4295.
    4 Zuk PA,Zhu M,Mizuno H,et al.Multilineage cells from human adipose tissue:implications for cell-based therapies.Tissue Engineer,2001,7(2):211-228.
    5 Kim CH,Kim YW,Jang SH,et al.Motor Function Recovery aider Adipose Tissue Derived Mesenchymal Stem Cell Therapy in Rats with Cerebral Infarction.J Korean Neurosurg Soc.2006,40(4):267-272.
    6 Gimble J,Guilak F.Adipose-derived adult stem cells:isolation,characterization,and differentiation potential.Cytotherapy,2003,5(5):362-369.
    7 Aust L,Devlin B,Foster SJ,et al.Yield of human adipose-derived adult stem cells from liposuction aspirates.Cytotherapy,2004;6(1):7-14.
    8 Cao Y,Sun Z,Liao L,et al.Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo.Biochem Biophys Res Commun.2005,332(2):370-379.
    9 Seo MJ,Suh SY,Bae YC,et al.Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo.Biochem Biophys Res Commun,2005,328(1):258-264.
    10 Kern S,Eichler H,Stoeve J,et al.Comparative analysis of mesenchymal stem cells from bone marrow,umbilical cord blood,or adipose tissue.Stem Cells,2006;24(5):1294-1301.
    11 周晓东,王常勇,毛天球,等.利用微载体悬浮培养人脂肪基质干细胞.第四军医大学学报.2005;26(10):954-956.
    12 Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999, 284(5411): 143-147.
    
    13 De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow [J]. Immunol Lett, 2003, 89(2-3): 267-270.
    
    14 Li TS, Ito H, Hayashi M, Furutani A, et al. Cellular expression of integrin-beta 1 is of critical importance for inducing therapeutic angiogenesis by cell implantation [J]. Cardiovasc Res, 2005, 65(1): 64-72.
    
    15 James B. Mitchell, Kevin Mclntosh, Sanjin Zvonic, er al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers [J]. Stem Cells, 2006,24:376-385.
    
    16 Strem BM, Hicok KC, Zhu M, er al. Multipotential differentiation of adipose tissue-derived stem cells [J]. Keio J Med, 2005, 54(3):132-141.
    
    17 Brzoska M, Geiger H, Gauer S, et al. Epithelial differentiation of human adipose tissue-derived adult stem cells [J]. Biochem Biophys Res Commun, 2005, 330(1): 142-150.
    
    18 Arnalich-Montiel F, Pastor S, Blazquez-Martinez A, et al. Adipose-Derived Stem Cells Are a Source for Cell Therapy of the Corneal Stroma [J]. Stem Cells. 2008; 26: 570-579.
    
    19 Garcia-Olmo D, Garcia-Arranz M, Garcia LG, et al. Autologous stem cell transplantation for treatment of recto vaginal fistula in perianal Crohn's disease: a new cell-based therapy [J]. Int J Colorectal Dis, 2003,18(5):451-454.
    
    20 Garcia-Olmo D, Garcia-Arranz M, Herreros D, er al. A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation [J]. Dis Colon Rectum, 2005, 48(7):1416-1423.
    
    21 Lendeckel S, Jodicke A, Christophis P, er al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report [J]. J Craniomaxillofac Surg, 2004, 32(6): 370-373.
    
    22 Gronthos S, Franklin DM, Leddy HA, et al. Surface protein characterization of human adipose tissue-derived stromal cells [J]. J Cell Physiol, 2001, 189(1):54-63.
    23 Barry FP,Boynton RE,Haynesworth S,et al.The monoclonal antibody SH-2,raised against human mesenchymal stem cells,recognizes an epitope on endoglin(CD105)[J].Biochem Biophys Res Commun,1999,265(1):134-139.
    24 Dennis JE,Carbillet JP,Caplan AI,et al.The STRO-1+ marrow cell population is multipotential[J].Cells Tissues Organs,2002,170(2-3):73-82.
    25 Aust L,Devlin B,Foster S J,et al.Yield of human adipose-derived adult stem cells from liposuction aspirates[J].Cytotherapy,2004;6(1):7-14.
    26 Devine SM.Mesenchymal stem cells:will they have a role in the clinic?[J].J Cell Biochem(Suppl),2002,38:73-79.
    27 Colter DC,Sekiya I,Prockop DJ.Identification of a subpopulation of rapidly self-renewing and multi-potential adult stem cells in colonies of human marrow stromal cells[J].Proc Natl Acad Sci,2001;98(14):7841-7845.
    28 Mackay AM,Beck SC,Murphy JM,er al.Chondrogente differentiation of cultured human mesenchymal stem cells from marrow[J].Tissue Eng,1998,4(4):415-428.
    29 王巧稚,刘广益.脂肪源性成熟基质细胞--干细胞研究的新热点.四川解剖学杂志,2005,13(4):31-33.
    30 Halbleib M,Skurk T,de Luca C,et al.Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds.I:in vitro differentiation of human adipocyte precursor cells on scaffolds.Biomaterials,2003;24(18):3125-3132.
    31 von Heimburg D,Zachariah S,Heschel I,et al.Human preadipocytes seeded on freeze-dried collagen scaffolds investigated in vitro and in vivo.Biomaterials,2001;22(5):429-438.
    32 Lee JA,Parrett BM,Conejero JA,et al.Biological alchemy:engineering bone and fat from fat-derived stem cells.Ann Plast Surg,2003,50(6):610-617.
    33 Von Heimburg D,Zachariah S,Low A,et al.Influence of different biodegradable carriers on the in vivo behavior of human adipose precursor cells.Plast Reconstr Surg,2001,108(2):411-420.
    34 Dragoo JL,Samimi B,Zhu M,et al.Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads.J Bone Joint Surg Br 2003;85(5):740-747.
    35 Halvorsen YD,Franklin D,Bond AL,et al.Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 2001; 7(6): 729-741.
    
    36 Tholpady SS, Katz AJ, Ogle RC.Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. Anat Rec A Discov Mol Cell Evol Biol. 2003, 272(1):398-402.
    
    37 Halvorsen YDC, Wilkison WO, Gimble JM. Adipose-derived stromal cells-their utility and potential in bone formation. Int J Obes Relat Metab Disord. 2000, 24 (Suppl 4):S41-44.
    
    38 Cowan CM, Shi YY, Aalami OO, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol, 2004, 22(5): 560-567.
    
    39 Winter A, Breit S, Parsch D, et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum, 2003,48(2): 418-429.
    
    40 Huang JI, Zuk PA, Jones NF,et al. Chondrogenic potential of multipotential cells from human adipose tissue. Plast Reconstr Surg, 2004; 113(2):585-594.
    
    41 Erickson GR, Gimble JM, Franklin D, et al. Chondrogenic potential of adipose tissue - derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun, 2002, 290(2):763-769.
    
    42 Nathan S, Das DS, Thambyah A, et al.Cellbased therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng, 2003; 9(4): 733-744.
    
    43 Mizuno H, Zuk PA, Zhu M,et al.Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg, 2002; 109(1): 199-209.
    
    44 Bacou F, el Andalousi RB, Daussin PA, et al. Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle. Cell Transplant, 2004,13(2): 103-111.
    
    45 Rangappa S, Fen C, Lee EH,et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg, 2003, 75(3): 775-779.
    
    46 Planat-Benard V, Menard C, Andre M,et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells.Circ Res,2004,94(2):223-229.
    47 Meliga E,Duckers H,van Geuns R,et al.Adipose derived cells:new kids on the block.EuroIntervention,2007,2(Suppl B):B26-B32.
    48 Strem BM,Zhu M,Alfonso Z,et al.Expression of cardiomyocytic markers on adipose tissue-derived cells in a mufine model of acute myocardial injury.Cytotherapy,2005;7(3):282-291.
    49.Zhang DZ,Gai LY,Liu HW,et al.Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction.Chin Med J.2007;120(4):300-307.
    50 Rodriguez LV,Alfonso Z,Zhang R,et al.Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells.Proc Natl Acad Sci U S A,2006,103(32):12167-12172.
    51 Ashjian PH,Elbarbary AS,Edmonds B,et al.In vitro differentiation of human processed lipoaspirate cells into early neural progenitors.Plast Reconstr Surg,2003,111(6):1922-1931.
    52 Safford KM,Hicok KC,Safford SD,et al.Neurogenic differentiation of murine and human adipose-derived stromal cells Biochem Biophys Res Commun.2002,294(2):371-379.
    53 曹莹,孟艳,孙昭,等.脂肪来源成体干细胞分化为内皮细胞的潜能.中国医学科学院学报,2005,27(6):678-682.
    54 Planat-Benard V,Silvestre JS,Cousin B,et al.Plasticity of human adipose lineage cells toward endothelial cells.Circulation.2004,109(5):656-663.
    55 Brzoska M,Geiger H,Gauer S,et al.Epithelial differentiation of human adipose tissue -derived adult stem cells.Biochem Biophys Res Commun,2005,330(1):142-150.
    56 Garcia-Olmo D,Garcia-Arranz M,Garcia LG,et al.Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn's disease:a new cell-based therapy.Int J Colorectal Dis,2003,18(5):451-454.
    57 Garcia-Olmo D,Garcia-Arranz M,Herreros D,et al.A phase Ⅰ clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation.Dis Colon Rectum,2005,48(7):1416-1423.
    58 Lendeckel S,Jodicke A,Christophis P,et al.Autologous stem cells(adipose) and fibrin glue used to treat widespread traumatic calvarial defects:case report.J Craniomaxillofac Surg,2004,32(6):370-373.
    59 Yanling Ma,Yongsheng Xu,Zhifeng Xiao,et al.Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells[J].Stem Cells.2006;24(2):315-321.
    60 郭彤,王薇,张君,等.骨髓间充质干细胞移植治疗眼表损害的初步实验研究[J].中华眼科杂志.2006;42(3):246-250.
    61 Ye J,Yao K,Kim JC.Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model:engraftment and involvement in wound healing[J].Eye.2006;20(4):482-490.
    62 姜廷帅,蔡莉,惠延年,等.大鼠骨髓间充质干细胞体外可诱导分化为角膜上皮细胞[J].国际眼科杂志,2007,7(2):339-341。
    63 黄丹平,葛坚,高楠,等.诱导骨髓间质干细胞分化为角膜上皮样细胞的初步研究[J].中国病理生理杂志.2007,23(5):999-1003.
    64 顾绍峰,付小兵,洪晶.体外诱导人骨髓间充质干细胞向角膜上皮干细胞分化的初步研究[J].眼科研究.2008,26(7):512-516.
    65 易敬林,杨海军.人间充质干细胞横向诱导分化为角膜上皮细胞及角膜缘干细胞的体外研究[J].眼科新进展.2008,28(7):505-510.
    66 Shaofeng Gu,Chengzhong Xing,Jingyi Han,et al.Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo[J].Molecular Vision 2009;15:99-107.
    67 Arnalich-Montiel F,Pastor S,Blazquez-Martinez A,et al.Adipose-Derived Stem Cells Are a Source for Cell Therapy of the Corneal Stroma[J].Stem Cells.2008;26:570-579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700