大豆糖蜜中低聚糖的分离纯化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了以大豆糖蜜为原料,采用超滤技术、大孔吸附树脂法、离子交换树脂法提取大豆低聚糖的工艺。
     首先对预处理前后大豆糖蜜的主要成分和性质进行了测定。经预处理后得到了透光率为88.1%,基本澄清的糖蜜上清液,其中总糖占了60.48%。通过单因素实验研究了超滤实验中pH值、温度对膜通量、总糖透过率和大分子类蛋白截留率的影响。所用的超滤膜截留相对分子质量(MWCO)为10000,采用间断全过滤的操作方式,确定的最佳超滤工艺为:pH7.0、T:20℃、压力0.6MPa(膜允许的标准操作压力范围)。在此条件下,总糖透过率为75.65%,大分子类蛋白完全截留,超滤液的透光率为93.5%。接着研究了3种不同的大孔树脂对超滤液的脱色效果,结果表明AB-8树脂对超滤液的脱色率最高,因此选择了AB-8大孔吸附树脂作为脱色用树脂。通过单因素实验进一步研究了pH值、流速、上样量对超滤液的脱色效果的影响,确定了AB-8树脂的最佳脱色条件为:室温、pH4.0,流速1.5BV/h,上样量4BV。此条件下脱色率可达90%以上,总糖损失率为10%左右。以70%的乙醇水溶液作为洗脱剂,解吸率可达89.69%。
     最后,对大豆低聚糖粗糖液中存在的主要杂质进行了分析,并比较了纳滤和离子交换树脂法对粗糖液纯化的效果,最终选择了离子交换技术,选用了001×7型强酸性阳离子交换树脂与D301型弱碱性阴离子交换树脂,按先阳后阴的方式连接。具体的操作条件为:室温、流速1.2BV/h。此条件下001×7型树脂的交换能力约为11BV,D301型树脂的交换能力为7BV左右。最终得到的糖液的电导率与生活用水十分接近,几乎所有的含氮物质及绝大部分的酚类物质得到了去除。
     经过以上的分离纯化,得到了浅黄色、澄清透亮的大豆低聚糖糖浆。该产品的各项指标为:固形物66.73%,蔗糖53.43%,棉子糖6.90%,水苏糖14.92%,灰分1.02%,无含氮物质检出。
This paper was studied on using ultrafiltration technology, macroporous resins and ion exchange resins to extract soybean oligosaccharides from soy molasses.
     Firstly, the components and characteristics of soy molasses both before and after pretreating were determined. The transmittance of the supernatant was 88.1%, this supernatant was exactly clean and clear, the total sugar accounted for 60.48%. During the ultrafiltration process, the effect of pH value, temperature on membrane flux, the total sugar permeation rate and the cut-off rate of macromolecule proteins were studied through the single factor experiments. The optimum conditions were: 10000 molecular weight cut-off membrane, using diafiltration operating mode, pH7.0, 20℃. Under these conditions, almost all of the macromolecule proteins were removed, and about 75.65% of the oligosaccharide was retained, the transmittance of the UF permeate was 93.5%.
     Secondly, the decoloration effect of three types of macroporous resins on UF permeate was studied. AB-8 resin was chosen as decolorizing resin by comparing the decoloration. The suitable operation conditions were: room temperature, pH4.0, work solution speed of 1.5BV/h, the handling capacity was 4BV. Under this condition, the decoloration rate was over 90%, the total sugar loss was about 10%. The 70% aqueous alcohol was used as desorption reagent, the desorption rate reached 89.69%.
     At last, the main impurities existed in the crude soybean oligosaccharides were analysised and the purification effect both by nanofiltration and ion exchange resins on it were compared. the ion exchange technology was chosen ultimately. 001×7 was chosen as the cation resin, and D301 was chosen as anion resin. The operation condition was: room temperature, work solution speed of 1.2BV/h. The conductivity of the purified soybean oligosaccharides was very close to the tap water, nearly all of the nitrogenous material and most of the phenolic material was removed.
     After separation and purification, a pale yellow, translucent and clear soybean oligosaccharides syrup was prepared. The basic components of the end-product were: 66.73% solid, among this sucrose, raffinose, stachyose accounted for 53.43%, 6.90%, 14.92% respectively, ash 1.02%, no nitrogenous material was detected.
引文
[1] Liu KeShun. Soybean as functional foods and ingredients[M]. AOCS press,2004.
    [2] Waggle, Doyle H., Bryan, etal. Recovery of isoflavones from soy molasses[P]. US Patent: 6706292, 2004.
    [3] N Qureshi, A Lolas, HP Blaschek. Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101[J]. Journal of Industrial Microbiology & Biotechnology, 2001, 26: 290-295.
    [4] Daniel K. Y. Solaiman, Richard D. Ashby, Alberto Nunez, Thomas A. Foglia. Production of sophorolipids by candida bombicola grown on soy molasses as substrate[J]. Biotechnology Letters, 2004, 26: 1241-1245.
    [5] Montelongo J. L., Chassy B. M., McCord J. D. Lactobacillus salivarius for conversion of soy molasses into Lactic Acid[J]. Journal of Food Science. 1993, 58 (4): 863-866.
    [6] Gugger, Eric T., Dueppen, etal. Production of isoflavone enriched fractions from soy protein extracts[P]. US Patent: 5792503, 1998.
    [7]方伟辉,华欲飞,张喆等.大豆粕酒精可溶物的成分分离与鉴定[J].中国油脂, 2004, 29(1): 57-61.
    [8]金其荣,徐勤.大豆低聚糖生产、生理功能及其应用[J].食品科学, 1994, 11: 7– 12.
    [9] You-Jin J, Se-Kwon K. Production of chitooligosaccharides using an ultrafiltration membrance reactor and their antibacterial activity[J]. Carbohydrate polymers, 2000, 41: 133-141.
    [10]徐苇.大豆低聚糖的特性及在食品种的应用[J].中国食品添加剂, 2005, 4: 77-80.
    [11]于治中,丁长河,李里特.大豆低聚糖的生产、生理功能及其应用[J].中国食品添加剂, 2007, 1: 159-163.
    [12]葛文光.大豆低聚糖的生理特性与在食品中的应用[J].食品科学, 1989, 9: 23.
    [13]刘芙蓉,金鑫丽,王黎.分离过程及系统模拟[M].科学出版, 2001.
    [14]大豆深加工关键技术及设备研究与开发技术报告[R].国家“十五”科技攻关项目. 2005.12.
    [15]李晓炼,刘志同,叶光.膜分离技术提取大豆乳清中的低聚糖[J].食品科技, 1999, 4: 19-21.
    [16]高文宏,石彦国,李国基等.超滤法提取大豆低聚糖的研究[J].食品与发酵工业, 2000, 26 (6): 6-10.
    [17]金华丽.大豆低聚糖制取与纯化工艺的研究[J].郑州工程学院学报. 2001, 22(2): 35-38.
    [18]袁其朋,马润宇.膜分离技术处理大豆乳清废水[J].水处理技术. 2001, 27(3): 161-163.
    [19]李耕,吴大宇,戴智河.膜技术在浓缩天然大豆低聚糖中的应用[J].膜科学与技术, 2002, 22 (1): 29-31.
    [20]陈爱梅,江连洲.膜分离大豆乳清蛋白的研究[J].粮油加工与食品机械, 2005, 10: 79-82.
    [21]华耀祖.超滤技术与应用[M].化学工业出版社, 2004.
    [22] Y. Matsubara, K. Iwasaki, M. Nakajima, etal. Recovery of oligosaccharides from streamed soybean waste water in tofu processing by reverse osmosis and nanofiltration membranes[J]. Biosci. Biotech. Biochem. 1996, 60: 420.
    [23]孙蔚榕,韩亮,鲍元兴.低聚糖的纳滤分离技术[J].无锡轻工大学学报, 2002, 21(6): 574-578.
    [24] Athanasios K. Goulas, Petros G. Kapasakalidis, Haydn R. Sinclair, etal. Purification of oligosaccharides by nanofiltration[J]. Journal of Membrane Science, 2002, 209: 321–335.
    [25]何炳林,黄文强.离子交换与吸附树脂[M ].北京:人民卫生出版社, 1995.
    [26]罗艳玲,欧仕益.大孔树脂在食品活性成分分离中的应用[J].食品与机械, 2005, 21(5):81-83.
    [27]黎海彬,李小梅.大孔吸附树脂及其在天然产物研究中的应用[J].广东化工, 2005, 3:22-25.
    [28]汪洪武,刘艳清.大孔吸附树脂的应用研究进展[J].中药材, 2005, 28(4):353-356.
    [29]袁其朋,张恭孝,姜焱.树脂及活性炭吸附技术回收大豆乳清中的异黄酮和低聚糖[J].大豆科学, 2003, 22(1):6-10.
    [30]刘国庆,朱翠萍,王占生.大孔树脂对大豆乳清废水中异黄酮的吸附特性研究[J].离子交换与吸附, 2003, 19(3):229-234.
    [31]钟振声,冯焱,孙立杰等.柱色谱法对大豆低聚糖浆脱色效果的研究[J].精细化工, 2006, 23(6):565-567.
    [32]周尽花,周春山.大孔吸附树脂法柚皮果胶脱色工艺研究[J].离子交换与吸附,2005, 21(6): 542-550.
    [33] Monica Scordino, Alfio Di Mauro, Amedeo Passerini, etal. Highly purified sugar concentrate from a residue of citrus pigments recovery process[J]. LWT - Food Science and Technology, 2007, 40(4):713-721.
    [34]钱庭宝.离子交换树脂[J].高分子通报, 1989 (1): 51 - 56.
    [35]梁志冉,涂勇,田爱军等.离子交换树脂及其在废水处理中的应用[J].污染防治技术, 2006, 19(3):34-36.
    [36]严希康.吸附与离子交换及其在生物技术上的应用[J].国外医药抗生素分册, 2000, 21(5):201-211.
    [37]叶振华等.化学工程手册[M].北京:化学工业出版社, 1998.
    [38]刘喜纲,刘翠哲,王栋.离子交换树脂在医药方面的应用[J].承德医学院学报, 2004, 21(3):243-244.
    [39]李春香,董占能,张召术.离子交换树脂在天然产物提取分离中的应用[J].云南化工, 2001, 28(5):26-28.
    [40]胡箭卫,缪正瀛,程瑛等.离子交换树脂用于蜂蜜脱色的机理探析[J].养蜂技术, 2004, 5:37-38.
    [41]黄祥斌,于淑娟,高大维.几种离子交换树脂用于糖浆脱色的比较研究[J].食品科学, 2001, 22(4):11-13.
    [42]黄海,杨瑞金,王璋.低聚木糖的脱色工艺[J].无锡轻工大学学报, 2002, 21(2):125-129.
    [43]黄贤校,谷克仁,赵一凡.大豆低聚糖的生产工艺研究[J].粮油食品科技, 2006, 14(5):29-30.
    [44]朱园园,古双喜,陈先明等.离子交换技术在糖品工业中的应用[J].云南化工, 2006,33(2):68-70.
    [45]王恩大,邵广武.离子交换树脂在玉米淀粉糖生产中的应用[J].辽宁化工, 2000, 29(4):242-246.
    [46]张存劳,任力民.大豆资源的综合开发现状及利用途径[J].粮食加工, 2004, 1:72-74.
    [47]姚惠源.“十一·五”粮油科技攻关的重点领域[J].农产品加工, 2006, 9:8-9.
    [48] Goldsmith R.L. Treatment of soy whey by membrane processing[J]. Food Processing Wastes, 1973 , 3:51.
    [49] Mervat I. Foda, M. Lopez-Leiva. Continuous production of oligosaccharides from whey using a membrane reactor[J]. Process Biochemistry, 2000, 35:581-587.
    [50] Y. Pouliot, M.C. Wijers, S.F. Gauthier, etal. Fractionation of whey protein hydrolysates using charged UF/NF membranes[J]. Journal of Membrane Science, 1999, 158: 105-114.
    [51] Andrew L. Zydney. Protein separations using membrane filtration: new opportunities for whey fractionation[J]. Int. Dairy Journal, 1998, 8: 243-250.
    [52] Alkhatim H.S., Alcaina M.I. Treatment of whey effluents from dairy industries by nanofiltration membranes[J]. Desalination, 1998, 119:177-184.
    [53]大连轻工业学院等合编,食品分析[M].中国轻工业出版社, 1994.
    [54]董群,郑丽伊,方积年.改良的苯酚硫酸法测定多糖和寡糖含量的研究[J].中国药学杂志, 1996, 31(9):550-553.
    [55]吴建中,欧仕益,唐书泽等.大豆蛋白的酶水解产物研究[J].中国油脂, 2004, 29 (8):50-53.
    [56]孙玲,魏振承,张名位.分光光度法校正测定大豆异黄酮总含量[J].食品科学, 2005, 26(3): 209-211.
    [57]李仲民,童张法.超滤法处理糖蜜酒精废液的研究[J].广西大学学报(自然科学版), 2001, 26(3):171-173.
    [58]王志,伍艳辉,任延等.糖类和蛋白类物质污染聚砜膜的不同特性和微观机制[J].水处理技术, 2000, 26(5):273-276.
    [59]伍艳辉,王志,何菲等.膜与蛋白质溶液的相互作用及膜污染机制的能谱研究[J].化工学报, 2001, 52 (11): 1026-1029.
    [60]崔岸,朱峰,黄惠华等.超滤法生产大豆分离蛋白的研究[J].食品科学, 1996, 17(11):18-22.
    [61]袁怀波,赵国华,李洪军等.利用大孔吸附树脂纯化葛根异黄酮的研究[J].食品与发酵工业,2003,29(2): 62-65.
    [62]任顺成,丁宵霖.大孔树脂对玉米须类黄酮的吸附分离特性研究[J].食品与发酵工业, 2003, 29(12):17-21.
    [63]谷利伟,谷文英.比色法测定大豆中的总皂甙[J].中国粮油学报, 2000, 15(6): 38-41.
    [64]柴红,周志军,陈欢林.纳滤膜脱盐浓缩染料的研究[J].高校化学工程学报, 2000, 14(5):461-464.
    [65] Jukka Tanninen, Mika M?ntt?ri, Marianne Nystr?m. Acid separation with nanofiltration– effect of electrolyte strength and Donnan forces[J]. Desalination, 2006, 199:253–255.
    [66] Elina Sjoman, Mika M¨antari, Hannu Koivikko, etal. Separation of xylose from glucose by nanofiltration from concentrated monosaccharide solutions[J]. Journal of Membrane Science, 2007, 292:106–115.
    [67]霍汉镇.国内外制造高品质白糖和精制糖的主要工艺方法[J]. 2004, 3:26-31.
    [68]洛铁男,李琳,董爱军等.离子交换树脂在糖汁脱盐中的应用[J]. 2000, 1:3-5.
    [69] Ernesto Acosta Mart′?nez, Jo?ao Batista de Almeida e Silva, Marco Giulietti, etal. Downstream process for xylitol produced from fermented hydrolysate[J]. Enzyme and Microbial Technology, 2007, 40:1193–1198.
    [70] Wang-Yu Tong, Xiang-Yang Fu, Sang-Mok Lee, etal. Purification of L(+)-lactic acid from fermentation broth with paper sludge as a cellulosic feedstock using weak anion exchanger Amberlite IRA-92[J]. Biochemical Engineering Journal, 2004, 18:89–96.
    [71]马嫄,阚建全,陈宗道.纳滤技术及其在功能性低聚糖分离纯化中的应用[J].广州食品工业科技, 2002, 18(3):64-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700