以多齿类羟酸为配体构筑的金属有机框架的合成、结构和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属—有机骨架作为一种新型的分子功能材料,凭借其独特的结构可剪裁性、多样的拓扑结构和在氢气存储、离子交换、吸附、分子识别、催化以及光、电、手性拆分等领域的巨大潜在应用受到了各界科学家们越来越多的关注。依据分子工程学原理,通过选择特定几何构型的中心金属离子和特殊的有机配体,可以在一定程度上实现新型功能材料的定向设计和合成。同时,还可以通过选择功能性的中心金属离子和具有功能官能团的有机配体赋予目标化合物以多功能的性质。
     本论文选择不同构型的有机配体和金属离子合成出19种金属—有机骨架。研究这些化合物的合成条件及规律,分析网络结构所属的拓扑类型,考察配体的几何构型,辅助配体对于整个结构的影响等规律,探究分子自组装原理。对化合物的热稳定性、荧光性质,吸附,离子交换进行了初步研究。
     1.以5-氧-(4-苄基苯甲酸基)间苯二甲酸(H_3L1)和1,4-对苯二咪唑(BIMB)、1,4-对苯二甲基咪唑(BIIM)在水热条件下与过渡金属离子和稀土金属离子反应合成了10个新颖的化合物,它们的分子式分别为[Cu(HL1)(BIMB)]·_(0.5)H_2O (1),[Pr(HL1)(BIMB)]·H_2O (2),[Zn(HL1)(BIMB)_(0.5)]·H_2O (3),[Zn_3(L1)_2(BIMB)_3]·8H_2O (4),[Zn_3(L1)_2(BIMB)_3]·4H_2O (5),[Zn_2(HL1)_2(BIIM)_2]·H_2O (6),[Cu_2(HL1)_2(BIIM)_2]·H_2O (7),[Cu(L1)(BIIM)_(0.5)(H_2O)]·H_2O (8),[Cu_2(L1)(BIIM)(μ_3-OH)]·3H_2O (9)[Cu_(1.5)(L1)(BIIM)_(1.5)]·2H_2O (10),化合物1,2和3都是二维4连接的层状结构,化合物4是了一个三维(3,4)连接三重互穿的网络结构,当我们将4的反应条件不变,温度升高到180度,我们得到了结构更加复杂的化合物5;化合物6和化合物7是破浪形的二维(4,4)层;化合物8和10的骨架结构都是(3,4)–混连接的三维网络;化合物9的四核Cu SBUs连接十个有机配体,构筑了三维(3,10)连接的网络结构。
     2.以5-氧-(4-苄基苯甲酸基)间苯二甲酸(H_3L1)和苯并咪唑(BENIM)、1,2,4-三氮唑(1,2,4-triazole)在水热条件下与过渡金属离子反应合成了5个新颖的化合物,它们的分子式分别为[Zn (HL1)(BENIM)](11),[Co (HL1)(BENIM)](12)[Co_2(HL1)(BENIM)_2(μ_3-OH)]·H_2O (13),[Co_(1.5)(L1)(1,2,4-triazole)(μ_2-OH)](14)和[Ni_(1.5)(L1)(1,2,4-triazole)(μ_2-OH)](15),化合物11和12同构,14和15同构,化合物11是含有两种不同类型的螺旋链的二维层网络;化合物13的四核CoSBUs通过L1配体的羧酸基团连接成二维(3,6)连接层状结构;化合物14是三维(3,8)连接的网络拓扑。
     3.以5-氧-(3-苄基苯甲酸基)间苯二甲酸(H3L2)和1,4-对苯二咪唑(BIMB)在水热条件下与过渡金属Zn~(2+)离子反应合成了2个新颖的化合物,它们的分子式分别为[Zn_2(L2)(BIMB)(μ_2-OH)](16)[Zn_3(L2)_2(BIMB)_3]·4H_2O (17),化合物16通过平行的层网络互穿,形成了2D→3D互锁的框架结构;化合物17产生于中性pH条件,得到了(3,4)连接自穿的三维网络。
     4.以两个长链半刚性羧酸(H_3L_3)和(H_3L_4)为配体,在溶剂热条件下与过渡金属Zn~(2+)离子反应合成了2个新颖的化合物,它们的分子式分别为[Zn_2(L3)(H_2O)]·(NO_3)·DMF(18),[Zn_2(L4)(H_2O)]·(NO_3)·0.2DMF (19),两种化合物同构,探讨了它们在吸附、主体框架交换客体稀土离子、碘离子,以及客体离子对主体框架荧光强度的影响等方面的性质。
Metal-organic frameworks (MOFs) as a newly-identified functionalmolecule-based materials, have attracted much more attentions because of theirflexible tailoring, various topologies and promising applications in hydrogen storage,ion-exchange, adsorption, molecular recognization, catalysts along with optics,electrics and enantioselective separation. According to the principle of molecularengineering, it is possible that rational design and synthesis of novel multifunctionalmaterials by selecting certain geometric metal ions and special organic ligands. At thesame time, MOFs can be endowed with multifunctional properties by selectingfunctional metal ions and organic ligands with functional groups.
     In this dissertation, we have focused our study on the influence of the metal ions,organic ligands and secondary ligands on the building blocks and structures of MOFsby the hydrothermal reaction. Twenty-one new coordination compounds have beensynthesized by using novel organic ligands and metal ions. The study on syntheticconditions and rules for these new compounds, topological analyses, and theexploration of relationships between structures and properties for these newcompounds are also carried out. These compounds have been structurallycharacterized by elemental analyses, IR, XRPD, TG and single crystal X-raydiffractions. In addition, the thermal stabilities, fluorescent activity, photovoltagetransients, adsorption and ion-exchange of these compounds have been studied.
     1. Ten novel3D compounds,[Cu(HL1)(BIMB)]·_(0.5)H_2O (1),[Pr(HL1)(BIMB)]·H_2O (2),[Zn(HL1)(BIMB)_(0.5)]·H_2O (3),[Zn_3(L1)_2(BIMB)_3]·8H_2O(4),[Zn_3(L1)_2(BIMB)_3]·4H_2O (5),[Zn_2(HL1)_2(BIIM)_2]·H_2O (6),[Cu_2(HL1)_2(BIIM)_2]·H_2O (7),[Cu(L1)(BIIM)_(0.5)(H_2O)]·H_2O (8),[Cu_2(L1)(BIIM)(μ_3-OH)]·3H_2O (9) and [Cu_(1.5)(L1)(BIIM)_(1.5)]·2H_2O (10) have beensynthesized using the traditional hydrothermal methods. Compound1,2and3showsa2D4-connected network. Complex4is obtained on a higher pH value than3, whichis3D threefold interpenetrating (3,4)-connected net. Compound6and7is a2D (4,4)sheet with (412·63) topology. Compound8and10displays a3D (3,4)-connectedthreefold interpenetration network, which is constructed by H_3L1and BIIM ligands.Compound9is a3D (3,10)-connected network.
     2. Five compounds with different dimensionalities,[Zn (HL1)(BENIM)](11), [Co (HL1)(BENIM)](12),[Co_2(HL1)(BENIM)_2(μ_3-OH)]·H_2O(13),[Co_(1.5)(L1)(1,2,4-triazole)(μ_2-OH)](14) and [Ni_(1.5)(L1)(1,2,4-triazole)(μ_2-OH)](15)have been prepared under hydrothermal conditions. Compound11and12areisostructural; Compound14and15are isostructural. Compound11displays a new2Dframework constructed by two types of helical chains; Compound13is a2D(3,6)-connected net. Compound14is a3D (3,8)-connected network
     3. Two compounds with different dimensionalities,[Zn_2(L2)(BIMB)(μ_2-OH)](16)and [Zn_3(L2)_2(BIMB)_3]·4H_2O(17) have been prepared under hydrothermal conditions.Compound16is a2D→3D interlocking framework. Compound17adopts a3D(3,4)-connected self-penetrating network.
     4.[Zn_2(L3)(H_2O)]·(NO_3)·DMF(18) and [Zn_2(L4)(H_2O)]·(NO_3)·0.2DMF(19), twoisostructural2D-2D parallel-3D inclined interpenetrating polycatenane-likemetal–organic frameworks were successfully constructed based on length-adjustedtricarboxylate ligands. With the merit of being microporous, Compound18canserve as host for encapsulating lanthanide cations and I2to exhibit luminescentsensing and rapid adsorption of iodine.
引文
[1] Chanpness N R, Schr der M. Extended networks formed by coordination polymers in the solid state[J].Current Option in Solid State&Materials Science,1998,3:419-424.
    [2] Long J R, Yaghi O M. The pervasive chemistry of metal-organic frameworks[J]. Chem Soc Rev,2009,38:1213-1214.
    [3] Hoskins B F, Robson R. Design and construction of a new class of scaffolding-like materialscomprising infinite polymeric frameworks of3D-linked molecular rods. A reappraisal of the zinc cyanideand cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks[N(CHⅠ3)4][CuZnⅡ(CN)4] and CuⅠ[4,4’,4’’,4’’’-tetracyanotetraphenylmethane]BF4.x C6H5N02[J]. J AmChem Soc,1990,112:1546.
    [4] Cheetham A K, Ferey G, Loiseau T. Open-Framwork Inorganic Materials[J]. Angew Chem Int Ed,1999,38:3268.
    [5] Cundy C S, Cox P A. The Hydrothermal Synthesis of Zeolites: History and Development from theEarliest Days to the Present Time[J]. Chem Rev,2003,103:663.
    [6] D. P. Graddon, An Introduction to Coordination Chemistry, Pergamon Press,1997,4127.
    [7] Bruser H J, Schwarzenbach D, Petter W, et al. The crystal structure of Prussian Blue:Fe4[Fe(CN)6]3.xH2O[J]. Inorg Chem,1977,16:2704-2710.
    [8]宋银柱,王耕霖等译.配位化学[M].北京:北京大学出版社,1982.
    [9] Werner A. Platinum complexes of sucrose derivatives[J]. Z Anorg Chem,1893,3267.
    [10] Wells A F. Structuralianzai Inorganic Chemistry,5thed[M]. Oxford University Press:Oxford,1983.
    [11] Wells A. F. Three-dimensional Nets and Polyhedra[M]. Wiley: New York,1977.
    [12] Hoskins B F, Robson R. Infinite Polymeric Frameworks Consisting of Three Dimensionally LinkedRod-like Segments[J]. J Am Chem Soc,1989,111:5962-5964.
    [13] Zhao D, Timmons D J, Yuan D Q, et al. Tuning the Topology and Functionality of Metal-OrganicFrameworks by Ligand Design[J]. Acc Chem Res,2011,44(2):123-133.
    [14] O’Keeffe M, Yaghi O M. Deconstructing the Crystal Structures of Metal–Organic Frameworks andRelated Materials into Their Underlying Nets[J]. Chem Rev,2011
    [15] Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal-organicframework[J]. Nature,1995,378:703.
    [16] Li H, Eddaoudi M, O’Keefe M, et al. Design and synthesis of an exceptionally stable and highlyporous metal-organic framework[J]. Nature,1999,402:276-279.
    [17] Chui S S-Y, Lo S M-F, Charmant J P H, et al. A Chemically Functionalizable Nanoporous Material[Cu3(TMA)2(H2O)3]n[J]. Science,1999,283:1148-1150.
    [18] Barthelet K, Marrot J, Riou D. et al. A Breathing Hybrid Organic–Inorganic Solid with Very LargePores and High Magnetic Characteristics[J]. Angew Chem Int Ed,2002,41:281-284.
    [19] Serre C, Millange F, Thouvenot C. et al. Very Large Breathing Effect in the First NanoporousChromium(III)-Based Solids: MIL-53or CrIII(OH)·{O2C C6H4CO2}·{HO2C C6H4CO2H}x·H2Oy[J]. JAm Chem Soc,2002,124:13519-13526.
    [20] Serre C, Mellot-Draznieks C, Surblé S, et al. Role of Solvent-Host Interactions That Lead to VeryLarge Swelling of Hybrid Frameworks[J]. Science,2007,315:1828-1831.
    [21] Eddaoudi M, Kim J, Rosi N, et al. Systematic Design of Pore Sizeand Functionality in IsoreticularMOFs and Their Application in Methane Storage[J]. Science,2002,295:469-472.
    [22] Dybtsev D N, Chun H, Kim K. Rigid and Flexible: A Highly Porous Metal–Organic Framework withUnusual Guest-Dependent Dynamic Behavior[J]. Angew Chem Int Ed,2004,43:5033-5036.
    [23] Seki K, Mori W J. Syntheses and Characterization of Microporous Coordination Polymers with OpenFrameworks[J]. J Phys Chem B,2002,106:1380-1385.
    [24] Tian Y Q, Cai C X, Ji Y You, et al.[Co5(im)10.2MB]∞: A Metal-Organic Open-Framework withZeolite-Like Topology[J].Angew Chem Int Ed,2002,41:1384-1386.
    [25] Park K S, Ni Z, Cote A P, et al. Natl. Acad. Sci.U.S.A.2006,103:10186.
    [26] Dietzel P D C, Panella B, Hirscher M, et al. Hydrogen adsorption in a nickel based coordinationpolymer with open metal sites in the cylindrical cavities of the desolvated framework [J]. Chem Commun,2006,959-961.
    [27] Cavka J H, Jakobsen S, Olsbye U, et al. A New Zirconium Inorganic Building Brick Forming MetalOrganic Frameworks with Exceptional Stability[J]. J Am Chem Soc,2008,130:13850-13851.
    [28] Ferey G., Serre C, Mellot-Draznieks C, et al. Hybrid Solid with Giant Pores Prepared by aCombination of Targeted Chemistry, Simulation, and Powder Diffraction[J]. Angew Chem Int Ed,2004,43:6296-6301.
    [29] Ferey G.,Mellot-Draznieks C, Serre C, et al. A Chromium Terephthalate-Based Solid with UnusuallyLarge Pore Volumes and Surface Area[J]. Science,2005,309:2040-2042.
    [30] Dan-Hardi M, Serre C, Frot T, Rozes, et al. A New Photoactive Crystalline Highly Porous Titanium(IV)Dicarboxylate[J]. J Am Chem Soc,2009,131:10857-10859.
    [31] Ahnfeldt T, Guillou N, Gunzelmann D, et al.[Al4(OH)2(OCH3)4(H2N-bdc)3]·xH2O: A12-ConnectedPorous Metal-Organic Framework with an Unprecedented Aluminum-Containing Brick[J]. Angew ChemInt Ed,2009,48,5163-5166.
    [32] Banerjee R, Phan A, Wang B, et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworksand Application to CO2Capture[J]. Science,2008,319:939-943.
    [33] Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement[J]. Angew Chem Int EdEngl,1998,37:1460-1494.
    [34] Qu Z R, Chen Z F, Zhang J, et al. The first highly stable homochiral olefin-copper(I)2D coordinationpolymer grid based on quinine as a building block[J]. Organomatallics,2003,22(14):2814-2816.
    [35] Zheng G L, Ma J F, Su Z M. et al. A mixed–balence tin-oxyfen cluster contianing six peripheralferrocence units[J]. Angew Chem Int Ed,2004,43:2409-2411.
    [36] Zheng G L, Ma J F, Yang J. et al. A New system in organooxotin cluster chemistry incorporatinginorganic and organic spacers between two ladders each containing five tin atoms[J]. Chem Eur J,2004,10:3761-3768.
    [37] Song S Y, Ma J F, Yang J. et al. Synthesis of an organotin oligomer containing a heptanuclear tinphosphonate cluster by debenzylation reactions: X-ray crystal structure of{Na6(CH3OH)2(H2O)}{[(BzSn)3(PhPO3)5(μ3-O)(CH3O)]2Bz2Sn}·CH3OH[J]. Organomatallics,2007,26(8):2125-2128.
    [38] Xu G H, Ma J F, Yu H X. et al. A series of new organotin-cyanometalate compounds based ontriorganotin, diorganotin, and organooxotin clusters[J]. Organomatallics,2007,25(26):5996-6006.
    [39] Goodman D C, Farmer P J, Darensbourg M Y, et al. A coordination polymer of nickel(II) based on apentadentate N, S, and O donor ligand[J]. Inorg Chem,1996,35(17):4989-4994.
    [40] MacGillivray L R, Subramanian S, Zaworotko M J,“Interwoven two-and three-dimensionalcoordination polymers through self-assembly of CuI cations with linear bidentate ligands”[J]. ChemCommun,1994,1325-1326.
    [41] Lloret G, DeMunno M, Julve J, et al.“Spin polarization and ferromagnetism in two-simensionalsheetlike cobalt(II) polymers:[Co(L)2(NCS)2](L=Pyrimidine or Pyrazine)”[J]. Angew Chem Int Ed,1998,37:135-138.
    [42] Yaghi M, Li H,“Hydrothermal Synthesis of a Metal-Organic Framework Containing LargeRectangular Channels”[J]. J Am Chem Soc,1995,117:10401-10402.
    [43] Yaghi M, Li H,“Mutually Interpenetrating Sheets and Channels in the Extended Structure of[Cu(4,4-bpy)Cl]”[J]. Angew Chem Int Ed,1995,34:207-209.
    [44] Losier P, Zaworotko M J,“A Noninterpenetrated Molecular Ladder with Hydrophobic Cavities”[J].Angew Chem Int Ed,1996,35:2779-2782.
    [45] Yaghi M, Li H, Groy T L,“A Molecular Railroad with Large Pores: Synthesis and Structure ofNi(4,4'-bpy)2.5(H2O)2(ClO4)2·1.5(4,4'-bpy)·2H2O”[J]. Inorg Chem,1997,36:4292-4293.
    [46] Park K S, Ni Z, C té A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolateframeworks[J]. PNAS,2006,103:10186-10191.
    [47] Kahn, Molecular Magnetism[M]. New York:VCH,1993.
    [48] Ali M, Ray A, Sheldrick W S, et al. Synthesis, crystal structure, EPR and magnetic properties of acyano-bridged CuII-NiIIheterobimetallic comples:an unusual structure with long-range ferromagneticexchange through hydrogen bonding[J]. New J Chem,2004,28:412-417.
    [49] Batten S. R, Hoskins B F, Moubaraki B, et al. Crystal structures and magnetic properties of theinterpenetrating rutile-related compounds M(tcm)2[M=octahedral, divalent metal; tcm–=tricyanomethanide, C(CN)–3] and the sheet structures of [M(tcm)2(EtOH)2](M=Co or Ni)[J]. J Chem Soc, Dalton Trans,1999,2977–2986.
    [50]Jansen P, Batten S R, Moubaraki B, et al. Infinite molecular tubes: structure and magnetism ofM(dca)2(apym)[M=Co, Ni, apym=2-aminopyrimidine, dca=dicyanamide, N(CN)2][J]. ChemCommun,2000,793-794.
    [51] Eddaoudi M, Kim J, Rosi N, et al. Systematic Design of Pore Size and Functionality in IsoreticularMetal-Organic Frameworks and Application in Methane Storage[J]. Science,2002,295(5554):469-472.
    [52] Yuan D Q, Zhao D, Timmons D J., et al. A stepwise transition from microporosity to mesoporosity inmetal–organic frameworks by thermal treatment[J]. Chem Sci,2011,2:103–106.
    [53] Wang X L, Qin C, Wang E B, et al. Entangled coordination networks with inherent features ofpolycatenation, polythreading, and polyknotting[J]. Angew Chem Int Ed,2005,44:5824-5827.
    [54] Hao X R, Wang X L, Qin C, et al. A3D chiral nanoporous coordination framework consisting ofhomochiral nanotubes assembled from octuple helices[J]. Chem Commun,2007,4620-4622.
    [55] Kanoo P, Mostafa G, Matsuda R, et al. A pillared-bilayer porous coordination polymer with a1Dchannel and a2D interlayer space, showing unique gas and vapor sorption[J]. Chem Commun,2011,47:8106-8108.
    [56] Kou Z,.Liao D Z, Cheng P,“Reactions of [SM(μ-S)FeCl](M=Mo or W) with arenethiolateions:influence of neighbouring metal sites on the rates and mechanisms of substitution at iron”[J]. J ChemSoc, Dalton Trans,1997,1507-1514.
    [57] Li L, Liu Z, Turner S S, et al. The first one-dimensional copper(II)-radical system with alternatingdouble end-on and end-to-end azido bridges[J]. New J Chem,2003,27:752-755.
    [58] Desiraju G R, Supramolecular Synthons in Crystal Engineering A New Organic Synthesis[J]. AngewChem Int Ed Engl,1995,31:2311-2327.
    [59] Le Bideau J, Payen C, Palvadeau P, et al. Preparation, Structure, and Magnetic Properties of Copper(II)Phosphonates beta-CuII(CH3PO3), an Original Three-Dimensional Structure with a Channel-TypeArrangement[J]. Inorg Chem,1994,33(22):4885.
    [60] Shimizu G K H, Vaidhyanathan R, Taylor J M, Phosphonate and sulfonate metal organicframeworks[J]. Chem. Soc.Rev.2009,38(5):1430-1449.
    [61] Maeda K, Metal phosphonate open-framework materials[J]. Microporous Mesoporous Mater.2004,73(1-2):47-55.
    [62] Miller S R, Lear E, Gonzalez J, et al. Synthesis and structure of the framework scandiummethylphosphonates ScF(H2O)CH3PO3and NaSc(CH3PO3)2·0.5H2O[J]. Dalton Trans,2005,20:3319-3325.
    [63] Zhang Y Y, Qi Y, Zhang Y, et al. Cu5Sb2O8SiO4, an open framework structure with copper uncommoncoordination modes: Cu[2+2+2]O6and Cu[4+4]O8[J]. Mater Res Bull,2007,42(8):1531-1538.
    [64] Lohse D L, Sevov S C, Co2(O3P-CH2-PO3)·H2O: A Novel Microporous Diphosphonate with anInorganic Framework and Hydrocarbon-Lined Hydrophobic Channels[J]. Angew Chem Int Ed Engl,1997,36(15):1619-1621.
    [65] Finn R C, Zubieta J, Haushalter R C, et al.Crystal Chemistry of Organically Templated VanadiumPhosphates and Organophosphonates[M]. John Wiley&Sons, Inc.: New York,2003; p421.
    [66] Fu R B, Wu X T, Hu S M, et al. Crystal structures of five transition-metal1,4-butylenediphosphonates[J]. Polyhedron,2003,22(19):2739-2744.
    [67]徐如人,庞文琴,无机合成与制备化学[M].北京:高等教育出版社,2001年,128-163.
    [68]陈小明,蔡继文,单晶结构分析原理与实践[M].北京:科学出版社,2003年,41-43。
    [69] Meek S T, Greathouse J A, Allendorf M D, Metal-Organic Frameworks: A Rapidly Growing Class ofVersatile Nanoporous Materials[J]. Advanced Materials,2011,23:249-267.
    [70] Farha O K, Yazaydin A O, Eryazici I, et al. De novo synthesis of a metal–organic framework materialfeaturing ultrahigh surface area and gas storage capacities[J]. Nature Chem,2010,2:944-948.
    [71] Furukawa H, Ko N, Go Y B, et al. Ultrahigh Porosity in Metal-Organic Frameworks[J]. Science,2010,329:424-428.
    [72]Norbert S, Shyam B, Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOFTopologies, Morphologies, and Composites[J]. Chem Rev,2012,112:933–969.
    [73] Rowsell J L C, Yaghi O M, et al. Effect of Functionalization, Catenation, and Variation of the MetalOxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-OrganicFrameworks[J]. J Am Chem Soc,2006,128:1304.
    [74] Rowsell J L C, Yaghi O M, Strategies for Hydrogen Storage in Metal–Organic Frameworks [J].AngewChem Int Ed,2005,44,:4670-4679.
    [75] Jung D H, Kim D, Lee T B et al.Grand Canonical Monte Carlo Simulation Study on the CatenationEffect on Hydrogen Adsorption onto the Interpenetrating Metal-Organic Frameworks[J]. J. Phys. Chem. B2006,110:22987.
    [76] Ma S, Sun D, Ambrogio M, et al. Framework-Catenation Isomerism in Metal-Organic Frameworksand Its Impact on Hydrogen Uptake[J]. J Am Chem Soc,2007,129:1858.
    [77] Ryan P, Broadbelt L J, Snurr R Q, Is catenation beneficial for hydrogen storage in metal–organicframeworks?[J]. Chem Commun,2008,4132-4134.
    [78] Han S S, Mendoza-Cortes J L, Goddard W A III, Recent advances on simulation and theory ofhydrogen storage in metal–organic frameworks and covalent organic frameworks[J]. Chem Soc Rev,2009,38:1460-1476.
    [79] Dinca M, Dailly A, Liu Y, et al. Hydrogen Storage in a Microporous Metal-Organic Frameworks withExposed Mn2+Coordination Sites[J]. J Am Chem Soc,2006,128:16876.
    [80] Dinca M, Long J R, Hydrogen Storage in Microporous Metal–Organic Frameworks with ExposedMetal Sites[J]. Angew Chem Int Ed,2008,47:6766-6779.
    [81] Chen B, Ockwig N W, Millward A R, et al. High H2Adsorption in a Microporous Metal–OrganicFramework with Open Metal Sites[J].Angew. Chem., Int. Ed.2005,44:4745-4749.
    [82] Mulfort K L, Farha O K, Stern C L et al.Post-Synthesis Alkoxide Formation Within Metal-OrganicFrameworks Materials: A Strategy for Inorporating Highly coordinatively Unsaturated Metal Ions[J]. J AmChem Soc,2009,131:3866.
    [83] Himsl D, Wallacher D, Hartmann M, Improving the Hydrogen-Adsorption Properties of aHydroxy-Modified MIL-53(Al) Structural Analogue by Lithium Doping[J]. Angew Chem Int Ed,2009,48:4639-4642.
    [84] Ma S Q, Sun D F, Wang X S, et al. A Mesh-Adjustable Molecular Sieve for General Use in GasSeparation[J]. Angew Chem Int Ed,2007,46(13):2458-2462.
    [85] Eliseeva S V, Bunzli J C G. Lanthanide luminescence for functional materials and bio-sciences[J].Chem. Soc. Rev.2010,39:189.
    [86] Binnemans K. Lanthanide-Baded Luminescent Hybrid Materials[J]. Chem Rev,2009,109:4283.
    [87] Hwang S H, Moorefield C N, Newkome G R, Dendritic macromolecules for organic light-emittingdiodes[J]. Chem Soc Rev,2008,37:2543-2557.
    [88] Carlos L D, Ferreira R A S, de Zea Bermudez V, et al. Progress on lanthanide-based organic–inorganichybrid phosphors[J]. Chem. Soc. Rev.2011,40:536-549.
    [89] An J, Shade C M, Chengelis-Czegan D A, et al. Zinc-Adeninate Metal-Organic Framework forAqueous Encapsulation and Sensitization of Near-infrared and Visible Emitting Lanthanide Cations[J]. JAm Chem Soc,2011,133:1220.
    [90] Fang Q R, Zhu G S, Jin Z, Ji, et al. Mesoporous Metal–Organic Framework with Rare etb Topologyfor Hydrogen Storage and Dye Assembly[J]. Angew Chem Int Ed,2007,46,6638-6642.
    [91] Taylor J M, Dawson K W, Shimizu G K H A. Water-Stable Metal Organic Framework with HighlyAcidic Pores for Proton-Conducting Applications[J]. J Am Chem Soc,2013,135:11931196.
    [92] Ingleson M J, Heck R, Gould J A, et al. Nitric Oxide Chemisorption in a Postsynthetically ModifiedMetal-Organic Framework[J]. Inorg Chem,2009,48(21):9986-9988.
    [93] Nguyen J G, Tanabe K K, Cohen S M. Postsynthetic diazeniumdiolate formation and NO release fromMOFs[J]. CrystEngComm,2010,12:2335-2338.
    [94] Rocchiccioli-Deltcheff C, Fournier M, Franck R, et al. Vibrational Investigations of Polyoxometalates.2. Evidence for Anion-Anion Interactions in Molybdenum(Ⅵ) and Tungsten(Ⅵ) Compounds Related to theKeggin Structure[J]. Inorg Chem,1983,22(2):207-216.
    [95] Spek A L. PLATON99, A Multipurpose Crystallographic Tool[M]. Netherlands: Utrecht University,1999.
    [96] Tan Y X, He Y P, Zhang J. Pore partition effect on gas sorption properties of an anionic metal–organicframework with exposed Cu2+coordination sites[J]. Chem Commun,2011,47:10647-10649.
    [97] Rouquerol F, Roquerol J, Sing K. Adsorption by Powders and Porous Solids[M]. London: AcademicPress,1999.
    [98] Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity[M]. London: Academic Press,1982.
    [99] Xiao B, Wheatley P S, Zhao X B, et al. High-Capacity Hydrogen and Nitric Oxide Adsorption andStorage in a Metal Organic Framework[J]. J Am Chem Soc,2007,129(5):1203-1209.
    [100] Bordiga S, Regli L, Bonino F, et al. Adsorption properties of HKUST-1toward hydrogen and othersmall molecules monitored by IR[J]. Phys Chem Chem Phys,2007,9:2676-2685.
    [101] Herring A M, McCormick R L, Boonrueng S R. A Comparison of the Interaction of Nitric Oxidewith the Heteropolytungstic Acids H3PW12O40, H0.5Cs2.5PW12O40, HMgPW12O40, H8SiW11O38, H4SiW12O40,and H10CoW12O42[J]. J Phys Chem B,2000,104(19):4653-4660.
    [102] Cheng X N, Zhang W X, Lin Y Y, et al. A Dynamic Porous Magnet Exhibiting ReversibleGuest-Induced Magnetic Behavior Modulation[J]. Adv Mater,2007,19:1494-1498.
    [103] Barthelet K, Marrot J, Riou D, et al. A Breathing Hybrid Organic–Inorganic Solid with Very LargePores and High Magnetic Characteristics[J]. Angew Chem Int Ed,2002,41(2):281-284.
    [104] Kurmoo M, Kepert C J. Hard magnets based on transition metal complexes with the dicyanamideanion{N(CN)-2}[J]. New J Chem,1998,22:1515-1524.
    [105] Batten S R, Murray K S. Structure and magnetism of coordination polymers containing dicyanamideand tricyanomethanide[J].Coord Chem Rev,2003,246:103-130.
    [106] D-K Cao, M-J Liu, J Huang, et al. Cobalt and manganese diphosphonates with one-,two-,andthree-dimensional structures and field-induced magnetic transitions[J].Inorg Chem,2011,50:2278–2287.
    [107] Zhang L, Ling Y, Hu A X, et al. Four novel Co(II)and Mn(II) coordination polymers with triazolylderivate: Syntheses, crystal structures and magnetic properties[J]. Inorg Chim Acta,2009,362:4867-4874.
    [108] Janiak C. Engineering coordination polymers towards applications[J]. J Chem Soc Dalton Trans,2003:2781-2804.
    [109] Liu J Q, Liu B, Wang Y Y, et al. An Unusual3D Entangled Co(II) Coordination Polymer Directed byFerromagnetic Molecular Building Block[J]. Inorg Chem,2010,49:10422–10426.
    [110] Wang C, Zhang T, Lin W B. Rational Synthesis of Noncentrosymmetric Metal-Organic Frameworksfor Second-Order Nonlinear Optics[J]. Chem Rev,2012,112:1084–1104.
    [111] Ma S Q, Fillinger J A, Ambrogio M W, et al. Synthesis and characterizations of a magnesiummetal–organic framework with a distorted (10,3)-a-net topology[J].Inorg. Chem Commun,2007,10:220-222.
    [112] Lin Z, Jiang F, Chen L et al. New3-D Chiral Framework of Indium with1,3,5-Benzenetricarboxylate[J]. Inorg Chem,2004,44:73.
    [113] Du Z Y, Sun Y H, Xu X A, et al. Orientation of Second-Harmonic-Generation-Active PhenylsulfonylChromophores Attached on Layered Lead(II) Phosphonates[J].Eur. J. Inorg. Chem.2010,30:4865-4869.
    [114] Evans O R, Lin W. Optimizing implanter vacuum performance with various cassette materials[J]. AccChem Res,2002,35:511-514.
    [115] Horcajada P, Serre C, Vallet-Regi M, et al. Metal-Organic Frameworks as Efficient Materials forDrug Delivery[J]. Angew Chem Int Ed Engl,2006,45:5974-5978.
    [116] An J, Geib S J, Rosi N L. Cation-Triggered Drug Release from a Porous Zine-AdeninateMetal-Organic Framework[J]. J Am Chem Soc,2009,131:8376-8377.
    [117] Horeajada P, Chalati T, Serre C, et al. Porous Metal-Organic-Framework Nanoscale Carriers as APotential Platform for Drug Delivery and Imaging[J].Nature Materials,2010,9:172-178.
    [118] Taylor-Pashow K M L, Rocca J D, Huxford R C, et al. Hybrid nanomaterials for biomedicalapplications[J]. Chem Commun,2010,46:5832
    [119] Munuera C, Shekhah O, Wang H, et al. The controlled growth of oriented metal–organic frameworkson functionalized surfaces as followed by scanning force microscopy[J].Phys Chem Chem Phys,2008,10:7257-7261.
    [120] Shekhah O, Liu J, Fischer R A, et al. MOF thin films: existing and future applications[J]. Chem SocRev,2011,40:1081.
    [121] Zacher D, Shekhah O, Woll C, et al. Thin films of metal–organic frameworks[J]. Chem Soc Rev,2009,38:1418.
    [122] Zacher D, Schmid R, Woll C, et al. Surface Chemistry of Metal-Organic Frameworks at theLiquid-Solid Interface[J]. Angew Chem Int Ed,2011,50:176.
    [123] Gascon J, Kapteijn F. Metal-Organic Framework Membranes-High Potential, Bright Future?[J].Angew Chem Int Ed,2010,49:1530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700