黄河口高浓度泥沙异重流过程:现场观测与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口海岸地区是河流与海洋交汇的场所,大量的陆源物质以泥沙为载体,在复杂的动力条件下由河口向海洋传输。河口泥沙异重流是一种少见的河流入海传输方式,具有传输速度快和传输通量大的特点,对三角洲及近海环境地貌变化和重金属及有毒物颗粒排放具有重要的影响。黄河以水少沙多著称,历来是研究和观测河口泥沙异重流的典型区域。随着流域气候变化和人类活动的影响,河口泥沙异重流传输方式发生转变,带来了一系列地貌变化和生物地球化学效应。本文利用1995年9月洪季和2010年7月小浪底调水调沙塑造异重流排沙影响下的黄河口泥沙异重流观测资料,分别阐明了两个航次观测到的河口泥沙异重流发育的时空变化过程及机制,并结合EFDC三维数值模型,对简易河口地形下河口泥沙异重流过程进行模拟,检验不同影响因子对河口泥沙异重流发育过程的影响,并将数值模拟结果与现场观测与国内外研究成果有机联系,在河口泥沙异重流的周期性演化过程、主要控制机理方面取得了新的认识,对于深入理解河口泥沙异重流的发生、变化过程以及环境效应有重要的意义。
     本文通过研究得到了对河口泥沙异重流过程的一系列认识:
     1)当河流入海含沙量和泥沙组分基本稳定时,河口泥沙异重流主要受潮流调制作用,其发育变化过程具有周期性:涨平时异重流发育;落潮时异重流发育较好;落平时异重流开始衰减;涨潮时异重流逐渐消亡。异重流发育时,底层逐渐为淡水控制,盐度降低,含沙量升高,受剪切力(Fr)小于重力沿斜坡向下的分量(Fg)的影响,异重流向海加速运动,对底床产生冲刷效应,水体混合程度较弱,粗颗粒泥沙沉降,异重层内悬沙粒度降低;异重流衰减时,底层逐渐为海水控制,盐度升高,含沙量降低,Fr>Fg,异重流向海减速运动,对底床产生淤积效应,水体混合程度加强,维持了粗颗粒泥沙的悬浮状态,悬沙粒度升高。受潮流的牵引作用,河口泥沙异重流的路径可能是沿着曲线向海传输,这对于捕捉异重流的空间变化过程非常重要。
     2)高含沙量是产生河口泥沙异重流的必要条件,而非充分条件。入海泥沙的粒度也是控制河口泥沙异重流发育和演化的另外一个重要条件。泥沙颗粒的粒度控制效应表现在:入海泥沙颗粒粗,导致泥沙在河道内快速沉积,水体含沙量急剧减小,在河口无法下潜形成异重流;在异重流发育过程中,异重层内的粗颗粒泥沙将快速沉降在海底,使得异重层的含沙量降低,难以维持异重层水体和上覆水体的密度差,导致异重流快速衰减。
     3)针对近年来黄河入海水沙量均显著减少、粒度不断粗化的现状,根据本文的现场观测和数值模拟结果,可以推断河流入海的传输方式将从以往的高浓度泥沙异重流转变为表层羽状流,这一变化将引起河口泥沙传输路径和沉积范围的改变,以泥沙为载体的重金属、有毒污染物和营养元素的扩散方式和埋藏过程可能也会随之发生变化,影响河口和近海的生物地球化学循环。
     本文从现场观测资料出发,配合数值模拟手段,提炼出黄河口泥沙异重流发育过程及机制中关键的影响因子,并阐述了这些关键因子的变化对河口泥沙异重流过程的影响,这些认识对今后对黄河口泥沙异重流传输过程的转变、三角洲及近海地貌地形变化以及近海生物地球化学循环的研究起到重要的启示作用。
Estuary is a link between river and coastal ocean. The terrestrial material,delivered by suspended sediments from river to the sea in complicated transmissionways. Hyperpycnal flows are not common patterns of the riverine sediment in theestuaries. They are characterized by their quick discharge and high sediment load,which make them important factors for the deltaic and coastal environment evolution,and the transport processes of the fluvial heavy metal and toxic pollutant particles.Huanghe is famous for its high annual sediment load delivered to the sea, historicallyconsidered as a typical area for the observations and researches of hyperpycnal flows.Impacted by climate change and extensive human activities, the transmission way ofhyperpycnal flows is transformed, which causes a series effect of geomorphology andbiogeochemical. This dissertation bases on the in-situ observations of hyperpycnalflows during Cruise1995and Cruise2010. The spatio-temporal variations and thedynamic mechanisms of hyperpycnal flows are illustrated. A three-dimensionalhydrodynamics model (EFDC model) is used to simulate hyperpycnal flows in anidealized highly turbid estuary. Four experiments are conducted in order to examinethe influential factors to the formation and maintenance of hyperpycnal flows in anidealized highly turbid estuary. Comparing the in-situ observations with the results ofnumerical simulations, new knowledge of the periodic variation and main controllingmechanisms, is significant in formation and variation of hyperpycnal flows and alsohave important biogeochemical effect.
     The conclusion of the dissertation shows:
     1) The median grain size and the suspended sediment concentration (SSC) of theHuanghe to the sea are controlling elements in the formation and attenuation ofhyperpycnal flows. The hyperpycnal flows in Huanghe mouth with stable river effluent are periodically modulated by tidal cycles, when start at the slack water inflood tides, enhance in ebb tides, attenuate at the slack water in ebb tides, and thendisappear in flood tides. During the formation of hyperpycnal flows, fresh water withdecreasing salinity and increasing SSC controls the bottom boundary layer.Accelerated by the down-slope force (Fg) greater than the shear stress (Fr),hyperpycnal flows scour the sea-bed. Because of low turbulence frequency, themedian grain sizes are reduced by the deposition of the coarser sediment from thewater. On the contrary, during the attenuating process of hyperpycnal flows, thebottom boundary layer is controlled by ocean water with increasing salinity anddecreasing SSC. Hyperpycnal flows are decelerated by Fr greater than Fg, whichleads to the nearshore deposition of hyperpycnal flows. The median grain sizes isincreased by the high coarser sediment with increasing turbulence frequency. Basedon the in-situ observations and numerical simulations, the transporting pathways ofhyperpycnal flows are non linear but possibly curvilinear dragged by the tidalcurrents.
     2) Results of the numerical experiments show that: the variation characters ofhyperpycnal flows are according with the in-situ observations and the previousresearch. The SSC of the river effluents is of primary importance to the formation ofhyperpycnal flows, but not the sufficient factor. The median grain size is a key factorto the maintenance of hyperpycnal flows in estuary. Even the SSC is large enough, thehyperpycnal flows can’t occur with coarser sediment. The enhance turbulencetriggered by tidal cycles or waves leads to suppression in the formation and deliveryof hyperpycnal flows.
     3)Recent years, the water and sediment discharges from the Huanghe to the seaare significantly decrease, accompanied by the increasing median grain size. Underthe circumstances, the transporting pattern of the riverine sediment to the sea verifiedquickly from hyperpycnal flows to hypopycnal flows. The diffusion and deposition ofheavy metal and nutrients, carried by the fine-grain size sediments, is changed by thetransformation of the transporting pattern of sediment, which consequently affect thebiogeochemical cycles in the estuary and coastal sea. Based on the in-situ observations, together with EFDC model, several crucial factorsin formation and attenuation of hyperpycnal flows are refined in this dissertation. Theeffect of the crucial factor on the process of hyperpycnal flows is important. The studyhere is helpful for the future study in the Huanghe hyperpycnal flows transformation,the geomorphology and the coastal biogeochemical cycles.
引文
[1]陈吉余,陈沈良.中国河口海岸面临的挑战[J].海洋地质动态,2002,18(1):1-5.
    [2]陈吉余,陈沈良.河口演变过程理论及研究方法[M].北京:科学出版社,1958.
    [3] Walling, D.E., Fang, D.. Recent trends in the suspended sediment loads of the world's rivers.Global and Planetary Change,2003,39,111–126.
    [4] Hartwig H. Kremer, Martin, D.A., Tissier, L., Burbridge, P.R., McManus, L.T., Rabalais,N.N., Parslow, J., Crossland, C.J., Young, B.(Eds.). Land Sea Interactions in the CoastalZone (LOICZ)-Science Plan and Implementation Strategy (IGBP Report51/IHDP Report18),IGBP Secretariat, Stockholm, Sweden,2005, pp.22–27.
    [5] Mulder T, Syvitski JPM, Migeon S, Faugeres J, Savoye B. Marine hyperpycnal flows:initiation, behavior and related deposits. A review. Marine and Petroleum Geology,2003,20:861–882.
    [6] Syvitski, J.P.M., Peckham, S.D., Hilberman, R.D., Mulder, T.. Predicting the terrestrial fluxof sediment to theglobal ocean: a planetary perspective. Sediment. Geol,2003,162,5–24.
    [7] Bates, C. C.. Rational theory of delta formation. Bulletin of American Association ofPetroleum Geology,1953,37(9),2119–2162
    [8] Mulder T, Syvitski JPM.. Turbidity currents generated at river mouths during exceptionaldischarges to the world oceans. Journal of Geology,1995,103:285–299.
    [9] Wright LD, Wiseman WJ, Bornhold BD, Prior DB, Suhayda JN, Keller GH, Yang ZS, FanYB. Marine dispersal and deposition of Yellow River silts by gravity-driven underfl ows.Nature,1988,332:629–632.
    [10] Milliman, J.D., Syvitski, J.P.M.. Geomorphic/Tectonic control of sediment discharge to theocean: the importance of small mountainous rivers. Journal of Geology,1992,100,525–544
    [11] Dadson SJ, Hovius N, Chen H, Dade WB, Lin JC, Hsu ML, Lin CW, Horng MJ, Chen TC,Milliman J, Stark CP. Earthquake-triggered increase in sediment delivery from an activemountain belt. Geology,2004,32(8):733–736.
    [12] Milliman JD, Kao SJ. Hyperpycnal discharge of fluvial sediment to the ocean: impact ofSuper-typhoon herb (1996) on Taiwanese Rivers. Journal of Geology,2005,113:503–516.
    [13] Wang, H., Bi, N., Wang, Y., Saito, Y., Yang, Z.. Tide-modulated hyperpycnal flows off theHuanghe (Yellow River) mouth, China. Earth Surface Processes and Landforms,201035,1315-1329.
    [14] Milliman, J.D., Qin, Y.S., Ren, M.-E., Saito, Y.. Man’s influence on the erosionand transportof sediment by Asian rivers: the Yellow River (Huanghe) example.Journal of Geology,1987,95,751–762
    [15] Saito, Y., Yang, Z.S., Hori, K.. The Huanghe (Yellow River) and Changjiang(Yangtze River)deltas: a review on their characteristics, evolution and sedimentdischarge during theHolocene. Geomorphology,2001,41,219–231.
    [16] Milliman J D and Meade R H.World-wide delivery of river sediment to the oceans.Journal ofGeology,1983,91(1):1-21.
    [17] Wright LD, Yang ZS, Bornhold BD, Keller GH, Prior DB, Wiseman Jr WJ. Hyperpycnalplumes and plumes front over the Huanghe delta front. Geo-marine Letters,1986,6:97–105.
    [18] Wright LD, Wiseman WJ, Yang ZS, Bornhold BD, Keller GH, Prior DB, Suhayda JN.Processes of marine dispersal and deposition of suspended silts off the modern mouth of theHuanghe (Yellow River). Continental Shelf Research,1990,10:1–40.
    [19] Wright, D.L., Nittrouer, C. A. Dispersal of River Sediments in Coastal Seas: Six ContrastingCases [J]. Estuaries,1995,18(3):494-508.
    [20] Geyer, W.R., Hill, P.S., Kineke, G.C.. The transport, transformation and dispersal of sedimentby buoyant coastal flows. Continental Shelf Research,2004,24,927–949.
    [21] Yang, Z. S., Milliman, J. D., Galler, J., Liu, J. P., Sun, X. G., Yellow River’ s waterand sediment discharge decreasing steadily[J]. EOS, Transactions, American GeophysicalUnion,1998,(79):589-592.
    [22] Xu, J.. Sediment flux into the sea as influenced by the changing human activities andprecipitation: example of the Huanghe River, China. Acta Oceanologica Sinica,2003,25(5),125–135.
    [23] Wang, H., Yang, Z.S., Saito, Y., Liu, J.P., Sun, X.. Interannual and seasonal variation of theHuanghe (Yellow River) water discharge over the past50years: connections to impacts fromENSO events and dams. Global and Planetary Change,2006,50,212–225.
    [24] Wang, H., Yang, Z.S., Saito, Y., Liu, J.P., Sun, X.,Wang, Y.. Stepwise decreases of theHuanghe (Yellow River) sediment load (1950–2005): impacts of climate changes and humanactivities. Global and Planetary Change,2007,57,331–354.
    [25] Wang, H.J., Bi, N.H., Saito, Y., Wang, Y., Sun, X.X., Zhang, J., Yang, Z.S.. Recent changes insediment delivery by the Huanghe (Yellow River) to the sea: Causes and environmentalimplications in its estuary. Journal of Hydrology,2010,391(3-4),302-313
    [26]杨作升,戴慧敏,王开荣.1950-2000年黄河入海水沙的逐日变化及其影响因素[J].中国海洋大学学报,2005,35(2):237-244.
    [27] Forel,F.A.,Les Ravins Sons-Lacustre des Fluves Glaciaires,Acad.Sci.,Paris, ComptesRendus,1885,(101):725-728.
    [28] Society of Economic Paleontologists and Mineralogists,“Turbidity Currents and theTransportation of Coarse Sediments to Deep Water, A Symposium”, SpecialPub.1950(2):107.
    [29] Einarsson, P., Brandsdóttir, B., Tumi Gudmunsson, M., Bj rnsson, H., Gr nvold, K.,&Sigmundsson, F.. Center of the Iceland Hotspot Experiences Volcanic Unrest. EosTransactions, American Geophysical Union,1997,78(35),369–375.
    [30] Gr nvold, K.,&Jóhannesson, H.. Eruption in Grímsv tn1983, course of events andchemical studies of the tephra. J kul,1984,34,1–11.
    [31] Gudmunsson, M. T., Sigmundsson, F.,&Bj rnsson, H.. Ice–volcano interaction of the1996Gjálp subglacial eruption, Vatnaj kull, Iceland. Nature,1997,389,954–957
    [32] Hovius, N., C. P. Stark, H. T. Chu, and J. C. Lin, Supply and removal of sediment in alandslide-dominated mountain belt: Central Range, Taiwan, J. Geol.,2000,108,73–89
    [33] Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.C., Hsu, M.L., Lin, C.W., Horng, M.J.,Chen, T.C., Milliman, J., Stark, C.P.. Earthquake-triggered increase in sediment delivery froman active mountain belt. Geology,2004,32(8),733–736
    [34] Dadson, S., Hovius, N., Pegg, S., Dade, W.B., Horng, M.J., Chen, H.. Hyperpycnal riverflows from an active mountain belt. J. Geophys. Res. Earth Surf.,2005,110((F4016).
    [35] Galewsky, J., Stark, C.P., Dadson, S., Wu, C.-C., Sobel, A.H., and Horng, M.-J.. Tropicalcyclone triggering of sediment discharge in Taiwan: Journal of Geophysical Research,2006,v.11, F03014
    [36] Milliman, J.D., Lin, S.W., Kao, S.J., Liu, J.P., Liu, C.S., Chiu, J.K., Lin, Y.C.. Short-TermChanges in Seafloor Character Due to Flood-Derived Hyperpycnal Discharge: TyphoonMindulle, Taiwan, July2004. Geology,2007,35,779–782.
    [37] Foster, G., Carter, L.. Mud sedimentation on the continental shelf at an accretionarymargin—Poverty Bay, New Zealand. New Zealand Journal of Geology and Geophysics,1997,40,157–173
    [38] Mulder, T., Savoye, B., Syvitski, J.P.M., and Parize, O.. Des courants de turbiditéhyperpycnaux dans la tête du canyon du Var? Données hydrologiques et observations deterrain: Oceanologica Acta,1997, v.20, p.607–626.
    [39] Normark, W.R., Piper, D.J.W. and Hiscott, R.N. Sea level effects on the depositionalarchitecture of the Hueneme and associated submarine fan systems, Santa Monica Basin,California. Sedimentology,1998,45,3–70.
    [40] Prior, D.B., Yang, Z.-S., Bornhold, B.D., Keller, G.H., Wiseman, W.J., Wright, L.D.. Activeslope failure, sediment collapse, and silt flows on the modern subaqueous Huanghe Delta.Geo-Marine Letters,1986,6,85–95.
    [41] Li, G., Tang, Z., Yue, S., Zhuang, K., Wei, H.. Sedimentation in the shear front off the YellowRiver mouth. Continental Shelf Research,2001,21,607–625.
    [42] Kineke, G.C., Woolfe, K.J., Kuehl, S.A., Milliman, J.D., Dellapenna, T.M., Purdon, R.G..Sediment export from the Sepik River, Papua New Guinea: evidence for a divergent sedimentplume. Continental Shelf Research,2000,20,2239–2266.
    [43] Sternberg, R.W., Cacchione, D.A., Paulson, B., Kineke, G.C., Drake, D.E.. Observations ofsediment transport on the Amazon subaqueous delta. Continental Shelf Research,1996,16,697–715.
    [44] Bentley, S.J., Rotondo, K.A., Roberts, H.H., Stone, G.W., Chan, S.,2003. Inner shelfclinoform development from fluid-mud deposition: Chenier Plain coast of Louisiana, USA.Paper no.248-4, Geological Society of America Annual Meeting, Seattle, WA, November2003.
    [45] Rotondo, K.A.. Transport and deposition of fluid mud event layers along the westernLouisiana inner shelf. Master’s thesis,2004, Coastal Studies Institute, Louisiana StateUniversity.
    [46] Wheatcroft, R.A., Sommerfield, C.K.. River sediment flux and shelf sediment accumulationrates on the Pacific Northwest margin. Continental Shelf Research,2005,25,311–332.
    [47] Wright, L.D., Friedrichs, C.T., Kim, S.C., Scully, M.E.. Effects of ambient currents andwaves on gravity-driven sediment transport on continental shelves. Marine Geology,2001,175,25–45.
    [48] Harris C.K., Traykovski, P.A., Geyer, W.R.. Flood dispersal and deposition by near-bedgravitational sediment flows and oceanographic transport: a numerical modeling study of theEel River shelf, northern California. Journal of Geophysical Research,2005,110(C9),(25-1–25-16).
    [49]中国河流泥沙公报,2003.中华人民共和国水利部.
    [50]中国河流泥沙公报,2004.中华人民共和国水利部.
    [51]黄河泥沙公报,2005.水利部黄河水利委员会.
    [52]黄河泥沙公报,2006.水利部黄河水利委员会.
    [53]黄河泥沙公报,2007.水利部黄河水利委员会.
    [54]黄河泥沙公报,2008.水利部黄河水利委员会.
    [55]黄河泥沙公报,2009.水利部黄河水利委员会.
    [56] Middleton, G.V.. Experiments on density and turbidity currents: III. Deposition of sediment.Can. J. Earth Sci.,1967,4,297–307.
    [57] Fietz, T.R., Wood, I.R.. Three dimensional density current. J. Hydraul. Div.,1967,93(HY6),1–23.
    [58] García, M., Parker, G.. Experiments on the entrainment of the sediment into suspension by adense bottom current. J. Geophys. Res.,1993,98(c3),4793–4807.
    [59] Alexander, J., Morris, S.. Observation on experimental, non-channelized, high concentrationturbidity currents and variations in deposits around obstacles. J. Sediment. Res.,1994, A64,899–909.
    [60]方春明,韩其为,何明民.异重流潜入条件分析及立面二维数值模拟[J].泥沙研究,1997,(4):68-74.
    [61]庞重光,杨作升.黄河口泥沙异重流基本控制参数的数值试验.泥沙研究,2000,5:68-72
    [62]庞重光,杨作升.黄河口泥沙异重流的数值模拟.青岛海洋大学学报,2001,31(5):762-768.
    [63] Khan, S.M., Imran, J., Bradford, S., Syvitski, J.. Numerical modeling of hyperpycnal plume.Marine Geology,2005,222-223,193-211.
    [64]庞家珍,司书亭.黄河河口演变I.近代历史变迁.海洋与湖沼,1979(10(2)):136-141.
    [65]曾庆华,胡春宏,等.黄河口演变规律及整治.郑州:黄河水利出版社,1998.
    [66]庞家珍,司书亨.黄河河口演变II.河口水文特征及泥沙淤积分布,海洋与湖沼,1980(10(2-4):295-305.
    [67]庞家珍,姜明星.黄河河口演变(1)——河口水文特征.海洋湖沼通报,2003.(3):1-13.
    [68]李国英.黄河调水调沙.人民黄河,2002,24(11):1-5
    [69]李旭东,张冠军,李力翔.2008年黄河调水调沙人工塑造异重流调度分析.人民黄河,2009,31(8):27-32
    [70]苏运启,尚红霞,李勇等.小浪底水库对水沙的调控及下游河道响应.泥沙研究,2006,(5):28-32
    [71]王厚杰,杨作升,毕乃双,等.2005年黄河调水调沙期间河口入海主流的快速摆动[J].科学通报,2005,5(23):2656-2662
    [72]张建华,徐丛亮,高国勇.2002年黄河调水调沙试验河口形态变化.泥沙研究,2004,5:68-71
    [73]梁丙臣.海岸、河口区波-流联合作用下三维悬沙数值模拟及其在黄河三角洲的应用.博士论文,2005,中国海洋大学.
    [74]减启运等.黄河三角洲近岸泥沙[M].北京:海洋出版社,1996,40-42
    [75]吴秀杰,田素珍,王丽娜.黄河口五号桩海域海浪的基本特征.黄渤海海洋,1989(7(3)):37-42.
    [76]成国栋,薛春汀.黄河三角洲沉积地质学.第一版.北京:地质出版社,1997.
    [77]周长江,申宪忠.黄河海港海洋环境.第一版.北京:海洋出版社,2001.
    [78]胡春宏,曹文洪.黄河口水沙变异与调控Ⅰ:黄河口水沙运动与演变基本规律[J].泥沙研究,2003,(5):1-8.
    [79]曾庆华.泥沙研究进展综述[J].泥沙研究,1999(1):74-80.
    [80]曾庆华,张世奇,胡春宏,尹学良等.黄河口演变规律及整治[M].郑州:黄河水利出版社,1999,8-9.
    [81]胡春宏,吉祖稳,王涛.黄河口海洋动力特性与泥沙的输移扩散[J].泥沙研究,1996,(4):1-10.
    [82] Hamrick, J.M.. A three-dimensional environmental fluid dynamics computer code: theoreticaland computational aspects. In: The College of William and Mary, Virginia Institute of MarineScience. Special Report,1992, vol.31763p.
    [83] Zhang, J., Huang, W.W., Wang, J.H.. Trace-metal chemistryof the Huange (Yellow River),China—examination of the datafrom in situ measurements and laboratory approach.Chemical Geology,1994,114:83–94.
    [84] Murray, K. S., and Cauvet, D. et al.. Partical size and chemical control of heavy metals in bedsediment from the Rouge river Southeastern Michigan. Environ Sci. Technol.,1999,Vol.33,No.7,987-992.
    [85] McKinley, J.P., Jenne, E.A.. Experimental investigation and review of the ‘‘solidconcentration’’ effect in adsorption studies. Environ. Sci. Technol.,1991,25,2082–2087.
    [86] Martin, J.M., Guan, D.M., Elbaz-Poulichet, F., Thomas, A.J., Gordeev, V.V.. Preliminaryassessment of the distribution ofsome trace elements (As, Cd, Cu, Fe, Ni, Pb and Zn) inapristine aquatic environment: the Lena estuary (Russia). Marine Chemistry,1993,43,185–199.
    [87]汤爱坤.调水调沙前后黄河口重金属的变化及其影响因素.硕士论文,2011,中国海洋大学.
    [88] Fasham, M. J. R., Balino, B.M., Bowles M.C.. A new vision of ocean biogeochemistry after adecade of the Joint Global Ocean Flux Study(JGOFS). AMBIO, Special Report,2001,10:4-31.
    [89] Karl, D. M., Dore, J. E., Lukas, R., et al.. Building the long-term picture: the U S JGOFSTimeseries programs. Oceanography,2001,14(4):6-17.
    [90] Kirchman, D. L., Ducklow, H.W., McCarthy, J.J., et al.. Biomass and nitrogen uptake byheterotrophic bacteria during the spring phytoplankton bloom in the North Atlantic Ocean.Deep-Sea Res.1994,41(5/6):879-895.
    [91] Valiela, I., McCleliand, J., Hauxwell, J., et al.. Macroalgal blooms in shallow estuaries:Controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr.,1997,42(5):1105-1118.
    [92] Zhang, J.. Nutrient elements in large Chinese estuaries. Continental Shelf Research,1996,16:1023~1045
    [93]林荣根,吴景阳.黄河口沉积物对磷酸盐的吸附与释放.海洋学报,1994,16(4):82~90
    [94] Dauer D M. Biological criteria, environmental health and estuarine macrobenthic communitystructure. Marine Pollution Bulletin,1993,26(5):249~25
    [95]蓝虹,郑崇荣,等.闽江口以南近海底栖生物群落生态研究.海洋环境科学,2006,(25):52~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700