用户名: 密码: 验证码:
仿去上皮羊膜微纳结构壳聚糖改性胶原—透明质酸复合电纺膜的研制及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分仿去上皮羊膜微纳结构壳聚糖改性胶原透明质酸复合电纺膜的研制
     目的:利用高压静电纺丝与静电吸附表面改性技术探讨制备仿去上皮人羊膜超微结构壳聚糖改性胶原-透明质酸复合电纺膜的可行性,获得胶原以乙酸为溶剂制备纳米纤维以及在聚环氧乙烷为促电纺剂下胶原复合透明质酸制备纳米纤维的最佳浓度配比,在此基础上联合交联和静电吸附表面改性技术优化复合电纺膜的稳定性与表面微纳结构,以期为眼表损伤修复用覆膜的研究提供实验基础,拓宽静电纺丝纳米技术和静电吸附表面改性技术在生物医学领域的应用范围。
     方法:首先对人羊膜组织微观形貌进行细致观察分析,在此基础上,采用具有良好生物相容性的天然高分子材料胶原、透明质酸和人工合成高分子材料聚环氧乙烷为主要的研究原料,通过对电纺原材料浓度配比的调整,优化静电纺丝各项参数,制备复合电纺薄膜。通过戊二醛交联和透明质酸与壳聚糖静电吸附作用,改善电纺薄膜的稳定性和微纳结构,肉眼观察评估所制备的复合电纺膜的透明性和可操作性,扫描电镜检测薄膜表面和断面微结构,分析评价壳聚糖改性胶原-透明质酸复合电纺膜与去上皮人羊膜组织在微观形貌上的相似性。
     结果:去上皮人羊膜基底膜和基质是由平均直径分别为52.9±17.5nm和41.2±14.7nm的胶原纤维无规则排列组成的片层结构。在25℃,40%湿度环境中,推进速度为0.1ml/h,接收距离为10cm,电压在10-15KV之间时,电纺处于稳定状态。10%w/v胶原以90%v/v乙酸为溶剂电纺可以制备平均直径为79.1±27.8nm的纤维薄膜;10%w/vCOL、0.1%w/vHA和7%w/vPEO以8:1:1体积比电纺可以制备平均直径为106.6±40.9nm,表面光滑,具有良好分散性的纳米纤维薄膜。戊二醛交联不仅使复合电纺膜纳米纤维形态和直径(平均直径为66.3±24.8nm)更接近于羊膜基底膜和基质,而且大大改善了薄膜的透明性和可操作性;在不影响复合膜纤维形态和直径前提下复合膜实现壳聚糖表面改性并与去上皮人羊膜微观形貌更加相近。
     结论:本研究首先证实了胶原、透明质酸复合聚环氧乙烷电纺制备具有纳米级直径均一纤维薄膜的可行性;并在此基础上,通过戊二醛交联和静电吸附表面改性方法对复合薄膜透明性和可操作性进行优化,实现了对去上皮人羊膜组织微纳结构的人工模拟,为临床眼表损伤修复用眼表覆膜的研究和应用奠定了可靠的实验基础。
     第二部分仿去上皮羊膜微纳结构壳聚糖改性胶原-透明质酸复合电纺膜的物理化学性能研究
     目的:对胶原-透明质酸复合电纺膜、交联膜和壳聚糖改性膜的物理化学性能进行表征,探讨交联和表面改性后处理对薄膜理化性能的影响,对比分析壳聚糖改性胶原-透明质酸复合电纺膜与去上皮人羊膜组织相应性能的差异,为进一步优化该类眼表修复覆膜研究奠定实验基础,同时也为临床上眼表组织修复支架的制备提供新的方法和研究思路。
     方法:采用紫外-可见光光度仪对不同薄膜的可见光透过率进行检测,傅里叶转换红外线光谱分析不同薄膜的化学组成及变化,万能测试机对薄膜的抗拉强度、杨氏模量和最大伸长率进行测试分析,静态水接触角对不用薄膜的亲疏水性进行分析比较。
     结果:干燥状态下,在555nm波长处交联膜和壳聚糖表面改性膜的可见光透过率分别为70%和75%,而羊膜仅为40%;在湿润状态下,在555nm波长处交联膜和壳聚糖表面改性膜的可见光透过率分别增加到88%和89%,羊膜在该处的可见光透过率增加到74%。胶原-透明质酸复合电纺膜、交联膜和壳聚糖改性膜的红外光谱图中均存在胶原、透明质酸特征性吸收峰,但交联膜和壳聚糖改性膜在2000-1000cm-1附近的吸收峰强度降低,位于3314cm-1、1619cm-1和1430cm-1附近的吸收峰信号变弱;壳聚糖改性膜中酰胺A,酰胺Ⅰ,Ⅱ键吸收峰波幅较交联膜增强;在交联膜和壳聚糖改性膜中,均未检测到聚环氧乙烷特征性吸收峰;在壳聚糖改性膜中检测到所有壳聚糖特征性吸收峰;壳聚糖改性膜与去上皮人羊膜相比均具有胶原、透明质酸特征性吸收峰,但壳聚糖改性膜在1750-1000cm-1范围内的吸收峰波幅较去上皮人羊膜者低。壳聚糖改性膜的平均抗拉强度为31.39±6.61Mpa,略低于去上皮人羊膜(39.72±4.43Mpa),而在同等强度外力作用时,形变量为交联膜>壳聚糖改性膜>去上皮人羊膜。交联膜和壳聚糖改性膜的平均水接触角分别为18.6±1.70和23.9±2.60,均小于去上皮人羊膜(63.4±3.30)。
     结论:胶原-透明质酸交联膜和壳聚糖改性膜具有优于去上皮人羊膜组织的良好透明性;经电纺、交联和壳聚糖表面改性三步法处理后胶原和透明质酸仍保持原有活性不变;壳聚糖改性膜具有与去上皮人羊膜相似的化学组成;虽然复合膜的抗拉强度稍逊于去上皮人羊膜组织,但其更好的弹性和更高的亲水性对于我们后续细胞和组织相容性研究奠定了有利的理论基础。
     第三部分仿去上皮羊膜微纳结构壳聚糖改性胶原-透明质酸复合电纺膜生物相容性研究
     目的:分析评价壳聚糖改性胶原-透明质酸复合电纺膜的生物相容性,为仿羊膜微纳结构眼表覆膜的临床应用和产业化提供理论依据和实验基础,从根本上推进眼表修复用仿生人工薄膜材料的研制。
     方法:以去上皮人羊膜为对照,采用体外细胞培养法将人角膜上皮、结膜上皮细胞接种于壳聚糖改性膜上,扫描电镜观察细胞的粘附形态,活死细胞染色检测薄膜对细胞的毒性作用,CCK-8法比较细胞在薄膜表面的增殖能力;构建大鼠角膜急性碱烧伤模型,荧光素钠和苏木精-伊红染色观察壳聚糖改性膜移植后角膜上皮再生水平,肉眼观察基质水肿和炎症反应情况,评价薄膜的可操作性和在体生物相容性。
     结果:角膜上皮细胞在壳聚糖改性膜上具有类似于正常角膜上皮的无规则扁平样外观,结膜上皮细胞在该膜上表现出细胞与材料相互融合现象;接种24h后在壳聚糖改性膜上角膜上皮细胞可检测到极少量的细胞死亡而结膜上皮细胞未检测到细胞死亡;细胞的增殖能力随培养时间的延长而增强,差异有统计学意义(p<0.05),而同种细胞在不同薄膜上的增殖能力无明显差异(p=1.12);壳聚糖改性膜在大鼠急性碱烧伤角膜表面保持良好的透明性,与基质面贴合紧密;薄膜下可见角膜上皮再生并与其下基质粘连紧密,角膜基质水肿和炎症反应均减轻。
     结论:壳聚糖改性胶原-透明质酸复合电纺膜具有良好的细胞相容性,在动物角膜急性碱烧伤模型中表现出良好的可操作性和透明性,具有与去上皮人羊膜组织相似的促上皮化、抑制基质水肿和炎症反应特性,本研究结果为探寻仿羊膜结构与功能材料的研制进而为眼表修复用仿生薄膜材料的研究奠定了扎实的实验基础,为临床上眼表疾病的治疗提供了一条新的途径。
Part I Development of chitosan modified collagen-hyaluronic acid compositeelectrospinning film with biomimetic micro-nano structure ofdenuded amniotic membrane
     Objective
     The purpose of this study was to investigate the feasibility of chitosan modified collagen-hyaluronic acid composite film with biomimetic micro-nano structure of denuded amniotic membrane by using electrospinning and electrostatic adsorption surface modification technology. Electrospinning agent concentration ratio between collagen and its solvent acetic acid as well as with the use of poly (ethylene oxide), collagen composite hyaluronic acid electrospinning film were facilitated. On the basis of the above results, by using chemical cross-linking and electrostatic adsorption surface modification technology to optimize the stability and surface micro-nano structure of the composite electrospinning film, so as to provide an experimental basis on the studies of the ocular surface damage repair film and to broaden the range of applications of electrospinning nanotechnology and electrostatic adsorption surface modification technology in the biomedical field.
     Methods
     On the basis of careful observation and analysis of the morphology of human amniotic membrane, we used natural polymer materials of collagen, hyaluronic acid and a synthetic polymer material polyethylene oxide as the main raw materials to prepare the composite electrospinning film. The ratio of the concentration of electrospinning raw materials and the parameters of the electrospinning were optimized. Glutaraldehyde cross-linking and electrostatic adsorption between hyaluronic acid and chitosan were used to improve the the stability and micro-and nano-structure of the electrospinning film. Transparency and operability of the composite electrospun fiber films were observed. Surface and cross-section microstructure of the films were detected by scanning electron microscopy. The similarity of the microscopic morphology between chitosan modified collagen-hyaluronic acid composite electro spinning film and denuded amniotic membrane was also evaluated.
     Results
     The basement membrane and matrix of denuded human amniotic membrane were composed of lamellar structure consisting of irregular collagen fibers with the average diameter was52.9±17.5nm and41.2±14.7nm, respectively. Under25°C and40%humidity, stable electrospinning state could be achieved with advancing speed for0.1ml/h,10cm receiver distanc and10-15kV voltage.10%w/v collagen with90%v/v acetic acid as solvent could be electrospun successfully, the average fiber diameter was79.1±27.8nm.10%w/v COL,0.1%w/v HA and7%w/v PEO with8:1:1volume ratio could prepare film with the average diameter was106.6±40.9nm. Smooth surface and a good dispersion of the nano-fiber diameter could be observed. Glutaraldehyde cross-linking not only rendered the morphology and nano-fiber diameters of composite electrospinning film similar to the amniotic membrane (average diameter of66.3±24.8nm), but also greatly improved the transparency and operability of the film. Without affecting fiber morphology and diameter the composite film was modified by chitosan,which made the composite membrane surface much similar to denuded human amniotic membrane.
     Conclusion
     This study was first confirmed that collagen, hyaluronic acid and polyethylene oxide could be prepared by electrospinning to fabricate uniform nanoscale fiber diameter. glutaraldehyde crosslinking and electrostatic adsorption surface-modification could optimize the transparency and operability of the composite film. Artificial simulation of the micro-nano structure of denuded human amniotic membrane has been achieve. This will lay a reliable experimental basis for clinical ocular surface damage repair.
     Part II Physical and chemical properties of chitosan modified collagen-hyaluronic acid composite electrospinning film with biomimeticmicro-nano structure of denuded amniotic membrane
     Objective
     The purpose of this study was to investigate the physical and chemical properties of the collagen-hyaluronic acid composite electrospun film, post-crosslinking film and chitosan modified film. To explore the influence of crosslinking and surface modification on the physical and chemical properties of the films. Comparatively analyze the differences of corresponding performance between chitosan-modified collagen-hyaluronic acid composite electrospinning film and denuded human amniotic membrane. To lay the experimental foundation of further optimization of this kind of ocular surface repair film. Also to prepare new methods and research ideas to the fabrication of tissue repair scaffolds in clinic.
     Methods
     UV-visible spectrophotometer was used to detect the visible light transmittance of the films. Fourier transform infrared spectral analysis was used to analyze the chemical composition and changes in the films. The tensile strength, Young's modulus and the maximum elongation of the film were detected by the universal testing machine. Static water contact angle was tested to analyzed the film's hydrophobicity and hydrophilicity.
     Results
     In dry state the visible light transmittance at the wavelength of555nm were70%and75%in the crosslinked film and chitosan modified membrane, respectively. While that of amniotic membrane was only40%. In the wet state, at the wavelength of555nm, the visible light transmittance of the crosslinked film and chitosan surface modified membrane was increased to88%and89%, respectively, that of the amniotic membrane was increased to74%. In the infrared spectra, characteristic absorption peak of Collagen and hyaluronic acid could be observed on the composite electrospun film, crosslinked film and chitosan modified film. At2000-1000cm-1the absorption peaks had lower intensity. At3314cm-1,1619cm-1and1430cm-1the absorption peaks had weaker signals. In chitosan modified film, the amide A, amide I and II chemical bond had high absorption peak than the crosslinked film. There was no absorption peak of polyethylene was detected on crosslinked film and chitosanmodified film. The characteristic absorption peak of chitosan were all detected on the chitosan modified membrane. In comparation with denuded human amniotic membrane, the chitosan modified film had similar absorption peaks of collagen and hyaluronic acid. While the absorption peak in the range of1750-1000cm-1was lower than that of denuded human amniotic membrane. The average tensile strength of the chitosan modified membrane was31.39±6.61MPa, which slightly lower than that of denuded human amniotic membrane (39.72±4.43MPa). Under the equal strength of external force, the deformation level was cross-linked film> chitosan modified film> denuded human amniotic membrane. The average water contact angle of the crosslinked film and the chitosan modified film were18.6±1.7°and23.9±2.6°, which were less than that of the denuded human amnion (63.4±3.3°).
     Conclusion
     Collagen-hyaluronic acid crosslinked film and chitosan modified membrane had better transparency than that of denuded human amniotic membrane. The three-step treatment of electrospinning. crosslinking and chitosan surface modification did not change the original activity of collagen and hyaluronic acid. Chitosan modified film had almost the same chemical compositon of denuded human amniotic membrane. Although the tensile strength of the composite membrane was slightly inferior to denuded human amniotic membrane, but its better flexibility and higher hydrophilicity laid a favorable theoretical basis to our subsequent cellular and tissue compatibility.
     Part IH Biocompatibilities of chitosan modified collagen-hyaluronic acidcomposite electrospinning film with biomimetic micro-nano structureof denuded amniotic membrane
     Objective
     The purpose of this study was to analyze and evaluate the biocompatibility of chitosan modified collagen-hyaluronic acid composite electrospun membrane. Lay a theoretical and experimental basis to the clinical application and industrialization of the biomimetic amniotic membrane in the ocular surface reconstruction. To fundamentally promote the development bionic artificial film materials in ocular surface repair.
     Methods
     Human corneal epithelial cells and conjunctival epithelial cells were seeded on chitosan modified film. Scanning electron microscopy was used to observed the morphology of cells, live/dead assay was used to detect toxic effects of the film to the cells. CCK-8method was used to compare the proliferation of cells on the surface of film, denuded human amniotic membrane was used as control. The rat acute corneal alkali burn model was established, sodium fluorescein and hematoxylin-eosin staining were use to detect the level of corneal epithelial regeneration. The situation of stromal edema and inflammation were visually observed, the operability and in vivo biocompatibility of the film were evaluated, denuded human amniotic membrane was used as control.
     Results
     Corneal epithelial cells in chitosan modified collagen-hyaluronic acid composite electrospun membrane showd a flat-like appearance which was similar to that of normal corneal epithelium. Conjunctival epithelial cells in the film performed a cell-material merging phenomenon. Live/dead assay showed that24hours after incubation a small amount of corneal epithelial cell death was detected on the composite electro-spun membrane as well as denuded amniotic membrane,while no conjunctival epithelial cell death was detected on both two kind of membrane. Cell proliferation was enhanced with prolonged incubation time, the difference was statistically significant (p<0.05). The same kind of cell proliferation on different films was not significant different (p=1.12). Chitosan modified membrane transplanted on the surface of the acute alkali burned cornea maintained good transparency, and tightly bonded with the substrate surface. Promotion of corneal epithelial regeneration, close adhesion between re-newed corneal epithelial cells and matrix and reduction of stromal edema and inflammation could be observed on the chitosan modified membrane transplanted eye, which was similar to that of denuded human amniotic membrane.
     Conclusion
     Chitosan modified collagen-hyaluronic acid composite electrospinning film has good cell compatibility. On animal acute corneal alkali burn model it shows good operability and transparency. Its properties of epithelium promotion, stromal edema inhibition as well as inflammatory response suppression lay a solid experimental basis for clinical explore of the materials research imitating the structure and function of amniotic membrane in ocular surface repair. Also this provides a new way in the treatment of ocular surface disease.
引文
1 Davis JW. Skin transplantation with a review of 550 cases at Johns Hopkins Hospital. Johns Hopkins Med J.1910; 15:307.
    2 Trelford JD, Trelford-Sauderm M. The amnion in surgery,past and present, Am J Obster Gynecol.1979; 134:844-845.
    3 Rotth AD. Plastic repair of conjunctival defects with fetal membrane. Arch Opthalmol.1940; 23:522-552.
    4 Kim JC, Tseng SCG. Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea.1995; 14:473-484.
    5 Tseng SCG, Prabhasawat P, Barton K, etal. Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol.1998; 116:431-441.
    6 Kobayashi A, Takahira M, Yamada A. Fornix and conjunctiva reconstruction by amniotic membrane in a patient with conjunctival mucosa associated lymphoid tissue lymphoma, Jpn J Ophthalmol.2002; 46:346-348.
    7 Kobayashi A, Shirao Y, Segawa Y, etal. Muti-layer amniotic membrane graft for pterygium in a patient with xeroderma pigmentosum. Jpn J Ophthalmol.2001; 45:496-498.
    8 钟一声,周颖明,王康孙.羊膜对兔眼小梁切除术后滤过泡的影响.眼科学报.2002;16:73-76.
    9 Barabino S, Tolanda M, Bentivoglio G, etal. Role of amniotic membrane transplantation for conjunctival reconstruction in ocular cicartricial pemphigoid. Ophthalmology.2003; 110:474-480.
    10 Azuara-Blanco A, Pillai CT, Dua HS. Amniotic membrane transplantation for ocular surface reconstruction. Br J Ophthalmol.1999; 83:399-402.
    ] 1 Na BK, Hwang JH, Shin EJ, etal. Analysis of human amniotic membrane compoments as proteinase inhibitors for development of therapeutic agent of recalcitrant keratisis. Invest Ophthalmol Vis Sci.1998; 39:S90.
    12 Sato H.Shimazaki J,Shimazaki N.etal. Role of growth factors for ocular surface reconstruction after amniotic membrane transplantation. Invest Ophthalmol Vis Sci. 1998;39:S428.
    13 Prabhaswat P, Barton K.Burkett G, etal. Comparision of conjunctival autografts, amniotic membrane graft, and primary closure for pterygium excision. Ophthalmology.1997;104:974-985.
    14 陈家祺.眼表疾病与眼表重建.眼科.2002;2:70.
    15 Lee SB, Li DQ, Tan DT, etal. Suppression of TGF-beta signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts amniotic membrane. Curr Eye Res.2000; 20:325-334.
    16 Tseng SCG, Prabhasawat P, Lee SH. Amniotic membrane transplantation for conjunctival surface reconstruvtion. Am J Ophthalmol.1997; 124:765-774.
    17 Dua HS, Blanco AA. Amniotic membrane transplantation. Br J Ophthalmol.1999; 83:748-752.
    18 Shimazaki J, Shinozaki N, Tusbota K. Transplantation of amniotic membrane and limbal autograft for patients with recurrent pterygium associated with symblepharon. Br J Ophthalmol.1998; 82:235-240.
    19 Shimazaki J, Yang HK, Tusbota K. Amniotic membrane transplantation for ocular surface reconstruction in patients with chemical and thermal burns. Ophthalmology. 1997; 104:2068-2075.
    20 Scheffer CG. Suppression of Transforming growth factor-beta isoforms, TGF-Preceptor type-Ⅱ,and myofibroblast differentiation in culture human corneal and limbal fibroblasts by amniotic membrane matrix. Cell Physol.1999; 179:325-335.
    21 陈家祺,周世有,黄挺,刘祖国,陈龙山,林跃生.新鲜羊膜移植治疗严重的急性炎症期及瘢痕期眼表疾病的临床研究.中华眼科杂志.2000;36:13-17.
    22 Talmi YP, Sigler L, Inge E. Antibacterial properties of human amniotic membranes. Placenta.1991; 12:85-288.
    23 Joseph A, Dua HS, King AJ. Failure of amniotic membrane transplantation in the treatment of acute ocular burns. Br J Ophthalmol 2001; 85:1065-1069.
    24 Tamhane A, Vajpayee RB, Biswas NR, Pandey RM, Sharma N, Titiyal JS, Tandon R. Evalutaion of amniotic memrane transplantation as an adjunct to medical therapy as compared with medical therapy alone in acute ocular burns. Ophthalmology 2005; 112:1963-1969.
    25 Marangon FB, Alfonso EC, Miller D, Remonda NM, Marcus S, Tseng SC. Incidence of microbial infection after amniotic membrane transplantation. Cornea 2004; 23:264-269.
    26 Gabler B, Lohmann CP. Hypopyon after repeated transplantation of human amniotic membrane onto the corneal surface. Ophthalmology 2000; 107: 1344-1346.
    27 Anderson SB, de Souza RF, Hoffmann-Rummelt C, Seitz B. Corneal calcification after amniotic membrane transplantation. Br J Ophthalmol 2003; 87:587-591.
    28 Fukuda K, Chikama T, Nakamura M, Nishida T. Differential distribution of sub-chains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea and conunctiva. Cornea 1999; 18:73-79.
    29 Nakamura T, Yoshitani M, Rigby H, Fullwood NJ, Ito W, Inatomi T, Sotozono C, Nakamura T, Shimizu Y, Kinoshita S. Sterilized, freeze-dried amniotic membrane: A useful substrate for ocular surface reconstruction. Invest Ophthalmol Vis Sci 2004; 45:93-99.
    30 Letko E, Stechschulte SU, Kenyon KR, Sadeq N, Romero TR, Samson CM, Nguyen QD, Harper SL, Primack JD, Azar DT, Gruterich M, Dohlman CH, Baltatzis S, Foster CS.Amniotic membrane inlay and overlay grafting for corneal epithelial defects and stromal ulcers. Arch Ophthalmol 2001; 119:659-663.
    31 Verissimo DM, Leitao RF, Ribeiro RA, Figueiro SD, Sombra AS, Goes JC, Brito GA. Polyanionic collagen membranes for guided tissue regeneration:Effect of progressive glutaraldehyde cross-linking on biocompatibility and degradation. Acta Biomater 2010; 6:4011-4018.
    32 Lu JT, Lee CJ, Bent SF, Fishman HA, Sabelman EE. Thin collagen film scaffolds for retinal epithelial cell culture. Biomaterials 2007; 28:1486-1494.
    33 Debbasch C, De La Salle SB, Brignole F, Rat P, Warnet JM, Baudouin C. Cytoprotective effects of Hyaluronic Acid and Carbomer 934P in Ocular Surface Epithelial Cells. Invest Ophthalmol Vis Sci 2002; 43:3409-3415.
    34 Alonso MJ, Sanchez A. The potential of chitosan in ocular drug delivery. J Pharmac Pharmacol 2003; 55:1451-1463.
    35 Langer R, Vacanti JP. Tissue engineering. Science 1993; 260:920-926.
    36 Gurtner GC, Callaghan MJ, Longaker MT. Progress and potential for regenerative medicine. Annu Rev Med.2007; 58:299-312.
    37 Sliva GA, Czeisler C, Stupp SI. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2003; 303:1352-1355.
    38 Rajangam K, Behanna HA, Hui MJ, Han X, Hulvat JF, Lomasney JW, Stupp SI. Heparin binding nanostructures to promote growth of blood vessels. Nano Lett 2006; 6:2086-2090.
    39 Gelain F. Bottai D, Angleo Vescovi A, Zhang S. Designer self-assembling petitde nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS ONE 2006; 1:e119.
    40 Li D, Xia Y. Electrospinning of nanofibers:reinventing the wheel. Adv Mater 2004; 16:1151-1157.
    41 Zhao Y, Cao X, Jiang L. Bio-mimic multichannel microtubes by a facile method. J Am Chem Soc 2007; 129:764-765.
    42 McKee MG, Layman JM, Cashion MP, Long TE. Pospholipid nonwoven electrospun membranes. Science 2006; 311:353.
    43 Nur-E-Kamal A, Ahmed I, Kamal J, Schindler M, Meiners S. Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells 2006; 24:426.
    44 Liang D, Luu YK, Kim K, Hsiao BS, Hadjijiargrou M, Chu B. In vitro nonviral gene delivery with nanofibrous scaffolds. Nucleic Acid Res 2005; 33:e170.
    45 Townsend-Nicholson A, Jayasinghe SN. Cell electrospinning:a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 2006; 7:3364.
    46 Shweta Sharma, Sujata Mohanty, Deepika Gupta, Manjeet Jassal, Ashwini K. Agrawal, Radhika Tandon. Cellular response of limbal epithelial cells on electrospun poly-s-caprolactone nanofibrous scaffolds for ocular surface bioengineering:a preliminary in vitro study. Molecular Vision 2011; 17:2898-2910.
    1. Li D, Xia Y. Electrospinning of Nanofibers:Reinventing the Wheel. Advanced Materials.2004; 16:1151-1170.
    2. Boudriot U, Dersch R, Greiner A. Electrospinning Approaches Toward Scaffold Engineering-A Brief Overview. Artificial Organs.2006; 30:785-792.
    3. Shin M, Ishii O,Sueda T. Contractile cardiac grafts using a novel nano fibrous mesh. Biomaterials.2004; 25:3717-3723.
    4. Kenawy ER, Bowlin GL, Mansfield K, etal. Release of tetracycline hydrochloride from electrospun poly(ethylene-covinylacetate), poly(lactic acid), and a blend. Journal of Controlled Release.2002;81:57-64.
    5. Luu YK. Kim K, Hsiao BS, etal. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. Journal of Controlled Release.2003; 89:341-353.
    6. Jia H, Zhu G, Vugrinovich B, etal. Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechology Progress.2002:18: 1027-1032.
    7. Li D, Xia YN. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Reinventing the Wheels. Advanced Materials.2004; 16: 1151-1170.
    8. Hou H, Jun Z, Reuning A, et al. Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers. Macromolecules.2002; 16: 2429-2431.
    9. Matthews JA, Wnek GE, Simpson DG, etal. Electrospinning of collagen nanofibers. Biomacromolecules.2002; 3:232-238.
    10. Qiu CH, Qu HF, Jiang H, etal. Zhongguo Zuzhi Gongcheng Yanjiu Yu Linchuang Kangfu.2007; 11:3532-3535.
    11. Zhang Y, Cheng X, Wang J, etal. Novel chitosan/collagen scaffold containing transforming growth factor-betal DNA for periodontal tissue engineering. Biochem Biophys Res Commun.2006; 344:362-369.
    12. Rho KS, Jeong L, Lee G, etal. Electrospinning of collagen nanofibers:effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials.2006; 27:1452-1461.
    13. Zhong SP, Teo WE, Zhu X, etal. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res A. 2006; 79:456-463.
    14. Shih YRV, Chen CN, etal. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells.2006; 2:2391-2397.
    15. Kwon IK, Matsuda T. Co-electrospun nanofiber fabrics of poly(l-lactide-co-caprolactone) with type I collagen or heparin. Biomacromolecules.2005; 6:2096-2105.
    16. Cort JR, Andersen NH. Formation of a molten-globule-like state of myoglobin in aqueous hexafluoroisopropanol. Biochem Bioph Res Co.1997; 233:687-691.
    17. Hong DP, Hoshino M, Kuboi R, etal. Clustering of fluorine-substituted alcohols as a factor responsible for their marked effects on proteins and peptides. J Am Chem Soc.1999; 12:8427-8433.
    18. Zeugolis DI, Khwe ST, Yew ESY, etal. Electro-spinning of pure collagen nano-fibres—just an expensive way to make gelatin? Biomaterials.2008; 29: 2293-2305.
    19. Wray LS, Orwin EJ. Recreating the Microenvironment of the Native Cornea for Tissue Engineering Applications. Tissue Engineering Part A.2009; 15:1463-1472.
    20. Liu T, Teng WK, Chan BP, etal. Photochemical crosslinked electrospun collagen nanofibers:Synthesis, characterization and neural stem cell interactions. J Biomed Mater Res A.2010; 1:276-282.
    21.凌沛学.透明质酸.北京:中国轻工业出版社.2000.
    22. Weissmann B, Meyer K. The structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord. J Am Chem Soc.1954; 76:1753-1757.
    23. Laurent TC, Fraser JRE. Hyaluronan. Faseb J.1992;6:2397-404.
    24. Peyron JG. Intraarticular hyaluronan injections in the treatment of osteoarthritis: state-of-the-art review. J Rheumatol Suppl.1993; 39:10-15.
    25. Radicel M, Brunl P, Cortivo R. Hyaluronan-based biopolymers as delivery vehicles for bone-marrow-derived mesenchymal progenitors. Journal of Biomedical Materials Research.2000; 50:101-109.
    26. Mironov V, Kasyanov V, Markwald1 RR, et al. Bioreactor-free tissue engineering: directed tissue assembly by centrifugal casting. Expert Opinion on Biological Therapy.2008; 8:143-152.
    27. Allison DD, Grande-Allen KJ. Hyaluronan:A Powerful Tissue Engineering Tool. Tissue Engineering.2006; 12:2131-2140.
    28. Fischer RL, McCoy MG, Grant SA. Electrospinning collagen and hyaluronic acid nanofiber meshes. J Mater Sci:Mater Med.2012; 23:1645-1654.
    29. Hsu FY, Hung YS, Liou HM, etal. Electrospun hyaluronate-collagen nanofibrous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin fibroblast cells. Acta Biomaterialia.2010; 6:2140-2147.
    30. Richard BG, Yua HC.eta. Effective drug delivery by PEGylated drug conjugates. Advanced Drug Delivery Reviews.2003; 55:217-250.
    31. Zalipsky S. Functionalized poly(ethylene glycol) for preparation of biologically relevant Conjugates. Bioconjugate Chem.1995:6:150-165.
    32. Zalipsky S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Advanced Drug Delivery Reviews.1995; 16:157-182.
    33.姜忠义,许松伟,高蓉.生物分子化学修饰用聚乙二醇衍生物的合成及应用。 高分子通报.2002;1:34-40.
    34. Kodera Y, Matsushima A, etal. PEGylation of proteins and bioactive substances for medical and technical application,Prog. Polym. Sci.1998; 23:1233-1271.
    35. Jin HJ, Fridrikh SV, Rutledge GC, etal. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules.2002; 3:1233-1239.
    36. Wang M, Jin HJ, Kaplan DL,etal. Mechanical properties of electrospun silk fibers. Macromolecules.2004; 37:6856-6864.
    37. Duan B, Dong CH, Yuan XY, etal. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). Journal of Biomaterials Science:Polymer Edition. 2004; 15:797-811.
    38. Di MA, Sittinger M, Risbud MV. Chitosan:A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005; 26:5983-5990.
    39. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003; 24:2339-2349.
    40. Zhu X, Beuerman RW, Seah JY, etal.Characteristics of a gelatin-chitosan biomembrane for engineering the conjunctiva. Invest Ophthalmol Vis Sci.2004; 45: E-Abstract 3931.
    41. Wang LS, Khor E, Wee A,etal. Chitosan-Alginate PEC Membrane as a Wound Dressing:Assessment of Incisional Wound Healing. J Biomed Mater Res Part B: Appl Biomater.2002; 63:610-618.
    42. Ojha SS, Stevens DR, Hoffman TJ, etal. Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide. Biomacromolecules.2008; 9:2523-2329.
    1. Sun BJ, He Y, Zhong P, et al. A clinical study with transplantation of preserved human amniotic membrane and limbal graft in treatment of severe ocular surface disorder. Henan Medical Research.2002; 4:45-47.
    2. Min BM, You Y, Kim JM, etal. Formation of nano structured poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblast. Carbohydrate Polymers.2004; 57:285-292.
    3. Ibrahim M.Nada A, Kamal DE. Density functional theory and FTIR spectroscopic study of carboxyl group. Indian Journal of Pure & Applied Physics.2005; 43: 911-917.
    4. Pandey KK. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science.1999; 71:1969-1975.
    5. Kim BS, Baez CE. etal. Biomaterials for tissue engineering. Rorld J Urol.2000; 18: 2-9.
    6. Grinnell F, Feld MK. Fibronectin Adsorption on Hydrophilic and Hydrophobic Surfaces Detected by Antibody Binding and Analyzed during Cell Adhesion in Serum-containing Medium. The Journal of Biological. Chemistry.1982;9: 4888-4893.
    7. Horbett TA, Waldburger JJ. Ratner BD, etal. Cell adhesion to a series of hydrophili-hydrophobic copolymers studies with a spinning disc apparatus. Journal of Biomedical Materials Research Part A.1988; 22:383-404.
    8. Teruo O. Noriko Y. Minako O, etal. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials. 1995:16:297-303.
    9. 刘焕来,王海,叶淑琴等.新型聚已内酯/聚醚嵌段共聚物的合成及其释放蛋白药物的研究.国外医学生物医学工程分册.2005;28:254-257.
    10.卢光,张建,李建新等.血管组织工程生物材料细胞相容性的评价.首都医科大学学报.2006;27:321-324.
    11.郭海霞,良成浩,穆琦.TiNi及Co合金生物医用材料的腐蚀行为及血液相容性.中国有色金属学报.2001;11:277-281.
    12. Payyne AVKJ. Fourier transform ir spectroscopy of collagen and gelatin solutions:Deconvolution of the amide i band for conformational studies. Biopolymers.1988; 27:1749.
    13. Yu A, Lazarev Bagtbk. Amide i band of ir spectrum and structure of collagen and related polypeptides. Biopolymers.1985; 24:1449.
    14. Barbara Brodsky Doyle Egberb. Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers.1975; 14:973.
    15. Gilli R, Kacur M, Mathouthi M, etal. FTIR studies of hyaluronate and its oligomers in the amphorphous solid phase and in aqueous solution. Carbohydr Res. 1994; 263:315-326.
    16.金兰英,姜艳霞,廖宏刚等.红外光谱研究PE基离子液体聚合物电解质.高等学校化学学报.2009;30:767-771.
    17.蒋挺大.壳聚糖.北京:化学化工出版社.2007.21-29.
    18. Lampin M, Warocquier-Clerout R, Legris C. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. Journal of Biomedical Materials Research.1997; 36:99-108.
    1. Chen SS. Fitzgerald W, Zimmerberg J, Kleinman HK, Margolis L. Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells.2007; 25:553-61.
    2. Klammert U, Reuther TJahn C. Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta biomaterialia.2009;5:727-734.
    3. Ralph RA. Chemical Injuries of The Eye. Volume 4, Chapter 28.2006.
    4. Kheirkhah A, Johnson DA, Paranjpe DR. etal. Temporary sutureless amniotic membrane patch for acute alkaline burns. Arch Ophthalmol.2008; 126:1059-66.
    5. Yang CY. Huang LY, Shen TL,etal. Cell adhesion, morphology and biochemistry on nanotopographic oxidized silicon surfaces. European Cells and Materials.2010; 20:415-430.
    6. Schiffman JD, SchauerCL. Cross-linking chitosan nanofibers. Biomacromolecules. 2007; 8:594-601.
    7. Fernandez-Lorente G, Palomo JM, Mateo C.etal. Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance. Biomacromolecules.2006.7:2610-2615.
    8. Qi W, Yan X, Duan L.etal. Glucose-sensitive microcapsules from glutaraldehyde cross-linked hemoglobin and glucose oxidase. Biomacromolecules.2009; 10:1212-6.
    9. Zhu YB, Gao CY, Liu XY, etal. Immobilization of Biomacromolecules onto Aminolyzed Poly(L-lactic acid) toward Acceleration of Endothelium Regeneration. Tissue Engineering.2004; 10:53-61.
    10. Gough JE, Scotchford CA, Downes S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J Biomed Mater Res.2002; 61:121-30.
    11. Gough JE, Scotchford CA, Downes S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. Journal of Biomedical Materials Research.2002; 61:121-130.
    1. Deitzel JM, Kleinmeyer J, Harris D, etal. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer,2001; 42:261-272.
    2. Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity. Philos Mag,1882; 14:184-186.
    3. Zeleny J. On the conditions of instability of liquid drops with applications to the electrical discharge from liquid point. Proc Camb Phil Soc,1915; 18:71-83.
    4. Taylor GI. Disintegraion of water drops in an electric field. Proc Roy Soc,1964; A280,383-397.
    5. Taylor GI. Electrically driven jets. Pro Roy Soc London Ser A,1969; 313:453-475.
    6. Hendricks CD, Carson RS, Hogan JJ, etal. Photomicrography of electrically sprayed heavy particles. J M AIAA,1964; 2:733-737.
    7. Formhals A. Process and apparatus for preparing artificial Threads. US Patent. 2077373.1934.
    8. Martin CR. Chemistry of Materials,1996:8:1739-1746.
    9. Ondarcuhu T, Joachim C. Europhysics Letters.1998; 42:215-20.
    10. Ma PX. Zhang R. Journal of Biomedical Materials Research,1999; 46:60-72.
    11. Feng L, Li S, Li H. Zhai J, Song Y, Jiang L. Angewandte Chemie International Edition,2002:41:1221-3.
    12. Lazaris A. etal. Science,2002; 295:472-467.
    13. Vonnegut B, Neubauer RL. Journal of Colloid Science,1952; 7:616.
    14. Simons HL. Process and apparatus for producing patterned non-woven fabrics. US Patent.3280229,1966.
    15. Baumgarten PK. Electrostatic spinning of acrylic microfiber. J Colloid Interface Sci. 1971; 36:71-79.
    16. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. Journal of electrostatics,1995; 35:151-160.
    17. Srinivasan G, Renerker DH. Structure and morphology of small diameter electrospun aramid fibers. America:Polymer International,1995; 36:195-201.
    18. Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology,1996; 7:216-223.
    19. Fang X, Reneker DH. DNA fibers by electrospinning. Journal of Nacromolecular Science Physics,1997; B36:169-173.
    20. Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer,1999; 40:4585-4592.
    21. Chun I, Reneker DH, Fong H, Fang X, Deitzel J, Tan NB, Kearns K. Carbon nanofibers from polyacrylonitrile and mesophase pitch. Journal of Advanced Materials,1999; 31:36-41.
    22. Fong H, Chun I, Reneker DH. Nanofiber production by gas jet spinning method of chemical protection. The 24th Biennial Conference on Carbon,1999; 380.
    23.张锡玮,夏禾,徐纪钢,杨宇,钟淑芳,金剑.静电纺丝法纺制纳米级丙烯腈纤维毡.塑料,2000,29:16-19.
    24.王新威,胡祖明,潘婉莲,刘兆峰.电纺丝制备聚丙烯腈纳米纤维.2003全国高分子学术论文报告会论文集.杭州,2003:C26-27.
    25.张春雪,韩越,袁晓燕,盛京.静电纺丝制备超细纤维复合材料.2003全国高分子学术论文报告会论文集.杭州,2003:D190-191.
    26. Hohman MM, Shin YM, Rutledge GC, Brenner MP. Physics of Fluids,2001; 13: 2201-2220.
    27. Buchko, CJ, Chen, LC, etal. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer,2002; 40:7397-7407
    28. Alfrey T, Mark H, etal. The effect of temperature and solvent type on the intrinsic viscosity of high polymer solution. Am. Chem. Soc,1942; 64:1557-1560.
    29. Lee JS, Kim HY, etal. Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Appl. Polym. Sci,2004; 93:1638-1646.
    30. Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer,1999; 40:4585-4592.
    31. Buer A, Ugbolue SC, Warner SB. Electrospinning and Properties of Some Nanofibers. Textile Research Journal,2001; 71:323-328.
    32. Deitzel JM, Kosik W, McKnight SH, etal. Electrospinning of polymer nonofibers with specific surface chemistry. Polymer,2002; 43:1025-1029.
    33. Megelski S, Stephen S, etal. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules,2002; 35:8456-8466.
    34. Demir MM, Yilgor I, Yilgor E. etal. Electrospinning of polyurethane fibers. Polymer, 2002; 43:3303-3309.
    35. Bhardwaj N, Kundu SC. Electrospinning:a fascinating fiber fabrication technique. Biotechnology Advances.2010; 28:325-347..
    36. Huang ZM, He CL. Yang A, etal. Encapsulating drugs in biodegradable ultrafine fibres through co-axial electrospinning. Journal of Biomedical Materials Research A, 2006; 77:169-179.
    37. Kim K, Luu YK, Chang C, etal. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrou sscaffolds. Journal of Controlled Release.2004; 98:47-56.
    38. Xu X, Chen X, Ma P, Wang X, Jing X. The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. European Journal of Pharmaceutics and Biopharmaceutics,2008; 70:165-170.
    39. Ranganath SH, Wang CH. Biodegradable micro fiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials,2008; 29: 2996-3003.
    40. Chew SY, Wen J, Yim EKF, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules,2005:6:2017-2024.
    41. Burger C, Chu B. Functional nanofibrous scaffolds for bone reconstruction. Colloids and Surfaces B,2007; 56:134-141.
    42. Prabaharan M, Jayakumar R, Nair SV. Electrospun nanofibrous scaffolds-current status and prospects in drug delivery. Advances in Polymer Science,2012; 246: 241-262.
    43. Luong VE, Gr(?)ndahl L, Chua KN, Leong KW, Nurcombe V, Cool SM. Controlled release of heparin from poly(ε-caprolactone) electrospun fibers. Biomaterials,2006; 27:2042-2050.
    44. He CL, Huang ZM, Han X J, etal. Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery. Journal of Macromolecular Science B,2006; 45: 515-524.
    45. Taepaiboon P, Rungsardthong U, Supaphol P. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology,2006; 17:2317-2329.
    46. Taepaiboon P, Rungsardthong U, and Supaphol P. Vitamin-loaded electrospun cellulose acetate nanofiber mats as trans-dermal and dermal therapeutic agents of vitamin A acid and vitamin E. European Journal of Pharmaceutics and Biopharmaceutics,2007; 67:387-397.
    47. Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer,2007; 48:7546-7557.
    48. Chen Q Z, Thompson ID, Boccaccini A R.45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials,2006;27:2414-2425.
    49. Viswanath B, Ravishankar N. Porous biphasic scaffolds and coatings for biomedical applications via morphology transition of nanorods. Nanotechnology, 2007; 18:475-604.
    50. Bini TB, Hai LB, etal. Electrospun poly(L-lactide-co-glycolide)biodegradable polymer nanofiber tubes for peripheral nerve regeneration. Nanotechnology,2004; 15:1459-1464.
    51. Xu X, Chen X, Liu A, Hong Z, Jing X. Electrospun poly(l-lactide)-grafte dhydroxyapatite/poly(l-lactide) nano composite fibers. European Polymer Journal, 2007; 43:3187-96.
    52. Shalumon KT, Anulekha KH, Chennazhi KP, Tamura H, etal. Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering. International Journal of Biological Macromolecules,2011; 48:571-576.
    53. Khil MS, Cha DI, Kim HY, etal. Electrospun nanofibrous polyurethane membrane as wound dressing. Journal of Biomedical Materials Research,2003; 67:675-679.
    54. Floyd T, Rothwell SW, Risdahl J, etal. Salmon thrombin-fibrinogen dressing allows greater survival and preserves distal blood flow compared to standard kaolin gauze in coagulopathic swine with a standardized lethal femoral artery injury. Journal of Special Operations Medicine,2012; 12:16-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700