环境影响下手性分子的结构及对映体转变过程理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性是自然界生物分子重要的内禀属性,也被认为与生命起源直接相关。手性分子对映体结构的稳定性以及在环境影响下的构象转变与一些基本的生命过程紧密联系,且对药物开发及投递起到至关重要的作用,一直以来都是物理、化学、材料科学及生命科学等领域的研究热点之一。本文综合使用了密度泛函理论方法,及以此为基础发展的紧束缚密度泛函理论方法,乃至半经验从头算方法和经典分子动力学模拟方法,研究了一些典型手性分子的结构及受外界环境影响后展现的特性,包括在环境影响下的对映体转变过程。具体研究工作主要包括以下四个部分:
     首先,限域下的分子手性转变过程中,极值点的真实结构信息在反应中是非常重要的,但却很难获得,主要是由于复杂的分子相互作用。在本部分,我们基于大量的经典分子动力学模拟的统计结果,阐述了在单壁氮化硼纳米管中,difluorobenzo[c]phenanthrene分子(C18H12F2,称为D分子)的完整手性转变过程,发现在此过程中至少涉及到五个极值点结构,体现出限域环境下手性转变的独特性。我们因此而提议了一种基于经验分子动力学模拟的确定分子间相互作用势能面的方法,这种势能面的求解通常情况下是通过传统的第一性原理计算才可以给出。
     其次,基于组合了密度泛函理论和半经验从头算的ONIOM方法分析了手性的difluorobenzo[c]phenanthrene分子(C18H12F2,D分子)在无极富勒烯C260中的对映体间转变过程,以认识限域对手性分子对映体转变过程的影响。我们发现,在红外和拉曼光谱中,与孤立系统相比,限域环境会使D分子谱线整体发生蓝移,于此同时,在0-60cm-1波段内出现6种体现D分子整体运动的独有模式。非常有趣的,在此限域环境下D分子的手性转变过程能垒相比于孤立情况升高了15.88kcal mol-1,展现了这种限域条件可以促进手性分子对映体稳定。而且,在这个限域系统中, D分子的前线分子轨道远离了整个体系的活性区域,使得D分子受到了外面富勒烯的保护而更为稳定。这一结果凸显了纳米尺度限域环境,会对手性分子对映体转变过程具有影响。我们希望,这些结果对手性药物分子的输运乃至手性对映体的稳定具有一定的借鉴意义。
     再次,为了进一步探究影响结构稳定性的因素,基于第一性原理密度泛函理论分析了超共轭效应对叔丁基及它的衍生物C4Hn(n=4-10)异构体的结构稳定性的影响。我们发现,n=7-10这四种异构体具有与叔丁基类似的超共轭效应,且超共轭轨道能随参加超共轭效应的氢原子数目的增加而减小。参加超共轭效应的氢原子的带电分布均一,此现象揭示了电子结构当中的离域特征。此外,对红外谱的分析发现,对C-H拉伸振动的峰的贡献主要来自于参加超共轭效应的氢原子。此结果对超共轭效应也展现出一些规律性的认识。
     最后,为了促进基于堆垛效应,石墨烯在分子识别方面的可能应用,尤其是在生命科学中,对芳香性氨基酸、乃至测序碱基等带有环状侧链分子的识别,采用密度泛函紧束缚(DFTB)方法,我们研究了石墨烯片段与不同的环状有机碳氢化合物包括苯(C6H6),环己烷(C6H12),苯炔(C6H4),环己烯(C6H10),1,3-环己二烯(C6H8(1))及异构体1,4-环己二烯(C6H8(2))之间的相互作用。结果展现出,在Raman振动谱及紫外可见吸收谱上,均可发现小分子吸附到石墨烯基底具有的明显差异性。也就是,两种光谱都存在一些明显的归属于不同小分子吸附的不同特征峰,而在相应的离子体系中,相应的特征峰更为明显。进一步的分析表明,在中性的环境下,整体的吸附作用能几乎都归因于色散能的存在,并且石墨烯把电子转移给小分子。与此相反,在离子吸附环境下,主要的结合能贡献来自于静电作用。这些结果对在石墨烯基底上不同种类的芳香碳氢化合物环的识别,表明了比较清晰的特征。希望我们的研究有助于基于石墨烯的相应分子识别检测器件的设计。
Chirality is a very important intrinsic property of the natural biological molecules,which is also considered to be directly related to the origin of life. The structuralstability of the enantiomer of chiral molecules as well as the conformation transitionupon the environment is closely associated with some basic life processes. And it alsoplays an important role in drug development and delivery. It has been currentlyreceived much attention in physics, chemistry, material science and life science fields.In this thesis, we synthetically used the density functional theory, density functionaltight binding method developed on this basis, and down to the semi-empirical abinitio as well as the classical molecular dynamics simulation methods, in order tostudy the structures of typical chiral molecules and the feature under environment,including the transition process between enantiomers upon the confinement. Thespecific research work mainly includes the following four parts:
     Firstly, reliable structural information of extremal points in a reaction isimportant but difficult to achieve in molecular chiral transitions under confinementdue to the complex molecular interactions. In this part, based on statistical results of anumber of classical molecular dynamics simulations, we expounded the completechiral transition process of a difluorobenzo[c]phenanthrene molecule (C18H12F2, calledD molecule) within a single-walled boron-nitride nanotube involves at least fiveextremal point structures, showing a unique feature of chiral transition in the confinedenvironment and suggesting an alternative to conventional first-principles calculationsto determine the complex potential energy surface of intermolecular interactions.
     Secondly, the transition process between chiral difluorobenzo[c]phenanthrenemolecule (C18H12F2, D molecule) enantiomers within non-polar fullerene C260has been studied based on ONIOM method, which combined the density functional theoryand the semi-empirical ab initio method, in order to explore the impact ofconfinement on the transition process of chiral enantiomers. We found that blue shiftoccurred generally in infrared and Raman spectra of D molecule under confinementenvironment, compared with those of isolated systems. Meanwhile, six types ofparticular patterns representing overall movement of D molecules appeared in0-60cm-1band. Interestingly, energy barrier of D molecule chiral transformation under saidconfinement ambience is elevated by15.88kcal·mol-1compared to those underisolated conditions, which means this confinement conditions can facilitate thestability of chiral molecular enantiomers. Moreover, in the confinement system, frontorbital energy of D molecule is lower than that of C260fullerene, so that D molecule isfurther stabilized due to the protection of fullerene matrix, in terms of reactivity. It isconcluded that confinement environment in nanoscale will have an impact onenantiomer transformation process of chiral molecules. These results may instructchiral medicine molecules transport and even the stability of chiral enantiomers.
     Thirdly, to further explore the factors that affect the structural stability, thehyperconjugation effect on molecular structural stability is studied by performing firstprinciples density functional theory calculations on the tert-butyl and its derived C4Hn(n=4-10) isomer structures. Four of the isomer structures with n=7-10were found toshow hyperconjugation similar to that in the tert-butyl, with hyperconjugation orbitalenergies decreasing with the increase of the number of hydrogen atoms participatingin the hyperconjugation (PIH). The distribution of charge carried by the PIH hydrogenatoms is uniform, which reveals a delocalization character in the electronic structures;and the PIH hydrogen atoms are found responsible for the main IR spectrum peakrelating to C-H stretching vibration. These findings may provide some regularknowledge on hyperconjugation.
     Finally, to promote possible applications of graphene in molecular identificationbased on stacking efects, in particular in recognizing aromatic amino acids and evensequencing nucleobases in life sciences, we study the interaction between graphenesegments and diferent cyclic organic hydrocarbons including benzene (C6H6),cyclohexane (C6H12), benzyne (C6H4), cyclohexene (C6H10),1,3-cyclohexadiene(C6H8(1)) and1,4-cyclohexadiene (C6H8(2)), using the density-functionaltight-binding (DFTB) method. The results present obviously diferent characteristics in Raman vibrational and ultraviolet visible absorption spectra of the small moleculesadsorbed on the graphene sheet. That are both spectra involve clearly diferentcharacteristic peaks, belonging to the diferent small molecules upon adsorption, withthe ones of ionized molecules being more substantial. Further analysis shows that theadsorptions are almost all due to the presence of dispersion energy in neutral casesand involve charge transfer from the graphene to the small molecules. In contrast, themain binding force in the ionic adsorption systems is the electronic interaction. Theresults present clear signatures that can be used to recognize diferent kinds ofaromatic hydrocarbon rings on graphene sheets. We expect that our findings will behelpful for designing molecular recognition devices using graphene.
引文
[1] ALABUGIN I V, GILMORE K M, PETERSON P W. Hyperconjugation [J]. WileyInterdisciplinary Reviews: Computational Molecular Science,2011,1:109-141.
    [2] WU J I, VON RAGUE SCHLEYER P. Hyperconjugation in hydrocarbons: Notjust a" mild sort of conjugation"[J]. Pure&Applied Chemistry,2013,85:883-956.
    [3] SPONER J, LESZCZYNSKI J, HOBZA P. Nature of nucleic acid-base stacking:Nonempirical ab initio and empirical potential characterization of10stackedbase dimers. Comparison of stacked and H-bonded base pairs [J]. J. Phys. Chem.,1996,100:5590-5596.
    [4] CALLADINE C R. Mechanics of sequence-dependent stacking of bases inB-DNA [J]. J. Mol. Biol.,1982,161:343-352.
    [5] FRANKLAND S J V, HARIK V M, ODEGARD G M, BRENNER D W, GATEST S. The stress–strain behavior of polymer-nanotube composites from moleculardynamics simulation [J]. Compos. Sci. Technol.,2003,63:1655-1661.
    [6] LEVITT M, HIRSHBERG M, SHARON R, DAGGETT V. Potential energyfunction and parameters for simulations of the molecular dynamics of proteinsand nucleic acids in solution [J]. Comput. Phys. Commun.,1995,91:215-231.
    [7] YEH I C, HUMMER G. System-size dependence of diffusion coefficients andviscosities from molecular dynamics simulations with periodic boundaryconditions [J]. J. Phys. Chem. B,2004,108:15873-15879.
    [8] CAHN R S, INGOLD C, PRELOG V. Specification of molecular chirality [J].Angew. Chem. Int. Ed. Engl.,1966,5:385-415.
    [9] BIOT J B. Phénomènes de polarisation successive, observés dans des fluideshomogènes [J]. Bull. Soc. Philomath,1815,190-192.
    [10] PASTEUR L. Comptes rendus hebdomadaires de l'Académie des Sciences,1848,26:535-538.
    [11] K NIG W A. Chirality in the Natural World-Odors and Tastes. Chirality in theNatural and Applied Science, edited by W. J. Lough and I. W. Wainer (BlackwellScience, Oxford,2002):261-284.
    [12] MCBRIDE W G. Thalidomide and congenital abnormalities [J]. Lancet,1961,278:1358-1358.
    [13] LENZ W, PFEIFFER R A, KOSENOW W, HAYMAN D J. Thalidomide andcongenital abnormalities [J]. Lancet,1962,279:45-46.
    [14] BLASCHKE G, KRAFT H P, FICKENTSCHER K, K HLER F.Chromatographic separation of racemic thalidomide and teratogenic activity ofits enantiomers (author's transl)[J]. Arzneim.-Forsch.,1979,29:1640-1642.
    [15] NAU H, HAUCK R S, EHLERS K. Valproic Acid‐I nduced Neural TubeDefects in Mouse and Human: Aspects of Chirality, Alternative DrugDevelopment, Pharmacokinetics and Possible Mechanisms [J]. Pharmacology&toxicology,1991,69:310-321.
    [16] LIN G Q, YOU Q D, CHENG J F. Chiral drugs: Chemistry and biological action[M]. John Wiley&Sons,2011.
    [17] HAZEN R M, SHOLL D S. Chiral selection on inorganic crystalline surfaces [J].Nat. Mater.,2003,2:367-374.
    [18] ZHANG J, ALBELDA M T, LIU Y, CANARY J W. Chiral nanotechnology [J].Chirality,2005,17:404-420.
    [19] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nat. Mater.,2007,6:183-191.
    [20] WATTS P C P, FEARON P K, HSU W K, BILLINGHAM N C, KROTO H W,WALTON R M,MATER J. Carbon nanotubes as polymer antioxidants [J].J.Mater. Chem.,2003,13:491-495.
    [21] FNOGLIO I, TOMATIS M, LISON D,MULLER J, FONSECA A,NAGY B,FUBINI B. Reactivity of carbon nanotubes: Freeradical generation or scavengingactivity?[J].Free Radical Biol. Med.,2006,40:227-1233.
    [22] GLANO A. Carbon Nanotubes as Free-Radical Scavengers [J]. J. Phys. Chem. C,2008,112:922-8927.
    [23] LUCENTE-SCHULTZ R M, MOORE V C, LEONARD AD, PRICE B K,OSYNKIN D V, LU M. PARTHA R,CONYERS J L, TOUR J M. AntioxidantSingle-Walled Carbon Nanotubes [J].J. Am. Chem. Soc.,2009,131:3934-3941.
    [24] GALANO A. Influence of Diameter, Length, and Chirality of Single-WalledCarbon Nanotubes on Their Free Radical Scavenging Capability [J]. J. Phys.Chem. C,2009,113:18487-18491.
    [25] TU Y, LV M, XIU P, HUYNH T, ZHANG M, CASTELLI M, LIU Z, HUANG Q,FAN C, FANG H, ZHOU R. Destructive extraction of phospholipids fromEscherichia coli membranes by graphene nanosheets [J]. Nat. Nanotech.,2013,8:594-601.
    [26] LEE C, WEI X, KYSAR J W, HONE J. Measurement of the elastic propertiesand intrinsic strength of monolayer graphene [J]. Science,2008,321:385-388.
    [27] CHOPRA N G, LUYKEN R J, CHERREY K, CRESPI V H, COHEN M L,LOUIE S G, ZETTL A. Boron nitride nanotubes [J]. Science,1995,269:966-967.
    [28] COHEN M L, ZETTL A. The physics of boron nitride nanotubes [J]. Phys. Today,2010,63:34-38.
    [29] KMTO H W, HEATH J R, O’BRIEN R F, BUCKMINSTER C. Fullerene [J].Nature,1985,318:162-163.
    [30] SMALLEY R E, KROTO H W, HEATH J R. C60: Buckminsterfullerene [J].Nature,1985,318:162-163.
    [31] DINADAYALANE T C, LESZCZYNSKI J. Remarkable diversity ofcarbon-carbon bonds: structures and properties of fullerenes, carbon nanotubes,and graphene [J]. Structural Chemistry,2010,21:1155-1169.
    [32] MENG J, LIANG X, CHEN X, ZHAO Y. Biological characterizations of
    [Gd@C82(OH)22]nnanoparticles as fullerene derivatives for cancer therapy [J].Integr. Biol.,2013,5:43-47.
    [33] KANG S, ZHOU G, YANG P, LIU Y, SUN B, HUYNH T, MENG H, ZHAO L,XING G, CHEN C, ZHAO Y, ZHOU R. Molecular mechanism of pancreatictumor metastasis inhibition by Gd@C82(OH)22and its implication for de novodesign of nanomedicine [J]. Proc. Natl. Acad. Sci. USA,2012,109:15431-15436.
    [34] EGGERS D K, VALENTINE J S. Molecular confinement influences proteinstructure and enhances thermal protein stability [J]. Protein Sci.,2001,10:250-261.
    [35] LUCENT D, VISHAL V, PANDE V S. Protein folding under confinement: A rolefor solvent [J]. Proc. Natl. Acad. Sci. USA,2007,104:10430-10434.
    [36] XU W X, WANG J, WANG W. Folding behavior of chaperonin-mediatedsubstrate protein [J]. Proteins: Structure, Function, and Bioinformatics,2005,61:777-794.
    [37] YANG H, ZHANG L, ZHONG L, YANG Q, LI C. Enhanced cooperativeactivation effect in the hydrolytic kinetic resolution of epoxides on [Co (salen)]catalysts confined in nanocages [J]. Angew. Chem. Int. Ed.,2007,46:6861-6865.
    [38] WANG B, KRáL P, THANOPULOS L. Docking of chiral molecules on twistedand helical nanotubes: Nanomechanical control of catalysis [J]. Nano. Lett.,2006,6:1918-1921.
    [39] PAN X, FAN Z, CHEN W, DING Y, LUO H, BAO X. Enhanced ethanolproduction inside carbon-nanotube reactors containing catalytic particles [J]. Nat.Mater.,2007,6:507-511.
    [40] MIGUEL M, MARíA V R. New developments in ordered mesoporous materialsfor drug delivery [J]. J. Mater. Chem.,2010,20:5593-5604.
    [41] RITTIGSTEIN P, PRIESTLEY R D, BROADBELT L J, TORKELSON J M.Model polymer nanocomposites provide an understanding of confinement effectsin real nanocomposites [J]. Nat. Mater.,2007,6:278-282.
    [42] CANTAERT B, BENIASH E, MELDRUM F C. Nanoscale confinement controlsthe crystallization of calcium phosphate: relevance to bone formation [J]. Chem.Eur. J.,2013,19:14918-14924.
    [43] POPOV A A, YANG S, DUNSCH L. Endohedral fullerenes [J]. Chem. Rev.,2013,113:5989-6113.
    [44] WANG Z G, WANG C L, XIU P, QI W P, TU Y S, SHEN Y M, ZHOU R H,ZHANG R Q, FANG H P. Size Dependence of Nanoscale Confinement on ChiralTransformation [J]. Chem. Eur. J.,2010,16:6482-6487.
    [45] TIAN C J, XIU P, MENG Y, ZHAO W Y, WANG Z G, ZHOU R H.Enantiomerization mechanism of thalidomide and the role of water andhydroxide ions [J]. Chem. Eur. J.,2012,18:14305-14313.
    [46] COBLENTZ W W. Investigations of infra-red spectra [M]. Carnegie institutionof Washington,1905,1.
    [47] RAMAN C V, KRISHNAN K S. A new type of secondary radiation [J]. Nature,1928,121:501-502.
    [48] ARRHENIUS S. On the reaction rate of the inversion of non-refined sugar uponsouring [J]. Z. Phys. Chem.,1889,4:226-248.
    [49] Eyring H. The activated complex and the absolute rate of chemical reactions [J].Chem. Rev.,1935,17:65-77.
    [50] WHITE D N J, BOVILL M J. Investigation of the hydroboration: Coxidation ofhindered cycloalkenes via molecular mechanics calculations [J]. J. Chem. Soc.,1983, Perkin Trans.2:225-229.
    [51] MCIVER JR J W, KOMOMICKI A. Structure of transition states in organicreactions.General theory and an application to the cyclobutene-butadieneisomerization using a semiempirical molecular orbital method [J]. J. Am. Chem.Soc.,1972,94:2625-2633.
    [52] DEWAR M J S, HEALY E F, STEWART J J P. Location of transition states inreaction mechanisms [J]. J. Am. Chem. Soc., Faraday Transactions2: Molecularand Chemical Physics,1984,80:227-233.
    [53] TAPIA O, ANDRéS J, CARDENAS R. Transition structure for the hydridetransfer reaction from formate anion to cyclopropenyl cation: A simpletheoretical model for the reaction catalyzed by formate dehydrogenase [J]. Chem.Phys. Lett.,1992,189:395-400.
    [54] ANDRES J, MOLINER V, DOMINGO L R, PICHER M T, KRECHI J. Atheoretical study of the molecular mechanism for the oxidation of methanol byPQQ [J]. J. Am. Chem. Soc.,1995,117:8807-8815.
    [55] TAPIA O, ANDRES J, SAFONT V S. Theoretical Study of transition structuresfor intramolecular hydrogen transfer in molecular models representingD-Ribulose1,5-Bisphosphate. A possible molecular mechanism for theenolization step in rubisco [J]. J. Phys. Chem.,1994,98:4821-4830.
    [56] ANDRES J, MOLINER V, KRECHL J, SILLA E. A PM3quantum chemicalstudy of the pyruvate reduction mechanism catalyzed by lactate dehydrogenase
    [J]. Bioorg. Chem.,1993,21:260-274.
    [1]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1984.
    [2] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln [J]. Annalen derPhysik,1927,389:457-484.
    [3] HARTREE D R, DOUGLAS R. The calculation of atomic structures [M]. J. Wiley.1957.
    [4] SLATER J C. Atomic shielding constants [J]. Physical Review,1930,36:57.
    [5] FOCK V. N herungsmethode zur L sung des quantenmechanischen Mehrkrperproblems [J]. Zeitschrift f¨1r Physik A Hadrons and Nuclei,1930,61:126-148.
    [6] ROOTHAAN C C J. New developments in molecular orbital theory [J]. Reviewsof modern physics,1951,23:69.
    [7] THOMAS L H. The calculation of atomic fields [C]. Cambridge Univ Press,1927,542-548.
    [8] FERMI E. A statistical method for the determination of some atomic propertiesand the application of this method to the theory of the periodic system ofelements [J]. Z. Phys,1928,48:73-79.
    [9] FERMI E. Un metodo statistico per la determinazione di alcune priorietadell'atome [J]. Rend. Accad. Naz. Lincei,1927,6:32.
    [10] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Phys. Rev,1964,136: B864-B871.
    [11] KOHN W, SHAM L J. Self-consistent equations including exchange andcorrelation effects [J]. Phys. Rev,1965,140: A1133-A1138.
    [12] SLATER J C. Quantum theory of molecules and solids [M]. McGraw-Hill NewYork.,1974,4.
    [13] ZHAO Y, TRUHLAR D G. A new local density functional for main-groupthermochemistry, transition metal bonding, thermochemical kinetics, andnoncovalent interactions[J]. J. Chem. Phys.,2006,125:194101.
    [14] STAROVEROV V N, SCUSERIA G E, TAO J, PERDEW J P. Comparativeassessment of a new nonempirical density functional: Molecules andhydrogen-bonded complexes[J]. J. Chem. Phys.,2003,119:12129-12137.
    [15] TAO J, PERDEW J P, STAROVEROV V N, SCUSERIA G E. Climbing thedensity functional ladder: Nonempirical meta-generalized gradientapproximation designed for molecules and solids[J]. Phys. Rev. Lett.,2003,91:146401.
    [16] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, FRISCH M J. Ab initiocalculation of vibrational absorption and circular dichroism spectra using densityfunctional force fields[J]. J. Phys. Chem.,1994,98:11623-11627.
    [17] ZHAO Y, SCHULTZ N E, TRUHLAR D G. Exchange-correlation functionalwith broad accuracy for metallic and nonmetallic compounds, kinetics, andnoncovalent interactions[J]. J. Chem. Phys.2005,123:161103.
    [18] ZHAO Y, TRUHLAR D G. The M06suite of density functionals for main groupthermochemistry, thermochemical kinetics, noncovalent interactions, excitedstates, and transition elements: two new functionals and systematic testing offour M06-class functionals and12other functionals[J]. Theor. Chem. Acc.,2008,120:215-241.
    [19] ANDERSEN O K, JEPSEN O. Explicit, first-principles tight-binding theory [J].Phys. Rev. Lett.,53:2571-1984.
    [20] ARTACHO E, YNDURAIN F. Nonparametrized tight-binding method for localand extended defects in homopolar semiconductors [J]. Phys. Rev. B,1991,44:6169-6187.
    [21] COHEN R E, MEHL M J, PAPACONSTANTOPOULOS D A. Tight-bindingtotal-energy method for transition and noble metals [J]. Phys. Rev. B,1994,50:14694.
    [22] POREZAG D, FRAUENHEIM T, K HLER T, SEIFERT G, KASCHNER R.Construction of tight-binding-like potentials on the basis of density-functionaltheory: Application to carbon [J]. Phys. Rev. B,1995,51:12947.
    [23] ELSTNER M, FRAUENHEIM T, KAXIRAS E, SEIFERT G, Suhai, S.Self-Consistent Charge Density-Functional Based Tight-Binding Scheme forLarge Biomolecules [J]. Phys. Stat. Sol.,2000,217:357-376.
    [24] LIU H, ELSTNER M, KAXIRAS E, FRAUENHEIM T, HERMANS J, YANG W.Quantum mechanics simulation of protein dynamics on long timescale[J].Proteins:Structure, Function, and Genetics,2001,44:484-489.
    [25] LONDON F, Z. Phys. Chem. Abt. B,1930,11:22.
    [26] KANG Y K, JHON M S. Additivity of atomic static polarizabilities anddispersion coefficients [J]. Theor. Chim. Acta.,1982,61:41-48.
    [27] HALGREN T A. The representation of van der Waals (vdW) interactions inmolecular mechanics force fields: potential form, combination rules, and vdWparameters [J]. J. Am. Chem. Soc.,1992,114:7827-7843.
    [28] NIEHAUS T A, SUHAI S, SALA F D, LUGLI P, ELATNER M, SEIFERT G,FRAUENHEIM TH. Tight-binding approach to time-dependentdensity-functional response theory [J]. Phys. Rev. B.,2001,63:085108.
    [29] WANG X, ZHANG R Q, NIEHAUS T A, FRAUENHEIM TH. Excited stateproperties of allylamine-capped silicon quantum dots [J]. J. Phys. Chem. C.,2007,111:2394-2400.
    [30] NIEHAUS T A. Approximate time-dependent density functional theory [J].J. Mol. Struc.(Theochem),2009,914:38-49.
    [31] CASIDA M E, IPATOV A, CORDOVA F. Linear-response time-dependentdensity functional Theory for open-shell molecules [M]//Time-DependentDensity Functional Theory. Springer Berlin Heidelberg,2006:243-257.
    [32] ALDER B J, WAINWRIGHT T E. Phase transition for a hard sphere systerm [J].J. Chem. Phys.,1957,27:1208-1209.
    [33] KAO J, ALLINGER N L. Conformational analysis.122. Heats of formation ofconjugated hydrocarbons by the force field method [J]. J. Am. Chem. Soc.,1977,99:975-986.
    [34] ALLINGER N L, YUH Y H, LII J H. Molecular mechanics. The MM3force fieldfor hydrocarbons.1[J]. J. Am. Chem. Soc.,1989,111:8551-8566.
    [35] WEINER S J, KOLLMAN P A, NGUYEN D T, CASE D A. An all atom forcefield for simulations of proteins and nucleic acids [J]. J. Com. Chem.,1986,7:230-252.
    [36] MACKERELL A D, BASHFORD D, BELLOTT M, DUNBRACK R L,EVANSECK J D, FIELD M J, DARPLUS M. All-atom empirical potential formolecular modeling and dynamics studies of proteins. J. Phys. Chem. B,1998,102:3586-3616.
    [37] JORGENSEN W L, MAXWELL D S, RIVES J T. Development and testing ofthe OPLS All-Atom Force Field on conformational energetics and properties oforganic liquids [J]. J. Am. Chem. Soc.,1996,118:11225-11236.
    [38] MAPLE J R, HWANG M J, STOCKFISCH T P, DINUR U, WALDMAN M,EWIG C S, HAGLER A T. Derivation of class II force fields. I. Methodologyand quantum force field for the alkyl functional group and alkane molecules [J].J. Com. Chem.,1994,15:162-182.
    [39] RAPPé A K, CASEWIT C J, COLWELL K S, GODDARD LII W A, SKIFF WM. UFF, a full periodic table force field for molecular mechanics and moleculardynamics simulations [J]. J. Am. Chem. Soc.,1992,114:10024-10035.
    [40] VAN DER VAART A, GOGONEA V, DIXON S L, MERZ K M J. Linear scalingmolecular orbital calculations of biological systems using the semiempiricaldivide and conquer method [J]. J. Comput. Chem.,2000,21:1494-1504.
    [41] WARSHEL A, LEVITT M. Theoretical studies of enzymic reactions: dielectric,electrostatic and steric stabiliza-tion of the carbonium ion in the reaction oflysozyme [J]. J. Mol. Biol.,1976,103:227–249.
    [42] LIN H, TRUHLAR D G. QM/MM: what have we learned, where are we, andwhere do we go from here?[J] Theor. Chem. Acc.,2007,117:185–199.
    [43] SENN H M, THIEL W. QM/MM methods for biomolecular systems [J]. Angew.Chem. Int. Ed.,2009,48:1198-1229.
    [44] HU H, YANG W. Free energies of chemical reactions in solution and in enzymeswith ab initio quantum mechanics/molecular mechanics methods [J]. Annu. Rev.Phys. Chem.,2008,59:573-601.
    [45] MASERAS F, MOROKUMA K. IMOMM: a new integrated ab initio+molecular mechanics geometry optimization scheme of equilibrium structuresand transition states. J. Comput. Chem.,1995,16:1170-1179.
    [46] SVENSSON M, HUMBEL S, FROESE R D J, MATSUBARA T, SIEBER S,MOROKUMA K. ONIOM: a multilayered integrated MO+MM method forgeometry optimizations and single point energy predictions. A test for diels-alderreactions and Pt(P(t-Bu)3)2+H2oxidative addition [J]. J. Phys. Chem.,1996,100:19357-19363.
    [47] VREVEN T, MOROKUMA K, FARKAS O, SCHLEGEL H B, FRISCH M J.Geometry optimization with QM/MM, ONIOM and other combined methods. I.Microiterations and constraints [J]. J. Comput. Chem.,2003,24:760-769.
    [48] HUMBEL S, SIEBER S, MOROKUMA K. The IMOMO method: integration ofdifferent levels of molecular orbital approximations for geometry optimization oflarge systems. Test for n-butane conformation and SN2reaction: RCl+Cl [J]. J.Chem. Phys.,1996,105:1959-1967.
    [49] DERAT E, BOUQUANT J, HUMBEL S. On the link atom distance in theONIOM scheme. An harmonic approximation analysis [J]. J. Mol. Struct.(THEOCHEM),2003,632:61-69.
    [50] THéRY V, RINALDI D, RIVAIL J L, MAIGRET B, FERENCZY G G. Quantummechanical computations on very large molecular systems: The local self‐consistent field method [J]. J. Comput. Chem.,1994,15:269-282.
    [51] REUTER N, DEJAEGERE A, MAIGRET B, KARPLUS M. Frontier bonds inQM/MM methods: a comparison of different approaches [J]. J. Phys. Chem. A,2000,104:1720-1735.
    [52] GAO J, AMARA P, ALHAMBRA C, FIELD M J. A generalized hybrid orbital(GHO) method for the treatment of boundary atoms in combined QM/MMcalculations [J]. J. Phys. Chem. A,1998,102:4714-4721.
    [53] NICOLL R M, HINDLE S A, MACKENZIE G, HILLIER I H, BURTON N A.Quantum mechanical/molecular mechanical methods and the study of kineticisotope effects: Modelling the covalent junction region and application to theenzyme xylose isomerase [J]. Theor. Chem. Acc.,2001,106:105-112.
    [54] DILABIO G A, HURLEY M M, CHRISTIANSEN P A. Simple one-electronquantum capping potentials for use in hybrid QM/MM studies of biologicalmolecules [J]. J. Chem. Phys,2002,116:9578-9584.
    [55] LUNDBERG M, MOROKUMA K LEE T S, YORK D M. In Multi-scalequantum models for biocatalysis: Modern techniques and applications [J].Springer Verlag,2009.
    [56] MOROKUMA K. Theoretical Studies of Chemical Reactions-A FascinatingWorld of Chemistry from Gas-Phase Elementary Reactions throughNanostructure Formation and Homogeneous Catalysis to Reactions ofMetalloenzymes. Bull. Chem. Soc. Jpn.2007,80,2247-2261.
    [57] FUKUI K. Formulation of the reaction coordinate [J]. The Journal of PhysicalChemistry,1970,74:4161-4163.
    [1] POLAND C A, DUFFIN R, KINLOCH I, MAYNARD A, WALLACE W A H,SEATON A, STONE V, BROWN S, MACNEE W., DONALDSON K. Carbonnanotubes introduced into the abdominal cavity of mice show asbestos-likepathogenicity in a pilot study[J]. Nature Nanotech.2008,3:423-428.
    [2] BLASCHKE G, KRAFT H P, MARKGRAF H. ChromatographischeRacemattrennungen, X. Racemattrennung des Thalidomids und andererGlutarimid-Derivate [J]. Chem. Ber.,1980,113:2318-2322.
    [3] ERIKSSON T, BJ RKMAN S, ROTH B, FYGE A, H GLUND P. Theenantiomers of thalidomide: blood distribution and the influence of serumalbumin on chiral inversion and hydrolysis [J]. Chirality,1998,10:223-228.
    [4] INOUYE M, WAKI M, ABE H. Saccharide-dependent induction of chiral helicityin achiral synthetic hydrogen-bonding oligomers [J]. J. Am. Chem. Soc.,2004,126:2022-2027.
    [5] WAKI M, ABE H, INOUYE M. Translation of mutarotation into induced circulardichroism signals through helix inversion of host polymers [J]. Angew. Chem.,2007,119:3119-3121.
    [6] ABE H, MACHIGUCHI H, MATSUMOTO S, INOUYE M. Sacchariderecognition-induced transformation of pyridine-pyridone alternate oligomersfrom self-dimer to helical complex [J]. J. Org. Chem.,2008,73:4650-4661.
    [7] WANG Z G, WANG C L, XIU P, QI W P, TU Y S, SHEN Y M, ZHOU R H,ZHANG R Q, FANG H P. Size Dependence of Nanoscale Confinement onChiral Transformation [J]. Chem. Eur. J.,2010,16:6482-6487.
    [8] TIAN C J, XIU P, MENG Y, ZHAO W Y, WANG Z G, ZHOU R H.Enantiomerization mechanism of thalidomide and the role of water andhydroxide ions [J]. Chem. Eur. J.,2012,18:14305-14313.
    [9] ARRHENIUS S. On the reaction rate of the inversion of non-refined sugar uponsouring [J]. Z. Phys. Chem.,1889,4:226-248.
    [10] DEWAR M J S, ZOEBISCH E G, HEALY E F. Development and use ofquantum mechanical molecular models.76. AM1: a new general purposequantum mechanical molecular model [J]. J. Am. Chem. Soc.,1985,107:3902-3909.
    [11] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian, Inc.,Wallingford CT, Gaussian09, Revision D.01,2013.
    [12] VAN DER SPOEL D, LINDAHL E, HESS B, GROENHOF G, MARK A E,BERENDSEN H J C. GROMACS: fast, flexible, and free [J]. J. Comput. Chem.,2005,26:1701-1718.
    [13] PECHUKAS P. Transition state theory [J]. Ann. Rev. Phys. Chem.,1981,32:159-177.
    [14] UMEDA H, TAKAGI M, YAMADA S, KOSEKI S, FUJIMURA Y. Quantumcontrol of molecular chirality: Optical isomerization of difluorobenzo [c]phenanthrene [J]. J. Am. Chem. Soc.,2002,124:9265-9271.
    [1] MCBRIDE W G. Thalidomide and congenital abnormalities [J]. Lancet,1961,278:1358-1358.
    [2] LENZ W, PFEIFFER R A, KOSENOW W, HAYMAN D J. Thalidomide andcongenital abnormalities [J]. Lancet,1962,279:45-46.
    [3] WANG Z G, WANG C L, XIU P, QI W P, TU Y S, SHEN Y M, ZHOU R H,ZHANG R Q, FANG H P. Size Dependence of Nanoscale Confinement on ChiralTransformation [J]. Chem. Eur. J.,2010,16:6482-6487.
    [4] TIAN C J, XIU P, MENG Y, ZHAO W Y, WANG Z G, ZHOU R H.Enantiomerization mechanism of thalidomide and the role of water andhydroxide ions [J]. Chem. Eur. J.,2012,18:14305-14313.
    [5] SUN L B, LI J R, LU W, GU Z Y, LUO Z, ZHOU H C. Confinement of metal-organic polyhedra in silica nanopores [J]. J. Am. Chem. Soc.,2012,134:15923-15928.
    [6] LUCENT D, VISHAL V, PANDE V S. Protein folding under confinement: a rolefor solvent [J]. Proc. Natl. Acad. Sci.,2007,104:10430-10434.
    [7] ZHANG S Q, CHEUNG M S. Manipulating biopolymer dynamics by anisotropicnanoconfinement [J]. Nano Lett.,2007,7:3438-3442.
    [8] TOULHOAT H, LONTSI FOMENA M, DE BRUIN T. Computational study ofthe effect of confinement within microporous structures on the activity andselectivity of metallocene catalysts for ethylene oligomerization [J]. J. Am. Chem.Soc.,2011,133:2481-2491.
    [9] SHAO J, H NGGI P. Control of molecular chirality [J]. J. Chem. Phys.,1997,107:9935-9941.
    [10] SALAM A, MEATH W J. On the control of excited state relative populations ofenantiomers using circularly polarized pulses of varying durations [J]. J. Chem.Phys.,1997,106:7865-7868.
    [11] SHAPIRO M, FRISHMAN E, BRUMER P. Coherently controlled asymmetricsynthesis with achiral light [J]. Phys. Rev. Lett.,2000,84:1669-1672.
    [12] ERIKSSON T, BJ RKMAN S, ROTH B, FYGE, H GLUN P. Enantiomersof thalidomide: blood distribution and the influence of serum albumin on chiralinversion and hydrolysis [J]. Chirality,1998,10:223-228.
    [13] MENG Y, XIU P, HUANG B L, WANG Z G, ZHANG R Q, ZHOU R H. Aunique feature of chiral transition of a difluorobenzo[c]phenanthrene moleculeconfined in a boron-nitride nanotube based on molecular dynamics simulations[J]. Chem. Phys. Lett.,2014,591:265-267.
    [14] SVENSSON M, HUMBEL S, FROESE R D, MATSUBARA T, SIEBER S,MOROKUMA K. ONIOM: A multilayered integrated MO+MM method forgeometry optimizations and single point energy predictions. A test forDiels-Alder reactions and Pt(P(t-Bu)3)2+H2oxidative addition [J]. J. Phys.Chem.,1996,100:19357-19363.
    [15] MASERAS F, MOROKUMA K. IMOMM: A new integrated ab initio+molecular mechanics geometry optimization scheme of equilibrium structuresand transition states [J]. J. Comput. Chem.,1995,16:1170-1179.
    [16] TZELI D, TTEODORAKOPOULOS G, PETSALAKIS I D, AJAMI D, REBEKJ. Theoretical Study of Hydrogen Bonding in Homodimers and Heterodimers ofAmide, Boronic Acid, and Carboxylic Acid, Free and in EncapsulationComplexes [J]. J. Am. Chem. Soc.,2011,133:16977-16985.
    [17] CHEN H Y, KAO C L, HSU S C N. Proton transfer in guanine cytosine radicalanion embedded in B-form DNA [J]. J. Am. Chem. Soc.,2009,131:15930-15938.
    [18] GALANO A, ALVAREZ IDABOY J R. On the evolution ofone-electron-oxidized deoxyguanosine in damaged DNA under physiologicalconditions: a DFT and ONIOM study on proton transfer and equilibrium [J].Phys. Chem. Chem. Phys.,2012,14:12476-12484.
    [19] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian, Inc.,Wallingford CT, Gaussian09, Revision D.01,2013.
    [20] UMEDA H, TAKAGI M, YAMADA S, KOSEKI S, FUJIMURA Y. Quantumcontrol of molecular chirality: Optical isomerization of difluorobenzo [c]phenanthrene [J]. J. Am. Chem. Soc.,2002,124:9265-9271.
    [21] TARAKESHWAR P, FINKELSTEIN-SHAPIRO D, RAJH T, MUJICA V.Quantum confinement effects on the surface enhanced Raman spectra of hybridsystems molecule-TiO2nanoparticles[J]. Int. J. Quantum. Chem.,2011,111:1659-1670.
    [22] KORTUS J, IRMER G, MONECKE J, PEDERSON M R. Influence of cagestructures on the vibrational modes and Raman activity of methane[J]. Modell.Simul. Mater. Sci. Eng.,2000,8:403-411.
    [1] PETERS R, VAN DUIN M, TONOLI D, KWAKKENBOS G, MENGERINK Y,VAN BENTHEM R, DE KOSTER C, SCHOENMAKERS P, VAN DER WALSJ. Low-molecular-weight model study of peroxide cross-linking ofethylene–propylene–diene rubber using gas chromatography and massspectrometry: II. Addition and combination reactions [J]. J. Chromat. A,2008,1201:151-160.
    [2] GEORGS S C, KN RGEN M, THOMAS S. Effect of nature and extent ofcrosslinking on swelling and mechanical behavior of styrene–butadiene rubbermembranes [J]. J. Membr. Sci.,1999,163:1-17.
    [3] BARTLE K, JONES D, PAKDEL H. Characterization of alkanes in extracts ofcoals, lignites, and related fuels. Dept. Phys Chem, Univ Leeds, Leeds, UK [C].ACS Symposium Series,1982,205:27-45.
    [4] TUO J, QIAN Y. Formation of Alkanes during Hydrous Pyrolysis of an Oil andn-C24at High Temperatures [J]. Energy Fuels,2004,18:1485-1493.
    [5] WHYMAN R, GILHOOLEY K, RIGBY S, WINSTANLEY D. Preparation ofEthylene Glycol Esters from Synthesis Gas [J]. Industrial Chemicals via C1Processes,1987,108: Chapter8.
    [6] RIBIRO D, RITTNER R. The role of hyperconjugation in the conformationalanalysis of methylcyclohexane and methylheterocyclohexanes [J]. J. Org. Chem.,2003,68:6780-6787.
    [7] ROBERT J. Fascination with the conformational analysis of succinic acid, asevaluated by NMR spectroscopy, and why [J]. Acc. Chem. Res.,2006,39:889-896.
    [8] OLAH G, MOLNUR A. Hydrocarbon Chemistry, John Wiley&Sons, Inc [J].New York,1995:524.
    [9] HUDSON C E, WANG D, MCADOO D J. C4H8+isomerizations by theory [J].Int. J. Mass Spectrom,2004,236:105-116.
    [10] SIEBER S, BUZEK P, SCHLEYER P, KOCH W, CAMEIRO M. The tert-butylcation (C4H9+) potential energy surface [J]. J. Am. Chem. Soc.,1993,115:259-270.
    [11] BUZEK P, VON RAGUé SCHLEYER P, Sieber S, Koch W, DE MCARNEIRO J W, VAN IK H, SUNKO D. Confirmation of the H-bridgedstructure of the2-butyl cation by comparison of experimental and ab initio IRfrequencies [J]. J. Chem. Soc., Chem. Commun.,1991,10:671-674.
    [12] MC QUARRIE D A, SIMON J D. Physical Chemistry: a molecular approach
    [M]. University Science Books: Sausalito, CA,1997, Chapter11.
    [13] LEVINE I N. Physical Chemistry,4th edR [J].1995.
    [14] KARLSEN T, B RVE K J, S THRE L J, WIESNER K, B sSSLER M,SVENSSON S. Toward the spectrum of free polyethylene: Linear alkanesstudied by carbon1s photoelectron spectroscopy and theory [J]. J. Am. Chem.Soc.,2002,124:7866-7873.
    [15] POPHRISTIC V, GOODMAN L. Hyperconjugation not steric repulsion leads tothe staggered structure of ethane [J]. Nature,2001,411,565-568.
    [16] BAKER J, NATHAN W S. The mechanism of aromatic side-chain reactions withspecial reference to the polar effects of substituents. Part V. The polar effects ofalkyl groups [J]. J. Chem. Soc.,1935,1844.
    [17] MULLIKEN R S. J. Chem. Phys.,1939,7:339-352.
    [18] DEASY C L. Hyperconjugation [J]. Chem. Rev.,1945,36:145-155.
    [19] WODRICH M D, WANNERE C S, Mo Y, JAROWSKI P D, HOUK K N,SCHLEYER P VON R. The concept of protobranching and its many paradigmshifting implications for energy evaluations [J]. Chem. Eur. J.,2007,13:7731-7744.
    [20] HOFFMANN R, RADOM L, POPLE J, SCHLEYER P, HEHRE W, SALEM L.J. Am. Chem. Soc.,1972,94:6221-6223.
    [21] MO Y, WU W, SONG L, LIN M, ZHANG Q, GAO J. The magnitude ofhyperconjugation in ethane: A perspective from ab initio valence bond theory [J].Angew. Chem.,2004,116:2020-2024.
    [22] LAMBERT J, SINGER R. Neutral hyperconjugation [J]. J. Am. Chem. Soc.,1992,114:10246-10248.
    [23] FREITAS M, RITTNER R. Is there a general rule for the gauche effect in theconformational isomerism of1,2-disubstituted ethanes?[J]. J. Phys. Chem. A.,2007,111:7233-7236.
    [24] HOLLENSTEIN S., LAUBE T. Crystal structure of the tert-butyl cation [J]. J.Am. Chem. Soc.,1993,115:7240-7245.
    [25] KATO T, Reed C. Butyl Cation in a Bottle [J]. Angew. Chem. Int. Ed.,2004,43:2908-2911.
    [26] RASUL G, CHEN J L, Prakash G K S, OLAH G. Ab Initio/DFT/GIAO CCSD(T) calculational study of the t-Butyl cation: comparison of experimental datawith structures, energetics, IR vibrational frequencies, and13C NMR chemicalshifts indicating preferred Csconformation [J]. J. Phys. Chem. A.,2009,113:6795-6799.
    [27] PROVASI P, GóMEZ C A, AUCAR G A, Hyperconjugation: The electronicmechanism that may underlie the Karplus curve of vicinal NMR indirect spincouplings [J]. J. Phys. Chem. A.,2004,108:6231-6238.
    [28] KEMNITZ C, MACKEY J, LOEWEN M, HARGROVE J, LEWIS J,HAWKINS W, NIELSEN A. Origin of stability in branched alkanes [J]. Chem.Eur. J.,2010,16:6942-6945.
    [29] BADENHOOP J, WEINHOLD F. Natural bond orbital analysis of stericinteractions [J]. J. Chem. Phys.,1997,107:5406-5421.
    [30] BADENHOOP J, WEINHOLD F. Natural steric analysis of internal rotationbarriers [J]. Int. J. Quantum Chem.,1999,72:269-280.
    [31] MA J, INAGAKI S. Orbital phase control of the preferential branching of chainmolecules [J]. J. Am. Chem. Soc.,2001,123:1193-1198.
    [32] GOODMAN L, GU H, POPHRISTIC V. Gauche effect in1,2-difluoroethane.Hyperconjugation, bent bonds, steric repulsion [J]. J. Phys. Chem. A.,2005,109:1223-1229.
    [33] DOUBERLY G, RICKS A, TICKNOR B, SCHLEYER P, DUNCAN M.Infrared spectroscopy of the tert-butyl cation in the gas phase [J]. J. Am. Chem.Soc.,2007,129:13782-13783.
    [34] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian03, revisionD.01. Gaussian, Inc.: Pittsburgh, PA,2004.
    [35] BECKE A. Density functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys.,1993,98:5648-5652.
    [36] LEE C, YANG W, PARR R. Development of the Colle-Salvetticorrelation-energy formula into a functional of the electron density [J]. Phys. Rev.B.,1988,37:785-789.
    [37] M LLER C, PLESSET M. MP Perturbation Theory [J]. Phys. Rev.,1934,46:618.
    [38] SCOTT A, RADOM L. Harmonic vibrational frequencies: an evaluation ofHartree-Fock, M ller-Plesset, quadratic configuration interaction, densityfunctional theory, and semiempirical scale factors [J]. J. Phys. Chem.,1996,100:16502-16513.
    [1] WHEELER S E. Local nature of substituent effects in stacking interactions [J]. J.Am. Chem. Soc.,2011,133:10262-10274.
    [2] SALONEN L M, ELLERMANN M, DIEDERICH F. Aromatic rings in chemicaland biological recognition: Energetics and structures [J]. Angew. Chem. Int. Ed.,2011,50:4808-4842.
    [3] BURATTINI S, GREENLAND B W, MERINO D H, WENG W, SEPPALA J,COLQUHOUN H M, HAYES W, MACKAY M E, HAMLEY I W, ROWAN SJ. A healable supramolecular polymer blend based on aromatic π π stacking andhydrogen-bonding interactions [J]. J. Am. Chem. Soc.,2010,132:12051-12058.
    [4] PUROHIT C S, VERMA S. Patterned deposition of a mixed-coordinationadenine-silver helicate, containing a π-stacked metallacycle, on a graphitesurface [J]. J. Am. Chem. Soc.,2007,129:3488-3489.
    [5] HEADEN T F, HOWARD C A, SKIPPER N T, WILKINSON M A, Bowron D T,SOPER A K. Structure of π-π interactions in aromatic liquids [J]. J. Am. Chem.Soc.,2010,132:5735-5742.
    [6] JURE KA P, HOBZA P. True stabilization energies for the optimal planarhydrogen-bonded and stacked structures of guanine…cytosine,adenine…thymine, and their9-and1-methyl derivatives: Complete basis setcalculations at the MP2and CCSD (T) levels and comparison with experiment[J]. J. Am. Chem. Soc.,2003,125:15608-15613.
    [7] VONDRá EK J, BENDOVá L, KLUSáK V, HOBZA P. Unexpectedly strongenergy stabilization inside the hydrophobic core of small protein rubredoxinmediated by aromatic residues: correlated ab initio quantum chemicalcalculations [J]. J. Am. Chem. Soc.,2005,127:2615-2619.
    [8] ASENSIO J L, ARDá A, CA ADA F J, JIMéNEZ B J. Carbohydrate–aromaticinteractions [J]. Acc. Chem. Res.,2012,46:946-954.
    [9] RILEY K E, HOBZA P. Noncovalent interactions in biochemistry [J]. WileyInterdisciplinary Reviews: Comput. Mol. Sci.,2011,1:3-17.
    [10] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nat. Mater.,2007,6:183-191.
    [11] RAO C N R, SOOD A K, SUBRAHMANYAM K S, GOVINDARAJ A.Graphene: The New Two-Dimensional Nanomaterial [J]. Angew. Chem. Int.Ed.,2009,48:7752-7777.
    [12] ABERGEL D S L, APALKOVB V, BERASHEVICHA J, ZIEGLER K,CHAKRABORTYA T. Properties of graphene: a theoretical perspective[J].Properties of graphene: A theoretical perspective [J]. Adv. Phys.,2010,59:261-482.
    [13] NETO A H C, GUINEA F, PERES N M R, NOVOSELOV K S, GEIM A K. Theelectronic properties of graphene [J]. Rev. Mod. Phys.,2009,81:109-162.
    [14] HUANG Y X, DONG X C, SHI Y M, LI C M, LI L J, CHEN P. Nanoelectronicbiosensors based on CVD grown graphene [J]. Nanoscale,2010,2:1485-1488.
    [15] STANKOVICH S, DIKIN D A, DOMMETT G H B, KOHLHAAS K M,ZIMNEY E J, STACH E A, PINER R D, NGUYEN S T, RUOFF R S.Graphene-based composite materials [J]. Nature,2006,442:282-286.
    [16] ZOU Y Q, WANG Y. NiO nanosheets grown on graphene nanosheets as superioranode materials for Li-ion batteries [J]. Nanoscale,2011,3:2615-2620.
    [17] BUNCH J S, VANDERZANDE A M, VERBRIDGE S S, FRANK I W,TANENBAUM D M, PARPIA J M, CRAIGHEAD H G, MCEUEN P L.Electromechanical resonators from graphene sheets [J]. Science,2007,315:490-493.
    [18] MIN S K, KIM W Y, CHO Y, KIM K S. Fast DNA sequencing with agraphene-based nanochannel device [J]. Nature Nanotech.,2011,6:162-165.
    [19] GOWTHAM S, SCHEICHER R H, AHUJA R, PANDEY R, KARNA S P.Physisorption of nucleobases on graphene: Density-functional calculations [J].Phys. Rev. B,2007,76:033401.
    [20] LEE E C, Kim D, JURE KA P, TARAKESHWAR P, HOBZA P, KIM K S.Understanding of assembly phenomena by aromatic-aromatic interactions:benzene dimer and the substituted systems [J]. J. Phys. Chem. A,2007,111:3446-3457.
    [21] HILL J G, PLATTS J A, H. WERNER J. Calculation of intermolecularinteractions in the benzene dimer using coupled-cluster and local electroncorrelation methods [J]. Phys. Chem. Chem. Phys.,2006,8:4072-4078.
    [22] PARK Y C, LEE J S. Accurate ab initio binding energies of the benzene dimer[J]. J. Phys. Chem. A,2006,110:5091-5095.
    [23] HOBZA P, SELZLE H L, SCHLAG E W. New structure for the most stableisomer of the benzene dimer: a quantum chemical study [J]. J. Phys. Chem.,1993,97:3937-3938.
    [24] FENG C, LIN C S, FAN W, Zhang R Q, VAN HOVE M A. Stacking ofpolycyclic aromatic hydrocarbons as prototype for graphene multilayers, studiedusing density functional theory augmented with a dispersion term [J]. J. Chem.Phys.,2009,131:194702.
    [25] ROCHEFORT A, WUEST J D. Interaction of substituted aromatic compoundswith graphene [J]. Langmuir,2009,25:210-215.
    [26] RAJESH C, MAJUMDER C, MIZUSEKI H, KAWAZOE Y. A theoretical studyon the interaction of aromatic amino acids with graphene and single walledcarbon nanotube [J]. J. Chem. Phys.,2009,130:124911.
    [27] EHRLICH S, MOLLMANN J, GRIMME S. Dispersion-corrected densityfunctional theory for aromatic interactions in complex systems [J]. Acc. Chem.Res.,2012,46:916-926.
    [28] ERNY J, HOBZA P. Non-covalent interactions in biomacromolecules [J]. Phys.Chem. Chem. Phys.,2007,9:5291-5303.
    [29] YANG Z X, WANG Z G, TIAN X L, XIU P, ZHOU R H. Amino acid analoguesbind to carbon nanotube via π-π interactions: Comparison of molecularmechanical and quantum mechanical calculations [J]. J. Chem. Phys.,2012,136:025103.
    [30] KRISTYáN S, PULAY P. Can (semi)local density functional theory account forthe London dispersion forces?[J]. Chem. Phys. Lett.,1994,229:175-180.
    [31] TSUZUKI S, LüTHI H P. Interaction energies of van der Waals and hydrogenbonded systems calculated using density functional theory: Assessing the PW91model [J]. J. Chem. Phys.,2001,114:3949-3957.
    [32] TKATCHENKO A, SCHEFFLER M. Accurate molecular van der Waalsinteractions from ground-state electron density and free-atom reference data [J].Phys. Rev. Lett.,2009,102:073005.
    [33] DION M, RYDBERG H, SCHR DER E, LANGRETH D C, LUNDQVIST B I.Van der Waals density functional for general geometries [J]. Phys Rev Lett.,2004,92:246401.
    [34] ZHAO Y, WU X J, YANG J L, ZENG X C. Ab initio theoretical study ofnon-covalent adsorption of aromatic molecules on boron nitride nanotubes [J].Phys. Chem. Chem. Phys.,2011,13:11766-11772.
    [35] GRIMME S. Semiempirical GGA‐type density functional constructed with along‐range dispersion correction [J]. J. Chem. Chem.,2006,27:1787-1799.
    [36] WANG L, ZhANG X Y, CHAN H L W, YAN F, DING F. Formation andhealing of vacancies in graphene Chemical Vapor Deposition (CVD) growth [J].J. Am. Chem. Soc.,2013,135:4476-4482.
    [37] ZHECHKOV L, HEINE T, PATCHKOVSKII S, SEIFERT G, DUARTE H A.An efficient a posteriori treatment for dispersion interaction indensity-functional-based tight binding [J]. J. Chem. Theory. Comput.,2005,1:841-847.
    [38] KUBA T, JURE KA P, ERNY J, EZá J, OTYEPKA M, VALDéS H,HOBZA P. Density-functional, density-functional tight-binding, and wavefunction calculations on biomolecular systems [J]. J. Phys. Chem. A.,2007,111:5642-5647.
    [39] WANGMO S, SONG R X, WANG L, JIN W, DING D, WANG Z G, ZHANG RQ. Strong interactions and charge transfers between a charged benzene moleculeand multilayer graphenes [J]. J. Mater. Chem.,2012,22:23380-23386.
    [40] ABAD E, DAPPE Y J, MARTartíNEZ J I, FLORES F, ORTEGA J. C6H6/Au(111): interface dipoles, band alignment, charging energy, and van der Waalsinteraction [J]. J. Chem. Phys.,2011,134:044701.
    [41] SCHMIDT W G, SEINO K, PREUSS M, HERMANN A, ORTANN F,BECHSTEDT F. Organic molecule adsorption on solid surfaces: chemicalbonding, mutual polarisation and dispersion interaction [J]. Appl. Phys. A.,2006,85:387-397.
    [42] ELSTNER M, HOBZA P, FRAUENHEIM TH, SUHAI S, KAXIRAS E.Hydrogen bonding and stacking interactions of nucleic acid base pairs: adensity-functional-theory based treatment [J]. J. Chem. Phys.,2001,114:5149-5155.
    [43] PONER J, RILEY K E, HOBZA P. Nature and magnitude of aromatic stackingof nucleic acid bases [J]. Phys. Chem. Chem. Phys.,2008,10:2595-2610.
    [44] PONER J, LESZCZYNSKI J, HOBZA P. Electronic properties, hydrogenbonding, stacking, and cation binding of DNA and RNA bases [J]. Biopolymers,2001,61:3-31.
    [45] PONER J, LESZCZYNSKI J, HOBZA P. Hydrogen bonding, stacking andcation binding of DNA bases [J]. J. Mol. Struc.(Theochem),2001,573:43-53.
    [46] ARADI B, HOURAHINE B, FRAUENHEIM TH. DFTB+, a sparsematrix-based implementation of the DFTB method [J]. J Phys Chem A,2007,111:5678-5684.
    [47] ELSTNER M, POREZAG D, JUNGNICKEL G, ELSNER J, HAUGK M,FRAUENHEIM TH, SUHAI S, SEIFERT G. Self-consistent-chargedensity-functional tight-binding method for simulations of complex materialsproperties [J]. Phys. Rev. B,1998,58:7260-7268.
    [48] SEIFERT G, POREZAG D, FRAUENHEIM TH. Calculations of molecules,clusters, and solids with a simplified LCAO‐DFT‐LDA scheme [J]. Int. J.Quantum Chem.,1996,58:185-192.
    [49] NIEHAUS T A, SUHAI S, SALA F D, LUGLI P, ELATNER M, SEIFERT G,FRAUENHEIM TH. Tight-binding approach to time-dependentdensity-functional response theory [J]. Phys. Rev. B,2001,63:085108.
    [50] WANG X, ZHANG R Q, NIEHAUS T A, FRAUENHEIM TH. Excited stateproperties of allylamine-capped silicon quantum dots [J]. J. Phys. Chem. C,2007,111:2394-2400.
    [51] NIEHAUS T A. Approximate time-dependent density functional theory [J]. J.Mol. Struc.(Theochem),2009,914:38-49.
    [52] GRIMME S, ANTONY J, EHRLICH S, KRIEG H. A consistent and accurate abinitio parametrization of density functional dispersion correction (DFT-D) for the94elements H-Pu [J]. J. Chem. Phys.,2010,132:154104.
    [53] ADF2012.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, TheNetherlands, http://www.scm.com.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700