高纯度莱鲍迪苷A的制备和甜菊苷的酶法改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菊糖苷是从菊科植物甜叶菊(Stevia rebaudiana Bertoni)中提取分离的非营养性高倍甜味剂,主要成分为甜菊苷(S)和莱鲍迪苷A(RA)。联合国粮农组织和世界卫生组织联合食品添加剂专家委员会(JECFA)第73次会议批准纯度不低于95%的甜菊糖苷可作为甜味剂使用。目前,市售普通甜菊糖苷产品存在余味绵延、后苦味重等不足,其应用受到限制。S是余味和后苦味的主要成分。RA在甜度、理化性质等方面优于其他甜菊糖苷,而且口感接近蔗糖,是蔗糖的极佳替代品。目前主要用重结晶法来纯化RA,用环糊精葡萄糖基转移酶对S进行修饰来改善口感。重结晶法存在能耗高、有机溶剂大量使用、耗时长,以及酶法修饰产物组成复杂等问题,致使产品品质和成本远未达到令人满意的程度。本研究旨在制备甜菊糖苷分离纯化专用树脂,采用树脂法分离技术和工艺,获得高纯度RA,并通过酶转化体系改性S,改善其口感。
     首先,采用间氨基苯硼酸改性羧基树脂D151,得到了D151M树脂,并建立了树脂柱色谱法分离RA和S的工艺。结果表明:pH7.0时,D151M对RA和S的选择性因数为1.68,比D151的提高了20.9%。将D151M填装径长比1:80的色谱柱,柱温318.15K,纯水洗脱,流速0.15BV/h,收集RA和S的洗脱峰,RA和S纯度分别为96.3%、96.0%,回收率分别为86.1%、89.9%。RA和S在D151M上的吸附过程均符合准二级动力学模型,粒内扩散不是吸附过程唯一的速率控制步骤。RA和S在D151M上的等温吸附需采用Dubinin-Radushkevich模型描述,不同于RA和S在D151上的等温吸附(符合Freundlich模型)。RA和S在D151M上吸附的吉布斯自由能变、焓变和熵变均为负值,表明其吸附为自发进行的放热过程。RA和S在D151M上的吸附活化能分别为47.554、15.896kJ/mol。
     采用苯硼酸基团修饰方法提升大孔树脂对RA和S的吸附选择性。研究发现,pH7.0时,带有伯氨基的D392树脂对RA和S的选择性因数为2.32,对RA的吸附容量为26.4mg/g,对S的吸附容量为39.2mg/g,解吸相对容易,20%乙醇就能很好地解吸。为此,采用对甲酰基苯硼酸改性D392树脂,得到D392M。苯硼酸基含量1470μmol/g、氨基含量3330μmol/g的D392M,其选择性因数达到3.06,对RA和S的吸附容量均高于D392。RA和S在D392和D392M上的吸附过程均符合准二级动力学模型,吸附过程受到粒内扩散和液膜扩散的共同控制。RA和S在D392和D392M上的等温吸附同时符合Freundlich等温方程和Langmuir等温方程。RA和S在D392和D392M上的吸附均是自发进行的放热过程。熵变为正值,表明吸附质分子吸附到树脂表面后,体系混乱度增加。
     建立了从甜叶菊水提液中提取纯化RA的三步树脂法工艺。第一步为水提液的脱色除杂。结果表明:J-1树脂对水提液中的色素和其他杂质具有选择性吸附能力,柱温308.15K,水提液0.2BV/h过J-1树脂柱,甜菊糖苷的纯度由原来的42.6%提高到67.3%,收率为84.9%。第二步为水提液中甜菊糖苷的提纯。结果表明:柱温298.15K,脱色除杂后的水提液经J-3树脂柱处理,甜菊糖苷纯度提高到92.9%,收率91.1%。第三步为RA的纯化。结果表明:初始浓度为4mg/mL甜菊糖苷水溶液采用D392M静态法处理,树脂添加量为0.7g/20mL水溶液时,吸附液中RA纯度升高到92.2%,RA保留率为46.1%。初始浓度为4mg/mL甜菊糖苷水溶液采用D392M动态法处理,柱温298.15K,通液流量1.0BV/h,可收集8.2BV RA纯度为90%的过柱液。
     进一步开展了利用分子印迹技术制备分子印迹聚合物,并利用制备得到的分子印迹聚合物直接从甜叶菊水提液中提取纯化RA的研究。以RA为模板分子,甲基丙烯酸二乙氨基乙酯为功能单体、乙二醇二甲基丙烯酸酯为交联剂,合成了对RA具有识别性能的分子印迹聚合物。分子印迹聚合物对RA的印迹效率为2.74。Scatchard模型分析表明,该分子印迹聚合物在识别RA的过程中存在两类结合位点,高亲和位点的离解常数为0.055μmol/mL,最大表观结合量为111.6μmol/g,低亲和位点的离解常数为1.173μmol/mL,最大表观结合量为304.1μmol/g。将RA分子印迹聚合物填装固相萃取柱,并用于甜叶菊提取液中的RA的提取纯化,可得到纯度为90.6%的RA,回收率为87.5%。
     最后,研究了酶转化体系对S的改性。结果表明:高峰淀粉酶催化S的糖基化,S转化率达到50.2%,采用液质联用仪可检测出6个转化产物,分别为连接了1~4个葡萄糖基的S衍生物,其中单葡萄糖基-甜菊苷为主要转化产物,占总产物的62.9%;此外,经高峰淀粉酶催化,RA也能发生糖基化修饰,共生成3种连接了1~3个葡萄糖基的衍生物。Bacillus amyloliquefaciens来源α-淀粉酶BAN480L改性S,S转化率为38.3%,可检测出5个产物,分别为连接了1~3个葡萄糖基的衍生物,其中单葡萄糖基-甜菊苷为主要转化产物,占总产物的85.0%。在BAN480L作用下,RA几乎不发生转化。感官评定结果表明,改性后的甜菊糖苷产品,甜度显著增加,后苦味显著降低,整体可接受性显著提升,而且BAN480L改性甜菊苷产品的后苦味阈值浓度显著高于高峰淀粉酶改性的甜菊苷产品的后苦味阈值浓度。
Steviol glycosides that extracted from the plant Stevia rebaudiana Bertoni fromCompositae family are applied as a kind of non-nutritive high-intensity sweetener. The maincomponents of steviol glycosides are stevioside (S) and rebaudioside A (RA).The use ofstevia extracts containing not less than95%of total steviol glycosides as a sweetener wasapproved by the73r dmeetingof the Committee of Experts of the Food and AgricultureOrganization of the United Nations (FAO) and World Health Organization, the Joint FoodAdditives (JECFA). At present, the application of commercially available stevia products infood has been limited due to their stretching aftertaste and bitter taste. S is the primarycompound which contributes to the aftertaste and bitter tatste. RA is superior to other steviolglycosides in sweetness, physical and chemical nature, and has taste characteristics close tosucrose, which is an excellent alternative to sucrose. The recrystallization has been the maintechnique for purification of RA. However, the recrystallization process requires hugeconsumption of energy, organic solvent and time. In order to improve of the taste, S is usuallytreated with the cyclodextrin glycosyltransferases, yielding a complex mixture of products.However, the product quality and the cost are far from a satisfactory level. This study aimedat (1) preparation and application of resins for steviol glycoside separation for obtaining highpurity RA, and (2) enzymatic modification of S for its taste improvement.
     Firstly, the resin column chromatography process for the separation of RA and S wasestabilished. A chemically modified adsorbent D151M was prepared by modifying carboxylresin, namely D151with3-aminophenylboronic acid. The results showed that: the selectivityfactor of D151M toward RA and S attained1.68under the condition of pH7.0, the columndiameter to length ratio1:80, the column temperature318.15K, eluted with pure water atflow rate of0.15BV/h, which was20.9%higher than that of D151.The purity of RA and S inthe collected elution peaks was96.3%and96.0%, respectively. The recovery yield of RA andS achieved86.1%and89.9%, respectively. The adsorption process of RA and S onto D151Mobeyed pseudo-second-order kinetic model, and intraparticle diffusion was not the onlyrate-controlling step. The adsorption of RA and S onto D151M was revealed as aheterogeneous adsorbent process by Dubinin-Radushkevich isotherm model, which wasdifferent from the RA and S adsorption on the D151(obeyed the Freundlich isotherm model).The adsorption process of RA and S onto D151M was spontaneous and exothermic, since theGibbs free energy, enthalpy and entropy changes were negative. The adsorption activationenergy of RA and S onto D151M were47.554,15.896kJ/mol, respectively.
     Secondly, the improvement of adsorption selectivity of macroporous resin toward RAand S was conducted by chemically modification with boronic acid groups. It was obersverdthat macroporous resin containing primary amino groups possessed good adsorptionselectivity toward RA and S, which the selectivity factor achieved2.32at pH7.0. Theadsorption capacity of D392toward RA and S was26.4mg/g and39.2mg/g, respectively.D392also exihibited good desorption properties toward RA and S. RA and S can be easilydesorped from D392with20%ethanol aqueous solution. D392was further modified by formylphenylboronic acid to prepare the resin D392M. The selectivity factor of the resinD392M containing1470μmol/g of phenylboronic acid groups and3330μmol/g of aminogroups attained3.06, which was significant higher than that of D392. D392M was also betterthan D392in respect to the adsorption capacity of toward RA and S. RA and S adsorptionprocess onto D392and D392M were fitted with pseudo-second-order kinetic model, theadsorption process was jointly controlled by the intraparticle diffusion and liquid filmdiffusion. The Freundlich equation and the Langmuir equation can describe the adsorption ofRA and S onto D392and D392M. The adsorption process of RA and S onto D392andD392M were spontaneous and exothermic in nature. The entropy changes were positive,indicating the increase in the degree of disorder of the system as the adsorbate moleculesadsorbed onto the surface of the resin.
     Thirdly, a three-step resin treatement process for extraction and purification of RA fromthe aqueous extract of Stevia rebaudiana was established. The first step was decolorizationand impurity removal. The results showed that by J-1resin possessed good adsorptionselectivity toward pigments and other impurities in the aqueous extract. The purity of totalsteviol glycosides may increase from42.6%to67.3%and the recovery yield of total steviolglycosides was84.9%when the aqueous extract was passed through J-1resin column at theflow rate of0.2BV/h at308.15K. The second step was the purification of total steviolglycosides. The results showed that the purity of total steviol glycosides further increased upto92.9%after the treatement of J-3resin column at298.15K. In the second step the recoveryyield of total steviol glycosides was91.1%. The third step was the separation of RA. Theresults showed that the purity and the recovery of RA, respectively, achieved92.2%and46.1%under the condition of the initial concentration of4mg/mL aqueous extract staticallytreated with D392M at the dosage of0.7g resin/20mL aqueous solution. In the dynamicmode,8.2BV of effluent with no less than90%purity of RA can be collected when the initialconcentration of4mg/mL aqueous extract was passed through the column at the flow rate1.0BV/h at298.15K.
     Further, the molecular imprinting technique was employed to prepare molecularlyimprinted polymers and selective extraction and purification of RA from aqueous extracts ofstevia rebaudiana using molecularly imprinted polymers was conducted. The molecularlyimprinted polymers which possessing good recognition performance on RA were preparedusing RA as the template,2-(diethylamino) ethyl methacrylate as the functional monomer andethylene glycol dimethyacrylamide as the cross-linker. The imprinting efficiency of thesynthesized molecularly imprinted polymer toward RA was2.74. The Scatchard modelanalysis showed that two classes of binding sites were existed on the molecularly imprintedpolymer. The dissociation constant and the maximum apparent binding capacity of the highaffinity sites were0.055μmol/mL and111.6μmol/g, respectively. The dissociation constantand the maximum apparent binding capacity of the low affinity sites were1.173μmol/mL and304.1μmol/g, respectively. The molecularly imprinted polymer was used as an adsorbent forthe solid phase extraction of RA, and the resultant cartridge showed a good extractionperformance. The high purity (90.6%) and recovery (87.5%) of RA demonstrated that the molecularly imprinted polymer solid phase extraction column could be applied to selectiveenrichment of RA directly from stevia rebaudiana aqueous extracts.
     Finally, the study was focused on the enzymatic modification of S for the improvementof its organoleptic properties. The results showed that the conversion rate of S reached50.2%as S has been modified by Taka α-amylase. Six new compounds were detected by the liquidchromatography-mass spectrometer, which were S derivatives with1~4additional glycosylmoeties. The mono-glycosylated stevioside was the major product, which corresponded to62.9%of the total amount of products. In addition, RA had been also glycosylated under thecatalysis of Taka α-amylase. Three derivatives of RA with1~3additional glycosyl moetieswere generated. Modification of S by α-amylase BAN480L from Bacillus amyloliquefacienswas investigated. The conversion rate of S attained38.3%. Five derivatives of S thatcontaining1~3additional glycosyl moeties were detected. The mono-glycosylated steviosidewas the primary compound, which corresponded to85.0%of the total amount of products. Incontrast, RA remained intact in the presence of BAN480L. Sensory evaluation demonstratedthat, by enzymatic modification, the sweetness of the stevia products was significantlyimproved and the bitter aftertaste was significantly reduced. The enzymatically modifiedstevia products had significantly better overall acceptability. Moreover, the threshold level ofbitter aftertaste of the stevia products by BAN480L was perceived as significantly higherthan that of the stevia products by Taka α-amylase.
引文
1. Soejarto D. Botany of Stevia and Stevia rebaudiana. In: Kinghorn A, eds. Stevia: Thegenus Stevia. London: Taylor and Francis,2002.18-39
    2. Ghanta S, Banerjee A, Poddar, A, et al. Oxidative DNA damage preventive activity andantioxidant potential of Stevia rebaudiana (Bertoni) Bertoni, a natural sweetener[J]. JAgri Food Chem,2007,55(26):10962-10967
    3. Geuns J M C. Stevioside[J]. Phytochem,2003,64(5):913-9214Prakash I, DuBois G E, Clos J F, et al. Development of rebiana, a natural, non-caloricsweetener[J].Food Chem Toxicol,2008,46(7): S75–S82
    5.娄力行.甜菊糖及其衍生物的研究进展[J].中国糖料,2008,30(2):70-72
    6. Kroyer G T. The low calorie sweetener stevioside: stability and interaction with foodingredients[J]. LWT-Food Sci Technol,1999,32(8):509-512
    7. W lwer-Rieck U, Tomberg W, Wawrzun A.Investigations on the stability of stevioside andrebaudioside A in soft drinks[J]. J Agric Food Chem,2010,58(23):12216-12220
    8. Kroger M, Meister K, Kava R. Low-calorie sweeteners and other sugar substitutes: A reviewof the safety issues[J]. Comp Rev Food Sci Food Saf,2006,5(2):35-47
    9.张家骐.日本关于甜叶菊提取物安全性的各项试验[J].中国调味品,1984,9(12):14-15
    10. Joint FAO/WHO Expert Committee on Food Additives (JECFA), Compendium of Food AdditiveSpecifications. Monograph10. Steviol glycosides[EB/OL].http://www.fao.org/ag/agn/jecfaadditives/specs/monograph10/additive-442-m10.pdf
    11. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS).Scientific Opinionon the safety of steviol glycosides for the proposed uses as a food additive [EB/OL].http://www.efsa. europa.eu/en/efsajournal/doc/1537.pdf
    12.GRAS Notice000380[EB/OL].http://www.accessdata.fda.gov/scripts/fcn/gras_notices/GRN000380.pdf
    13. Gregersen S, Jeppesen P B, Holst J J, et al. Antihyperglycemic effects of steviosidein type2diabetic subjects[J]. Metabolism,2004,53(1):73-76
    14. Chan P, Tomlinson B, Chen Y J, et al. A double blind placebo-controlled study of theeffectiveness and tolerability of oral stevioside in human hypertension[J]. Brit J ClinPharmaco,2000,50(3):215-220
    15. Boonkaewwan C, Toskulkao C, Vongsakul M. Anti-inflammatory and immunomodulatoryactivities of stevioside and its metabolite steviol on THP-1cells[J]. J Agri Food Chem,2006,54(3):785-789
    16. Yasukawa K, Kitanaka S, Seo S. Inhibitory effect of stevioside on tumor promotion by12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin[J]. BiolPharm Bull,2002,25(11):1488-1490
    17. Pariwat P, Homvisasevongsa S, Muanprasat C, et al. A natural plant-deriveddihydroisosteviol prevents cholera toxin-induced intestinal fluid secretion[J]. JPharmacol Exp Ther,2008,324(2):798-805
    18. Sehar I, Kaul A, Bani S, et al. Immune up regulatory response of a non-caloric naturalsweetener, stevioside[J]. Chem-Biol Interact,2008,173(2):115-121
    19. Sharma D, Puri M, Tiwari A, et al. Anti-amnesic effect of Stevioside in scopolaminetreated rats[J]. Ind J Pharmacol,2010,42(3):164-167
    20. Slavutzky M B. Stevia and sucrose effect on plaque formation[J]. J Verbr Lebensm2010,5(2):213-216
    21. Goyal S K, Samsher, Goyal R K. Stevia (Stevia rebaudiana) a bio-sweetener: A review[J].Int J Food Sci Nutr,2010,61(1):1-10
    22. Kroyer, G. Stevioside and stevia-sweetener in food: application, stability andinteraction with food ingredients[J]. J Verbrauch Lebensm,2010,5(2):225-229
    23. Bridel M, Lavieille R. Sur le principe sucré du Kaà-hê-é (Stevia rebaudiana Bertoni).III. Le stéviol de l'hydrolyse diastasique et l'isostéviol de l'hydrolyse acide[J]. BullSoc Chem Biol,1931,13(8):409-412
    24. Das K, Dang R, Rajasekharan P E. Establishment and maintenance of callus of Steviarebaudiana Bertoni under aseptic environment[J]. Nat Prod Rad,2006,5(5):373-376
    25. Puri M, Sharma D, Tiwari A K. Downstream processing of stevioside and its potentialapplications[J]. Biotechnol Adv,2011,29(6):781-791
    26. Sakamoto I, Yamasaki K, Tanaka O. Application of13C NMR spectroscopy of chemistry ofnatural glucoside rebaudioside C a new sweet diterpene glucoside of Stevia rebaudiana[J].Chem Pharm Bull,1977,25(4):844-846
    27. Starratt A N, Kirby C W, Pocs R, et al. Rebaudioside F, a diterpene glycoside from Steviarebaudiana[J]. Phytochem,2002,59(4):367-370
    28. Tanaka O. Improvement of taste of natural sweeteners[J]. Pure Appl Chem,1997,69(4):675-683
    29. Kohda H, Kasai R, Yamasaki K, et al. New sweet diterpene glycoside from Steviarebaudiana[J]. Phytochem,1976,15(6):981-983
    30. Kobayashi M, Harikawa S, Degrandi I H, et al. Dulcosides A and B, new diterpene glycosidesfrom Stevia rebaudiana[J]. Phytochem,1977,16(7):1405-1408
    31.钱庭宝.甜叶菊苷的提取[J].化工进展,1986,7(2):30-31
    32.郁军,岳鹏翔,郁红等.三级逆流法提取甜菊糖甙的工艺研究[J].食品科学,2009,30(2):146-148
    33. Yoda S K, Marques M O M, Petenate A J, et al. Supercritical fluid extraction from Steviarebaudiana Bertoni using CO2and CO2+water: extraction kinetics and identification ofextracted components[J]. J Food Eng,2003,57(2):125-134
    34. Choi Y H, Kim I, Yoon K D, et al. Supercritical fluid extraction and liquidchromatographic electrospray mass spectrometric analysis of stevioside from Steviarebaudiana leaves[J]. Chromatographia,2002,55(9-10):617-620.
    35. Erkucuk A, Akgun I H, Yesil-Celiktas O. Supercritical CO2extraction of glycosides fromStevia rebaudiana leaves: identification and optimization[J]. J Supercrit Fluids2009,51(1):29-35
    36. Pól J, Ostrá E V, Karásek P, et al. Comparison of two different solvents employed forpressurized fluid extraction of stevioside from Stevia rebaudiana: methanol versus water[J].Anal Bioanal Chem,2007,388(8):1847-1857
    37. Teo C C, Tan S N, Yong J W H, et al.Validation of green-solvent extraction combinedwith chromatographic chemical fingerprint to evaluate quality of Stevia rebaudianaBertoni[J]. J Sep Sci,2009,32(4):613-622
    38. Liu J, Li J W, Tang J. Ultrasonic assisted extraction of total carbohydrates from Steviarebaudiana and identification of extracts[J]. Food Bioprod Process,2010,88(2-3):215-221
    39. Jaitak V, Singh B, Kaul V K. An efficient microwave-assisted extraction process ofstevioside and rebaudioside-A from Stevia rebaudiana (Bertoni)[J]. Phytochem Anal,2009,20(3):240-245
    40.李宾,贾士儒,钟成等.采用超高压技术从甜叶菊中提取甜菊糖甙的工艺研究[J].现代食品科技,2010,26(10):1117-1120
    41.张雪颖,徐仲伟,战宇等.酶法浸提甜菊糖甙的研究[J].食品工业科技,2007,29(5):190-192
    42. Puri M, Sharma D, Barrow C J, et al. Optimization of novel method for the extractionof stevioside from S. rebudiana leaves[J]. Food Chem,2012,132(3):1113-1120
    43.刘石林,向建南,吕守本等.从甜菊叶中提取和精制甜菊糖苷的方法[J].蚌埠医学院学报,1995,20(6):425-427
    44.史作清,施荣富,冯君谦.一步法提取甜菊糖甙—ADS-7吸附树脂的应用研究[J].中国食品添加剂,1995,2(2):18-21
    45. Zhang S Q, Kumar A, Kutowy O. Membrane-based separation scheme for processing sweetenersfrom stevia leaves[J]. Food Res Int,2000,33(7):617-620
    46. Reis M H M, Da Silva F V, Andrade C M G, et al.Clarification and purification of aqueousStevia extract using membrane separation process[J]. J Food Process Eng,2009,32(3):338-354
    47.赵永良,韩骁,刘景彬等.膜分离技术在甜菊糖甙提取分离中的应用研究[J].化学与生物工程,2010,27(1):84-85
    48. Vanneste J, Sotto A, Courtin C M, et al. Application of tailor-made membranes in amulti-stage process for the purification of sweeteners from Stevia rebaudiana[J].J FoodEng,2011,103(3):285-293
    49. Chhaya, Sharma C, Mondal S, et al. Clarification of Stevia extract by ultrafiltration:selection criteria of the membrane and effects of operating conditions[J]. Food BioprodProcess,2012,90(3):525-532
    50. Chhaya, Mondal S, Majumdar G C, et al.Clarifications of stevia extract using cross flowultrafiltration and concentration by nanofiltration[J].Sep Purif Technol,2012,89:125-134.
    51.张杨,陈天红,史作清等.重结晶法分离精制莱鲍迪甙A的研究[J].离子交换与吸附,1998,14(6):515-520
    52. Jackson M C, Francis G J, Chase R G. High yield method of producing pure rebaudiosideA[P]. US patent2006/0083838A1.2006-04-20
    53. Prakash I, DuBois G E, King G A, et al. Rebaudioside A composition and method forpurifying rebaudioside A[P]. US patent2007/0292582A1.2007-12-20
    54. Yang M, Hua J, Qin L. High-purity rebaudioside A and method of extracting same[P]. USpatent2008/0300402A1.2008-12-04
    55. Evans J C, Jahn J J, Myerson A S, et al. Method of producing purified rebaudioside acompositions using solvent-antisolvent crystallization[P]. US patent2010/0099857A1.2010-04-22
    56. Huang X Y, Fu J F, Di D L. Preparative isolation and purification of steviol glycosidesfrom Stevia rebaudiana Bertoni using high-speed counter-current chromatography[J]. SepPurif Technol,2010,71,220-224
    57.刘杰.甜菊糖苷中莱鲍迪A苷的研究[D]:[博士学位论文].无锡:江南大学食品学院,2010
    58. Bergs D, Merz J, Delp A, et al. Preparative purification of rebaudioside A from aqueousextracts using chromatography: a process idea[J]. J Verbr Lebensm,2012,7:295-303
    59.陈天红,张杨,史作清等.含酮基吸附剂对莱鲍迪甙A的吸附选择性研究[J].高分子学报,1999,30(4):398-403
    60.陈天红,张杨,刘晓航等.新型含吡啶基树脂对甜菊糖中莱鲍迪甙A的富集与分离[J].中国科学(B辑),1999,29(5):461-466
    61.胡静,陈育如,魏霞等.大孔树脂D107和D108对甜菊糖中SS和RA的分离研究[J].食品研究与开发,2008,29(6):1-4
    62. Liu Y F, Di D L, Bai Q Q, et al. Preparative separation and purification of rebaudiosideA from steviol glycosides using mixed-mode macroporous adsorption resins[J]. J Agri FoodChem,2011,59(17):9629-9636
    63. Chen Z B, Wei X L, Li J, et al. Preparative separation of rebaudiana A from commercializedsteviol glycosides by macroporous adsorption resins mixed bed [J]. Sep Purif Technol,2012,89:22-30
    64. Li J, Chen Z B, Di D L. Preparative separation and purification of rebaudioside A fromStevia rebaudiana Bertoni crude extracts by mixed bed of macroporous adsorption resins [J].Food Chem,2012,132(1):268-276
    65. Kaneda N,Kasai R,Yamasaki K. Chemical studies on sweet diterpene-glycosides of Steviarebaudiana: conversion of stevioside into rebaudioside A[J]. Chem Pharm Bull,1977,25(9):2466-2467
    66. DuBois G E, Dietrich P S, Lee J F, et al. Diterpenoid sweeteners. Synthesis and sensoryevaluation of stevioside analogues nondegradable to steviol[J].J Med Chem,1981,24(11):1269-1271
    67. Dubois G E,Stephenson R A. Diterpenoid sweeteners. Synthesis and sensory evaluationof stevioside analogues with improved organoleptic properties[J].J Med Chem,1985,28(1):93-98
    68. Dubois G E,Bunes L A, Dietrich P S, et al. Diterpenoid sweeteners. Synthesis and sensoryevaluation of biologically stable analogues of stevioside[J]. J Agri Food Chem,1984,32(6):1321-1325
    69.廖德仲.甜菊苷的结构改造.科学通报[J],1988,33(15):1151-1153
    70. Yamamoto K, Yoshikawa K, Okada S. Effective production of glycosyl-stevioside α-1,6-transglucosylation by dextrin dextranase[J]. Biosci Biotech Bioch,1994,58(9):1657-1661
    71. Lobov S V, Kasai R, Ohtani K, et al. Enzymatic production of sweet stevioside derivatives:transglucosylation by glucosidases[J]. Agric Biol Chem,1991,55(12):2959-2965
    72. Mizutani K,Miyata T, Kasai R, et al. Study on improvement of sweetness of steviolbisglycosides: selective enzymic transglucosylation of the13-O-glucosyl moiety [J]. AgricBiol Chem,1989,53(2):395-398
    73. Fukunaga Y, Miyata T, Nakayasu N, et al. Enzymatic transglucosylation product ofstevioside: separation and sweetness evaluation [J]. Agric Biol Chem,1989,53(6):1603-1607
    74. Abelyan V A, Balayan A M, Ghochikyan V T, et al. Transglycosylation of stevioside bycyclodextrin glucanotransferases of various groups of microorganisms[J]. Appl BiochemMicro+,2004,40(2):129-134
    75. Kochikyan V T, Markosyan A A, Abelyan L A, et al. Combined enzymatic modification ofstevioside and rebaudioside A[J]. Appl Biochem Micro+,2006,42(1):31-37
    76. Jung S W, Kim T K, Lee K W, et al. Catalytic properties of β-cyclodextringlucanotransferase from alkalophilic Bacillus sp. BL-12and intermoleculartransglycosylation of stevioside[J]. Biotechnol Bioproc E,2007,12(3):207-212
    77. Park D C, Kim T K, Lee Y H. Characteristics of transglycosylation reaction ofcyclodextrin glucanotransferase in the heterogeneous enzyme reaction system usingextrusion starch as a glucosyl donor[J]. Enzyme Microb Tech,1998,22(4):217-222
    78. Jaitak V, Kaul V K, Bandna, et al. Simple and efficient enzymatic transglycosylationof stevioside by β-cyclodextrin glucanotransferase from Bacillus firmus[J]. BiotechnolLett,2009,31(9):1415-1420
    79. Ishikawa H, Kitahata S, Ohtani K, et al. Production of stevioside and rubusosidederivatives by transfructosylation of β-fructofuranosidase[J]. Agric Biol Chem,1990,54(12):3137-3143
    80. Suzuki K, Fukumura T, Shibasaki-Kitakawa N, et al. Kinetic model for synthesis offructosyl-stevioside using suspended β-fructofuranosidase[J]. Biochem Eng J,2002,10(3):207-215
    81.史作清,朱伯儒,施荣富等. α-葡萄糖基-甜菊糖的酶促合成反应研究(I)[J].高等学校化学学报,1996,17(11):1800-1803
    82.史作清,朱伯儒,施荣富等. α-葡萄糖基甜菊糖的酶促合成反应(II)[J].应用化学,1996,13(6):24-27
    83.佟树敏,蒋谷人,刘东.甜菊糖苷的结构修饰研究I. α-葡萄糖基-甜菊糖苷的酶促合成研究[J].中草药,1998,29(9):582-584
    84.郁军,岳鹏翔,程其春.酶法改性甜菊糖甙的工艺研究[J].食品科学,2008,29(8):214-218
    85.胡静,陈育如,魏霞等.高产环糊精葡萄糖基转移酶的枯草芽孢杆菌选育、产酶与酶学特性[J].食品与生物技术学报,2008,27(4):97-102
    86.陈智,王莹,田景振.环糊精葡糖基转移酶法改性甜菊糖的研究[J].食品工业科技,2010,31(4):178-181
    87.夏咏梅,李薇,方云等.一种用微波辅助环糊精葡萄糖基转移酶催化合成改性甜菊糖苷的方法[P].中国专利,CN201010131126.4.2010-07-14
    88. Xu Z W, Li Y Q, Wang Y H, et al. Production of β-fructofuranosidase by Arthrobactersp. and its application in the modification of stevioside and rebaudioside A[J]. FoodTechnol Biotech,2009,47(2):137-143
    89.李玉强,邵佩霞,王永华等. β-呋喃果糖苷酶的生产及对甜菊苷和莱鲍迪A苷的酶法改性研究[J].食品与发酵工业,2009,35(3):23-27
    90.刘虎,陈育如,姜中玉.固定化β-葡萄糖苷酶转化甜菊糖的研究[J].食品工业科技,2011,32(4):170-173
    91. Wan H D, Tao G J, Kim D, et al. Enzymatic preparation of a natural sweetener rubusosidefrom specific hydrolysis of stevioside with β-galactosidase from Aspergillus sp.[J]. JMol Catal B-Enzym,2012,82,12-17
    92. Kusama S, Kusakabe I, Nakamura Y, et al. Transglucosylation into stevioside by the enzymesystem from Streptomyces sp.[J]. Agric Biol Chem,1986,50(10):2445-2451
    93. Kusakabe I, Watanabe S, Morita R, et al. Formation of a transfer product from steviosideby the cultures of Actinomycete[J]. Biosci Biotech Biochem,1992,56(2):233-237
    94. de Oliveira B H, Packer J F, Chimelli M, et al. Enzymatic modification of steviosideby cell-free extract of Gibberella fujikuroi [J]. J Biotechnol,2007,131(1):92-96
    95.黄文强,李晨曦.吸附分离材料[M].北京:化学工业出版社,2005.142
    96.汤伟,彭求贤,严愉妙等.大孔吸附树脂法及离子交换层析柱法精制纯化丹参多糖的研究[J].中药材,2010,33(12):1937-1941
    97. Alaerts L, Kirschhock, Christine E A, et al. Selective adsorption and separation ofxylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47[J].Angew. Chem. Int. Ed.,2007,46:4293-4297
    98. Wang Y J, Wu Y F, Xue F, et al. Isolation of brefeldin A from Eupenicillium brefeldianumbroth using macroporous resin adsorption chromatography[J]. J Chromatogr B,2012,895-896,146-153
    99.韦异,粟晖,张英等.柱色谱分离提纯三氯蔗糖[J].食品科学,2002,23(10):87-89
    100. Levison P R. Large-scale ion-exchange column chromatography of proteins: Comparisonof different formats[J].J Chromatogr B,790(1-2):17-33
    101. Yasuda K, Chang H H, Wu H L, et al. Efficient and rapid purification of recombinanthuman α-galactosidase A by affinity column chromatography[J].Protein Exp Purif,2004,37(2):499-506
    102.彭红,林鹿,邓海波等.凝胶过滤层析分离纤维低聚糖[J].食品与发酵工业,2007,33(2):137-140
    103.朱骤海,何俊婷.配位吸附柱层析法对卵磷脂分离纯化的研究[J].食品科学,2006,27(11):395-396
    104. Mishra B B, Gautam S, Sharma A. Purification and characterization of polyphenol oxidase(PPO) from eggplant(Solanum melongena)[J]. Food Chem,2012,134(4):1855-1861
    105. Fu Q, Liang T, Zhang X. Carbohydrate separation by hydrophilic interaction liquidchromatography on a ‘click’ maltose column[J].Carbohyd Res,2010,345:2690-2697
    106. Zhang Y, McConnell O. Simulated moving columns technique for chiral liquidchromatography[J]. J Chromatogr A,2004,1028(2):227-238
    107. Ho C, Ching C B, Ruthven D M. A comparative study of zeolite and resin adsorbents forthe separation of fructose-glucose mixtures[J].Ind Eng Chem Res,1987,26:1407-1412
    108. Heper M, Türker L, Kincal N S. Sodium, ammonium, calcium, and magnesium forms of zeoliteY for the adsorption of glucose and fructose from aqueous solutions[J]. J Colloid InterfSci,2007,306:11-15
    109. Mostafazadeha A K, Sarshara M, Javadiana S, et al. Separation of fructose and glucosefrom date syrup using resin chromatographic method: Experimental data and mathematicalmodeling[J]. Sep Purif Technol,2011,79:72-78
    110. Wang P, Geng X T, Pi G P, et al. Preparative separation of four individual flavonoidsin Scutellaria barbata D. Don based on high selectivity polymeric adsorbents with differentpolarities[J]. J Chromatogr B,2010,878(32):3375-3381
    111. Pi G, Ren P, Yu J. Separation of sanguinarine and chelerythrine in Macleaya cordata(Willd) R. Br.based on methyl acrylate-co-divinylbenzene macroporous adsorbents[J].JChromatogr A,2008,1192:17-24
    112.何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社,1995.352-355
    113. Du X L, Yuan Q P, Li Y. Equilibrium, thermodynamics and breakthrough studies foradsorption of solanesol onto macroporous resins[J]. Chem Eng Process,2008,47(8):1420-1427
    114. Chen Z B, Zhang A J, Li J, et al. Study on the adsorption feature of rutin aqueoussolution on macroporous adsorption resins[J]. J Phys Chem B,2010,114(14):4841-4853
    115. Serpen A, Ata B, G kmen V. Adsorption of Maillard reaction products from aqueoussolutions and sugar syrups using adsorbent resin[J]. J Food Eng,2007,82(3):342-350
    116. Lou S, Chen Z B, Liu Y F, at al. New way to analyze the adsorption behavior of flavonoidson macroporous adsorption resins functionalized with chloromethyl and amino groups[J].Langmuir,2011,27(15):9314-9326
    117. Singh S V, Gupta A K, Jain R K. Adsorption of naringin on nonionic (neutral) macroporusadsorbent resin from its aqueous solutions[J]. J Food Eng,2008,86(2):259-271
    118. Fernando B L, María M P, José A, et al. Application of an effective diffusion modelto the adsorption of Aspartame on functionalised divinylbenzene–styrene macroporousresins [J]. J Food Eng,2003,59(2-3):319-325
    119. Jung M W, Ahn K H, Lee Y, et al. Evaluation on the adsorption capabilities of newchemically modified polymeric adsorbents with protoporphyrin IX [J]. J Chromatogr A,2001,917(1-2):87-93
    120. Li A M, Zhang Q X, Chen J L, et al. Adsorption of phenolic compounds on Amberlite XAD-4and its acetylated derivative MX-4[J]. React Funct Polym,2001,49(3):225-233
    121. Liao W W, Gao S Q, Xie X L, et al. Macroporous crosslinked hydrophobic/hydrophilicpolystyrene/polyamide interpenetrating polymer network: synthesis, characterization, andadsorption behaviors for quercetin from aqueous solution [J]. J Appl Polym Sci,2010,118(6):3643-3648
    122. Wang X M, Huang J H, Huang K L.Surface chemical modification on hyper-cross-linkedresin by hydrophilic carbonyl and hydroxyl groups to be employed as a polymeric adsorbentfor adsorption of p-aminobenzoic acid from aqueous solution[J]. Chem Eng J,2010,162(1):158-163
    123. Abdel Z A E, Ali E D, Bakir J, et al. Synthesis and characterization ofsulfonylamberlite-XAD-16-based chelating resins: complexation and application for theselective removal of some heavy metals [J]. J Chem Eng Data,2010,55(11):4830-4839
    124. Yang W B, Lu Y P, Zheng F F, et al. Adsorption behavior and mechanisms of norfloxacinonto porous resins and carbon nanotube[J]. Chem Eng J,2012,179:112-118
    125.张金荣,陈艳丽,张静泽等.孔径均匀、可控的大孔吸附树脂的制备及筛分性能的研究[J].高等学校化学学报,2005,26(4):765-768
    126. Cheng S L, Yan H S, Zhao C Q. The synergistic effect between hydrophobic andelectrostatic interactions in the uptake of amino acids by strongly acidic cation-exchangeresins [J]. J Chromatogr A,2006,1108(1):43-49
    127. Zhang W M, Xu Z W, Pan B C, et al. Assessment on the removal of dimethyl phthalatefrom aqueous phase using a hydrophilic hyper-cross-linked polymer resin NDA-702[J]. JColloid Interf Sci,2007,311(2):382-390
    128. Xu R H, Cheng N, Huang W, et al. Effects of the processing steps on parathion levelsduring honey production and parathion removal by macroporous adsorption resins[J]. FoodControl,2012,23(1):234-237
    129. Zhang F X, Wang Z, Xu S Y. Macroporous resin purification of grass carp fish(Ctenopharyngodon idella)scale peptides with in vitro angiotensin-I converting enzyme (ACE)inhibitory ability[J]. Food Chem,2009,117(3):387-392
    130. Wang Y, Lu Z X, Bie X M. Separation and extraction of antimicrobial lipopeptidesproduced by Bacillus amyloliquefaciens ES-2with macroporous resin [J]. Eur Food Res Technol,2010,231(2):189-196
    131. Zhao R Y, Yan Y, Li M X, et al. Selective adsorption of tea polyphenols from aqueoussolution of the mixture with caffeine on macroporous crosslinkedpoly(N-vinyl-2-pyrrolidinone)[J]. React Funct Polym,2008,68(3):768-774
    132. Lu J L, Wu M Y, Yang X L, et al. Decaffeination of tea extracts by usingpoly(acrylamide-co-ethylene glycol dimethylacrylate) as adsorbent[J].J Food Eng,2010,97(4):555-562
    133. Liu Y F, Bai Q Q, Lou S,et al. Adsorption characteristics of ()-epigallocatechingallate and caffeine in the extract of waste tea on macroporous adsorption resinsfunctionalized with chloromethyl, amino, and phenylamino groups[J].J Agric Food Chem,2012,60,1555-1566
    134.谭天伟.分子印记技术及应用[M].北京:化学工业出版社.2010.3-4
    135. Rajkumar R, Warsinke A. Development of fructosyl valine binding polymers by covalentimprinting[J]. Biosens Bioelectron,2007,22(12):3318-3325
    136. Beltran A, Marcé R M, Cormack P A G, et al. Synthesis by precipitation polymerisationof molecularly imprinted polymer microspheres for the selective extraction of carbamazepineand oxcarbazepine from human urine[J]. J ChromatogrA,2009,1216(12):2248-2253
    137. Cacho C, Turiel E, Martín-Esteban A, et al. Semi-covalent imprinted polymer usingpropazine methacrylate as template molecule for the clean-up of triazines in soil andvegetable samples[J]. J Chromatogr A,2006,1114(2):255-262
    138. Qu S S, Wang X B, Tong C L, et al. Metal ion mediated molecularly imprinted polymerfor selective capturing antibiotics containing beta-diketone structure[J]. J ChromatogrA,2010,1217(52):8205-8211
    139. Schumacher S, Grüneberger F, Katterle M, et al. Molecular imprinting of fructose usinga polymerizable benzoboroxole: effective complexation at pH7.4[J].Polymer,2011,52(12):2485-2491
    140. Ye L, Ramstr m O, Mosbach K. Molecularly imprinted polymeric adsorbents for by-productremoval[J]. Anal Chem,1998,70(14):2789-2795
    141. Andrew G, Mayes, Mosbach K. Molecularly imprinted polymer beads: suspensionpolymerization using a liquid perfluorocarbon as the dispersing phase[J]. Anal Chem,1996,68(21):3769-3774
    142. Matsui J, Miyoshi Y, Matsui R, et al. Rod-type affinity media for liquid chromatographyprepared by in-situ molecular imprinting[J]. Anal Sci,1995,11(6):1017-1019
    143.牛庆媛,高保娇,刘苏宇等.新型表面分子印迹法制备苦参碱印迹材料及其分子识别特性[J].化学学报,2010,68(24):2600-2608
    144. Nicholls I A. Thermodynamic considerations for the design of and ligand recognitionby molecularly imprinted polymers[J]. Chem Lett,1995,24(11):1035-1036
    145. Yuan L H, Ma J, Ding M J,et al. Preparation of estriol–molecularly imprinted silicananoparticles for determining oestrogens in milk tablets[J]. Food Chem,2012,131(3):1063-1068
    146. Kirk C, Jensen M, Kjaer C N, et al. Aqueous batch rebinding and selectivity studieson sucrose imprinted polymers[J]. Biosens Bioelectron,2009,25(3):623-628
    147. Jiang J B, Song K S, Chen Z, et al. Novel molecularly imprinted microsphere using asingle chiral monomer and chirality-matching (S)-ketoprofen template[J]. J Chromatogr A,2011,1218(24):3763-3770
    148. Kitahara K I, Yoshihama I, Hanada T, et al. Synthesis of monodispersed molecularlyimprinted polymer particles for high-performance liquid chromatographic separation ofcholesterol using templating polymerization in porous silica gel bound with cholesterolmolecules on its surface[J]. J Chromatogr A,2010,1217(46):7249-7254
    149. Kriz D, Kriz C B, Andersson L I, et al. Thin-layer chromatography based on the molecularimprinting technique[J]. Anal Chem,1994,66(17):2636-2639
    150. Monier M, El-Sokkary A M A. Preparation of molecularly imprinted cross-linkedchitosan/glutaraldehyde resinfor enantioselective separation of L-glutamic acid[J]. IntJ Biol Macromol,2010,47(2):207-213
    151. Lasáková M, Jandera P. Molecularly imprinted polymers and their application in solidphase extraction[J]. J Sep Sci,2009,32(5-6):799-812
    152. Caruel H., Rigal L, Gaset A. Carbohydrate separation by ligand-exchangeliquid-chromatography—correlation between the formation of sugar cation complexes andthe elution order[J]. J Chromatogr,1991,558(1):89-104
    153. Sam S, Touahir L, Andresa J S, et al. Semiquantitative study of the EDC/NHS activationof acid terminal groups at modified porous silicon surfaces[J]. Langmuir,2010,26:809-814
    154. Yan J, Springsteen G, Deeter S, et al. The relationship among pKa, pH, and bindingconstants in the interactions between boronic acids and diols—it is not as simple as itappears[J]. Tetrahedron,2004,60:11205-11209
    155. Liu J T, Chen L Y, Shih M C, et al. The investigation of recognition interaction betweenphenylboronate monolayer and glycated hemoglobin using surface plasmon resonance[J]. AnalBiochem,2008,375:90-96
    156. Sun X, Liu R, He X, et al. Preparation of phenylboronic acid functionalizedcation-exchange monolithic columns for protein separation and refolding[J]. Talanta,2010,81:856-864
    157.格雷格主编.吸附、比表面与孔隙率[M].高敬琮等译.北京:化学工业出版社,1989.25-26
    158. Lagergren S. About the theory of so-called adsorption of soluble substances[J]. K SvenVetenskapsakad Handl,1898,24:1-39
    159. Ho Y S, McKay G. Sorption of dye from aqueous solution by peat[J]. Chem Eng J,1998,70:115-124
    160. Low M J D. Kinetics of chemisorption of gases on solids[J]. Chem Rev,1960,60:267-312
    161. Weber W J, Morris J C. Kinetics of adsorption on carbon from solution[J]. J Sanit EngDiv Am Soc Civ Eng,1963,89:31-60
    162. Farooq U, Khan M A, Athar M, et al. Effect of modification of environmentally friendlybiosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium (II) ions fromaqueous solution[J]. Chem Eng J,2011,171:400-410
    163. Srivastava V C, Swamy M M, Mall I D, et al. Adsorptive removal of phenol by bagassefly ash and activated carbon: Equilibrium, kinetics and thermodynamics[J]. Colloid SurfA-Physicochem Eng Asp,2006,272(1-2):89-104
    164. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and Pt[J]. J AmChem Soc,1918,40:1361-1403
    165. Freundlich H. über die adsorption in Loesun[J]. Z Phys Chem,1907,57:385-470
    166. Temkin M I, Pyzhev V. Kinetic of ammonia synthesis on promoted iron catalysts[J]. ActaPhysiochim USSR,1940,12:327-356
    167. Dubinin M M, Radushkevich L V. Equation of the characteristic curve of activatedcharcoal[J]. Proceed Academy Sci Phys Chem Sect USSR,1947,55:331-333
    168. Dubinin M M. The potential theory of adsorption of gases and vapors for adsorbentswith energetically nonuniform surfaces[J]. Chem Rev,1960,60(2):235-241
    169. Bakouri H E, Usero J, Morillo J, et al. Adsorptive features of acid-treated olive stonesfor drin pesticides: equilibrium, kinetic and thermodynamic modeling studies[J]. BioresourTechnol,2009,100:4147-4155
    170. Antunes M, Esteves V I, Guégan R, et al. Removal of diclofenac sodium from aqueoussolution by Isabel grape bagasse[J]. Chem Eng J,2012,192:114-121
    171. Zhang W, Li H, Kan X, et al. Adsorption of anionic dyes from aqueous solutions usingchemically modified straw[J]. Bioresour Technol,2012,117:40-47
    172.施荣富,史作清,王春红等.吸附树脂的色层吸附及其在甜菊甙分离纯化中的应用[J].离子交换与吸附,2001,17(1):23-30
    173. Mohapatra S, Panda N, Pramanik P. Boronic acid functionalized superparamagnetic ironoxide nanoparticle as a novel tool for adsorption of sugar[J]. Mat Sci Eng C,2009,29:2254-2260
    174. Zanette D, Soffientini A, Sottani C, et al. Evaluation of phenylboronate agarose forindustrial-scale purification of erythropoietin from mammalian cell cultures[J]. JBiotechnol,2003,101:275-287
    175. Preinerstorfer B, L mmerhofer M, Lindner W. Synthesis and application of novelphenylboronate affinity materials based on organic polymer particles for selective trappingof glycoproteins[J]. J Sep Sci,2009,32:1673-1685
    176. Gomes A G, Azevedo A M, Aires-Barros M R, et al. Studies on the adsorption of cellimpurities from plasmid-containing lysates to phenyl boronic acid chromatographic beads[J].J Chromatogr A,2011,1218:8629-8637
    177. Zou X, Liu D, Zhong L, et al. Synthesis and characterization of a novel boronicacid-functionalized chitosan polymeric nanosphere for highly specific enrichment ofglycopeptides[J]. Carbohyd Polym,2012,90:799-804
    178.李家政,欧来良,史作清等.水介质中氢键吸附与疏水吸附协同作用的研究[J].离子交换与吸附,2005,21(2):97-102
    179.何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社,1995.49-50
    180. Huang J, Zha H, Jin X, et al. Efficient adsorptive removal of phenol by adiethylenetriamine-modified hypercrosslinked styrene–divinylbenzene (PS) resin fromaqueous solution[J]. Chem Eng J,2012,195-196:40-48
    181.北川浩,铃木谦一郎著.吸附的基础与设计[M].鹿政理译.北京:化学工业出版社,1983.24-25
    182. Huang J, Deng R, Huang K. Equilibria and kinetics of phenol adsorption on atoluene-modified hyper-cross-linked poly(styrene-co-divinylbenzene) resin[J]. Chem Eng J,2011,171:951-957
    183. Dang V B H, Doan H D, Dang-Vu T, et al. Equilibrium and kinetics of biosorption ofcadmium(II) and copper(II) ions by wheat straw[J]. Bioresour Technol,2009,100:211-219
    184. Ho Y S, McKay G. Pseudo-second order model for sorption processes[J]. Process Biochem,1999,34:451-465
    185. Gao Q, Pan C, Liu F, et al. Adsorption characteristics of malic acid from aqueoussolutions by weakly basic ion-exchange chromatography[J]. J Chromatogr A,2012,1251:148-153
    186. Srivastava V C, Swamy M M, Mall I D, et al. Adsorptive removal of phenol by bagassefly ash and activated carbon: Equilibrium, kinetics and thermodynamics[J]. Colloid SurfA-Physicochem Eng Asp,2006,272(1-2):89-104
    187. Hu X, Wang J, Liu Y, et al. Adsorption of chromium (VI) by ethylenediaminemodifiedcross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics[J]. J HazardMater,2011,185(1):306-314
    188.刘永宁,史作清,施荣富等.大孔吸附树脂合成及从甜叶菊中提取分离甜菊苷的研究[J].离子交换与吸附,1994,10(1):12-17
    189.伏军芳,黄新异,宋玉民等.甜菊叶水提取液的除杂工艺研究[J].化学世界2010,51(2):126-128
    190.何炳林,刘永宁,史作清等.吸附树脂AB-8对甜菊甙的吸附性能及在其提取纯化中的应用[J].1994,11(1):16-19
    191. Shi R, Xu M, Shi Z, et al. Synthesis of bifunctional polymeric adsorbent and itsapplication in purification of stevia glycosides[J]. React Funct Polym,2002,50(2):107-116
    192.陈振斌,邸多隆,刘永峰等.甜菊糖大孔吸附树脂吸附分离工艺条件的正交设计优化[J].应用化工,2011,6(40):945-951
    193. Qiu N, Guo S, Chang Y. Study upon kinetic process of apple juice adsorptionde-coloration by using adsorbent resin[J].J Food Eng,2007,81:243-249
    194.胡娟,李丹丹,金征宇等.树脂对菊糖液的脱色研究[J].食品与机械,2006,22(6):49-52
    195. Arslano lu F N, Kar F, Arslan N. Adsorption of dark coloured compounds from peach pulpby using granular activated carbon[J]. J Food Eng,2005,68:409-417
    196.何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社,1995.390-393
    197.北川浩,铃木谦一郎著.吸附的基础与设计[M].鹿政理译.北京:化学工业出版社,1983.30-32
    198. Kavianinia I, Plieger PG, Kandile NG, et al. Fixed-bed column studies on a modifiedchitosan hydrogel for detoxification of aqueous solutions from copper (II)[J]. CarbohydPolym,2012,90:875-886
    199. Jia G, Lu X. Enrichment and purification of madecassoside and asiaticoside fromCentella asiatica extracts with macroporous resins[J]. J Chromatogr A,2008,1193(1-2):136-141
    200.谭天伟.分子印记技术及应用[M].北京:化学工业出版社.2010.1-2
    201. Yavuz H, Karako V, Türkmen D, et al. Synthesis of cholesterol imprinted polymericparticles[J]. Int J Biol Macromol,2007,41:8-15
    202. Nathalie Lavignac, Keith R. Brain, Christopher J. Allender.Concentration dependentatrazine–atrazine complex formation promotes selectivity in atrazine imprintedpolymers[J]. Biosens Bioelectron,2006,22:138-144
    203. Sellergren B, Lepist M, Mosbach K. Highly enantioselective and substrate-Selectivepolymers obtained by molecular imprinting utilizing noncovalent interactions. NMR andchromatographic studies on the nature of recognition[J]. J Am Chem Soc,1988,110:5853-5860
    204. Zhang H, Ye L, Mosbach K. Non-covalent molecular imprinting with emphasis on itsapplication in separation and drug development[J]. J Mol Recognit,2006,19:248-259
    205. Zhang Z, Li H, Liao H, et al. Influence of cross-linkers’ amount on the performanceof the piezoelectric sensor modified with molecularly imprinted polymers[J]. Sensor ActuatB-Chem,2005,105:176-182
    206. Tom L A, Schneck N A, Walter C. Improving the imprinting effect by optimizing template:monomer: cross-linker ratios in a molecularly imprinted polymer for sulfadimethoxine[J].J Chromatogr B,2012,909:61-64
    207. Shi X, Wu A, Qu G, et al. Development and characterisation of molecularly imprintedpolymers based on methacrylic acid for selective recognition of drugs[J]. Biomaterials,2007,28:3741-3749
    208. Urraca J L, Carbajo M C, Torralvo M J, et al. Effect of the template and functionalmonomer on the textural properties of molecularly imprinted polymers[J]. BiosensBioelectron,2008,24:155-161
    209. Székely G, Bandarra J, Heggie W. Design, preparation and characterization of novelmolecularly imprinted polymers for removal of potentially genotoxic1,3-diisopropylureafrom API solutions[J]. Sep Purif Technol,2012,86:190-198
    210.宋兴良.分子印迹固相萃取材料的制备及应用研究[D]:[博士学位论文].青岛:中国海洋大学化学化工学院,2010
    211. Schwarz L J, Danylec B, Harris S J, et al. Preparation of molecularly imprinted polymersfor the selective recognition of the bioactive polyphenol,(E)-resveratrol[J]. J ChromatogrA,2011,1218:2189-2195
    212. Gómez-Pineda L E, Pina-Luis G E, Cuán á, et al. Physico-chemical characterization offlavonol molecularly imprinted polymers[J]. React Funct Polym,2011,71:402-408
    213. Sellergren B. Direct drug determination by selective sample enrichment imprintedpolymer[J]. Anal Chem,1994,66:1578-1582
    214. Piletska E V, Burns R, Terry L A, et al. Application of a molecularly imprinted polymerfor the extraction of Kukoamine A from potato peels[J]. J Agric Food Chem,2012,60:95-99
    215.王德骥.再论甜菊糖苷的甜度、甜味和苦涩后味的成因机理[J].食品工业科技,2010,31(5):417-420
    216. Bernfield P. Amylases α/β[J]. Method Enzymol,1955,1:149-158
    217. Zimmermann B F. Tandem mass spectrometric fragmentation patterns of known and newsteviol glycosides with structure proposals [J]. Rapid Comm Mass Spectr,2011,25:1575-1582
    218. Tanaka O, Yamasaki K, Sakamoto I. Application of13C NMR spectroscopy to chemistry ofplant glycosides: rebaudioside-D and-E, new sweet diterpene-glucosides of Steviarebaudiana Bertoni[J]. Chem Pharm Bull,1977,25:3437-3439
    219. Bojarová P, K en V. Glycosidases: a key to tailored carbohydrates[J]. Trends Biotechnol,2008,27(4):199-209
    220. van der Maarel M J E C, van der Veen B, Uitdehaag J C M, et al. Properties and applicationsof starch-converting enzymes of the α-amylase family[J]. J Biotechnol,2002,94:137-155
    221. Chitradon L, Mahakhan P, Bucke C. Oligosaccharide synthesis by reversed catalysis usingα-amylase from Bacillus licheniformis[J]. J Mol Cat B Enzym,2000,10:273-280
    222. Moreno A, Damian-Almazo J Y, Miranda A, et al. Transglycosylation reactions ofThermotoga maritima α-amylase[J]. Enzym Microb Technol,2010,46:331-337
    223. Larsson J, Svensson D, Adlercreutz P. α-Amylase-catalysed synthesis of alkylglycosides[J]. J Mol Cat B Enzym,2005,37:84-87
    224. Noguchi A, Inohara-Ochiai M, Ishibashi N, et al. A novel glucosylation enzyme:molecular cloning, expression, and characterization of Trichoderma viride JCM22452α-Amylase and enzymatic synthesis of some flavonoid monoglucosides and oligoglucosides[J].J Agri Food Chem,2008,56(24):12016-12024
    225. Apar D K, zbek B. α-Amylase inactivation by temperature during starch hydrolysis[J].Process Biochem,2004,39:1137-1144
    226. López C, Torrado A, Fuci os P, et al. Enzymatic inhibition and thermal inactivationin the hydrolysis of chestnut purée with an amylases mixture[J]. Enzym Microb Technol,2006,39(2):252-258
    227.杨忠华,姚善泾,王光辉.引入树脂吸附促进酵母细胞不对称还原芳香酮[J].化工学报,2006,57(10):2388-2392
    228. Moreno A, Damian-Almazo J Y, Miranda A, et al. Transglycosylation reactions ofThermotoga maritima α-amylase[J]. Enzym Microb Technol,2010,46:331-337
    229. Mótyán J A, Fazekas E, Mori H, et al. Transglycosylation by barley α-amylase1[J].J Mol Cat B Enzym,2011,72:229-237
    230. Yadav G D, Devendran S. Lipase catalyzed synthesis of cinnamyl acetate viatransesterification in non-aqueous medium[J]. Process Biochem,2012,47:496-502
    231. Lubiewski Z, Thanh J L, Lewandowicz G. Increasing the efficiency of the enzymatichydrolysis of potato starch in a membrane reactor[J]. Biotechnol Bioproc Eng,2010,15:917-922
    232. Schiffman S S, Booth B J, Losee M L, et al. Bitterness of sweeteners as a functionof concentration[J]. Brain Res Bull,1995,36:505-513
    233. Cardello H M, Da Silv M A, Damasio M H. Measurement of the relative sweetness of Steviaextract, aspartame and cyclamate/saccharin blends as compared to sucrose at differentconcentrations[J]. Plant Food Human Nutr,1999,54:119-130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700