用户名: 密码: 验证码:
基于大骨架多羧酸配体的配合物溶剂热及室温双相合成、结构及气体吸附性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于金属-有机配合物在光学、磁性、催化、气体吸附和分离等方面具有优良的性能,所以设计合成功能金属-有机配合物已成为当今配位化学的研究热点之一,亦是难点之一。与传统无机分子筛不同,金属-有机配合物具有结构和性质的可调控性。在此类配合物的组装中,不仅溶剂、温度、pH值等诸多外在影响因素,而且配体自身构型和金属离子或者金属簇基元的配位模式对金属-有机配合物的最终结构有至关重要的作用。作为重要构筑基元之一的有机配体可以预先设计并合成,使与具有不同配位模式的的金属离子或者离子簇基元相互连接,实现金属-有机配合物的定向组装。因此如何设计合成功能有机连接体,有目的的组装具有特定结构的金属-有机配合物对功能配位化合物领域的发展具有重要意义。
     在过去的几十年中,共平面的芳香族羧酸类配体因其具有较强的配位能力以及多样化的配位方式被广泛应用于金属-有机配合物的组装中。由于配体本身的构型对最终的金属-有机配合物结构有着重要的影响,所以本论文设计合成了一系列非同平面大骨架芳香性多羧酸类配体(H3L1,H6L2,H4L3,H4L4,H4L5,H6L6,H6L7,H6L8,H4L9),通过配位键与金属Zn2+、Cd2+和Cu2+组装合成出16个新颖的配位化合物,并通过X-射线单晶衍射、元素分析、热重分析、X射线粉末衍射、荧光分析、圆二色分析和气体吸附测试对它们进行结构表征和性能测试。本论文的主要内容如下:
     一、利用具有甲基位阻效应的非共平面的芳香性三羧酸配体H3L1与Zn2+构筑配合物1,2和3,进过结构分析发现它们是因为层间作用力不同而引起的二维层间的堆叠方式不同进而形成的超分子异构体,同时发现配合物2是手性结构,通过用手性小分子诱导得到单一手性的配合物2;
     二、由两种吡啶类配体作为第二配体连接平行的双层相互穿插形成的三维微孔金属-有机配合物4-5,对其进行气体吸附测试和比较发现第二配体的长度影响配合物的孔径大小进而影响气体吸附性能;
     三、由刚性的大骨架芳香性多酸配体H6L2与Zn2+自组装构筑的含有笼状的金属-有机配合物6,并对其结构和拓扑进行解析。由刚性的大骨架芳香性多酸配体H4L3和H4L4与Zn2+和Cu2+自组装构筑的微孔金属-有机配合物7-9,并对其结构进行解析;
     四、含硅的芳香性四羧酸配体H4L5与Cd2+构筑配合物10和11,分析了因溶剂不同得到(4,4)连接的配合物10和(4,8)连接的flu拓扑结构的三维微孔配合物11。含硅大骨架多酸配体H6L6,H6L7和H6L8与Cu2+构筑的笼状配合物12-14,经过晶体结构和拓扑分析发现他们具有相同的结构,即(3,24)连接的rht拓扑结构。重点比较了因中心原子Si上修饰不同的基团对最终配合物12,13和14气体吸附的影响;
     五、开创了一种新型的组装配合物的方法,即相转移催化剂参与的室温双相合成法,为配合物的合成提供新的途径,并用此方法合成了非穿插的一维金属-有机纳米管状配合物15和存在一维水带的一维链状配合物16。
Nowdays the design and synthesis of new functional metal-organic coordination complexes is an active and difficult research filed for their potential applications in photoelectricity, magnetism, catalysis, gas adsorption, separation and so on. Metal-organic coordination complexes are adjustable comparing with traditional zeolites. Besides the external conditions such as the solvent, temperature, pH etc., the ligand conformation and the coordination geometries of metal ions or metal clusters have a crucial impact on the final structure of MOFs. The semi-direactional synthesis of MOFs can be realized through the connecting the metal ions or metal cluster and the ligand as the spacer which can be pre-designed. It is important to control the conditions for obtaining the desired MOFs.
     In recent years, planar aromatic carboxylate ligands have been widely researched due to their varieties of coordination modes and strong coordination ability. Based on the influence of the ligand,.we designed and synthesized a series of nonplanar aromatic multi-carboxylate ligands with a big rigid structure (H3L1, H6L2, H4L3, H4L4, H4L5, H6L6, H6L7, H6L8, H4L9).16novel MOFs were obtained through the assembly reactions between the synthesized ligands and Zn2+, Cd2+, Cu2+. All complexes have been characterized by single-crystal X-ray diffraction, elemental analyses, thermal analysis, XRPD analysis, fluorescence spectroscopy, circular dichrosim and gas adsorption. The contents of this dissertation are as follows:
     1. H3L1is nonplanar for the three methyls of the central benzene ring. Complexes1,2, and3were obtained by the assembly of H3L1and Zn2+. These three complexes are supramolecular isomerisms driven by CH---π interactions among the two dimensional honeycomb layers, while complexe2is homochiral crystallization from an achiral ligand through chiral inducement.
     2. Two porous MOFs (4,5) have been synthesized by polycatenation between the bilayers which are connected by two different pyridine ligands. By comparing the adsorption results, the length of the second ligand affects the size of pores of MOFs.
     3. Complexes6-9is the assembly of metal ions and ligands (H6L2, H4L3, H4L4) which are big rigid aromatic structures. Their structures and topologies have been described and analyzed. They are all porous MOFs with polyhedrons or cages.
     4. Four different silicon-based ligand have been designed and synthesized. We synthesize and characterize two Cd(Ⅱ)-H4L5, Cu-H6L6, Cu-H6L7and Cu-H6L8coordination polymers. The solvent system plays an important role in modulating the final structures. Complexe10and11present2D (4,4) net and (4,8)-connected3D porous framework with flu topology. Complexes12,13and14show the same (3,24)-connected3D porous framework with rht topology. We mainly invesitigate the effect of the modified groups on the central silicon atom on the gas adsorption among the complexes12-14with the same structure.
     5. A novel Metal-organic nanotube (15) and a1D coordination polymer (16) with large water clusters are obtained and characterized via a new synthetic approach: phase-transfer catalyst supported, room-temperature biphasic synthesis. The new nanotubular material (15) is non-interpenetrating because of the large template of [Cu(py)4Cl·Cl] and the steric hindrance effect of the methyl groups of H4L9. It is interesting to observe that1D novel water tape with an8-membered ring as the basic unit reside in complexe16.
引文
[1]Wang, Z.; Kravtsov, V. C.; Zaworotko, M. J., Ternary Nets formed by Self-Assembly of Triangles, Squares, and Tetrahedra. Angew. Chem. Int. Ed.2005,44 (19),2877-2880.
    [2]Yaghi, O. M.; Davis, C. E.; Li, G.; Li, H., Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(Ⅱ)-Benzenetricarboxylate Network. J. Am. Chem. Soc. 1997,119(12),2861-2868.
    [3]Sun, D.; Ke, Y.; Collins, D. J.; Lorigan, G. A.; Zhou, H.-C., Construction of Robust Open Metal-Organic Frameworks with Chiral Channels and Permanent Porosity. Inorg. Chem.2007,46(1),2725-2734.
    [4]James, S. L., Metal-Organic Frameworks. Chem. Soc. Rev.2003,32(5),276-288.
    [5]Darr, J. A.; Poliakoff, M., New Directions in Inorganic and Metal-Organic Coordination Chemistry in Supercritical Fluids. Chem. Rev.1999, 99(2),495-542.
    [6]Champness, N. R.; Schroder, M., Extended Networks Formed by Coordination Polymers in the Solid State. Curr. Opin. Solid State Mater. Sci.1998,3 (4),419-424.
    [7]Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K., Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine. J. Am. Chem. Soc.1994,116(3),1151-1152.
    [8]Collins, D. J.; Zhou, H.-C., Hydrogen Storage in Metal-Organic Frameworks. J. Mater. Chem.2007,17(30),3154-3160.
    [9]Dinca, M.; Dailly, A.; Tsay, C.; Long, J. R., Expanded Sodalite-Type Metal-Organic Frameworks:Increased Stability and H2 Adsorption through Ligand-Directed Catenation. Inorg. Chem.2007,47(1),11-13.
    [10]Du, M.; Jiang, X.-J.; Zhao, X.-J., Molecular Tectonics of Mixed-Ligand Metal-Organic Frameworks:Positional Isomeric Effect, Metal-Directed Assembly, and Structural Diversification. Inorg. Chem.2007,46(10),3984-3995.
    [11]John Platers, M.; Alan Howie, R.; J. Roberts, A., Hydrothermal Synthesis and X-ray Structural Characterisation of Calcium Benzene-1,3,5-tricarboxylate. Chem. Commun.1997, (9),893-894.
    [12]Zhao, Y.; Hong, M.; Sun, D.; Cao, R., A Novel Coordination Polymer Containing Puckered Rhombus Grids. J. Chem. Soc., Dalton Trans.2002, (7), 1354-1357.
    [13]Bauer, C. A.; Timofeeva, T. V.; Settersten, T. B.; Patterson, B. D.; Liu, V. H.; Simmons, B. A.; Allendorf, M. D., Influence of Connectivity and Porosity on Ligand-Based Luminescence in Zinc Metal-Organic Frameworks. J. Am. Chem. Soc. 2007, 129(22),7136-7144.
    [14]Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O'Keeffe, M.; Yaghi, O. M., Secondary Building Units, Nets and Bonding in the Chemistry of Metal-Organic Frameworks. Chem. Soc. Rev 2009,38(5),1257-1283.
    [15]Davies, R. P.; Less, R.; Lickiss, P. D.; Robertson, K.; White, A. J. P., Structural Diversity in Metal-Organic Frameworks Built from Rigid Tetrahedral [Si(p-C6H4CO2)4]4-Struts. Cryst. Growth Des.2010,10(10),4571-4581.
    [16]Schmidt G M, Photodimerization in the Solid State. J. Pure Appl. Chem.1971, 27,647-678.
    [17]Janiak, C., Engineering Coordination Polymers towards Applications. Dalton Transactions 2003, (14),2781-2804.
    [18]Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J., Metal-Organic Frameworks-Prospective Industrial Applications. J. Mater. Chem. 2006,16(1),626-636.
    [19]Rowsell, J. L. C.; Yaghi, O. M., Metal-Organic Frameworks:a New Class of Porous Materials. Microporous Mesoporous Mater.2004,73 (1-2),3-14.
    [20]Wang, S.; Zhao, T.; Li, G.; Wojtas, L.; Huo, Q.; Eddaoudi, M.; Liu, Y., From Metal-Organic Squares to Porous Zeolite-like Supramolecular Assemblies. J. Am. Chem. Soc.2010, 132(51),18038-18041.
    [21]Wells, A. F., Three-dimensional nets and polyhedra.. Wiley:New York 1977.
    [22]Wells, A. F., Structural inorganic chemistry. Oxford University Press:Oxford 1975.
    [23]Moulton, B.; Zaworotko, M. J., From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids. Chem. Rev.2001, 101(6),1629-1658.
    [24]Qiu, S.; Zhu, G., Molecular Engineering for Synthesizing Novel Structures of Metal-Organic Frameworks with Multifunctional Properties. Coord. Chem. Rev.2009, 253 (23-24),2891-2911.
    [25]Gutschke, S.0. H.; Molinier, M.; Powell, A. K.; Winpenny, R. E. P.; Wood, P. T., Engineering Coordination Architecture by Hydrothermal Synthesis; Preparation, X-ray Crystal Structure and Magnetic Behaviour of the Coordination Solid [Mn3{C6H3(CO2)3-1,3,5}2]. Chem. Commun.1996, (7),823-824.
    [26]Wang, Z.; Tanabe, K. K.; Cohen, S. M., Accessing Postsynthetic Modification in a Series of Metal-Organic Frameworks and the Influence of Framework Topology on Reactivity. Inorg. Chem.2008,48(1),296-306.
    [27]Forster, P. M.; Thomas, P. M.; Cheetham, A. K., Biphasic Solvothermal Synthesis:A New Approach for Hybrid Inorganic-Organic Materials. Chem. Mater. 2001,14(1),17-20.
    [28]Forster, P. M.; Cheetham, A. K., Open-Framework Nickel Succinate, [Ni7(C4H4O4)6(OH)2(H2O)2]·2H2O:A New Hybrid Material with Three-Dimensional Ni-O-Ni Connectivity. Angew. Chem. Int. Ed.2002,41 (3), 457-459.
    [29]Hu, T.; He, H.; Dai, F.; Zhao, X.; Sun, D., A New Cu(i) Coordination Polymer with the CdSO4 Structure Type Prepared via Biphasic Solvothermal Reaction. CrystEngComm 2010,12 (7),2018-2020.
    [30]Zhao, X. L.; Sun, D.; Hu, T. P.; Yuan, S.; Gu, L. Y.; Cong, E. J.; He, H. Y.; Sun, D. F., Phase Transfer Catalyst Supported, Room-Temperature Biphasic Synthesis:a Facile Approach to the Synthesis of Coordination Polymers. Dalton Trans.,2012,41, 4320-4323.
    [31]Sun, J.; Dai, F.; Yuan, W.; Bi, W.; Zhao, X.; Sun, W.; Sun, D., Dimerization of a Metal Complex through Thermally Induced Single-Crystal-to-Single-Crystal Transformation or Mechanochemical Reaction. Angew. Chem. Int. Ed.2011,50 (31), 7061-7064.
    [32]Sun, D.; Ma, S.; Ke, Y.; Collins, D. J.; Zhou, H. C, An Interweaving MOF with High Hydrogen Uptake. J. Am. Chem. Soc.2006,128(12),3896-3897.
    [33]Zhao, B.; Chen, X.-Y.; Cheng, P.; Liao, D.-Z.; Yan, S.-P.; Jiang, Z.-H., Coordination Polymers Containing 1D Channels as Selective Luminescent Probes. J. Am. Chem. Soc.2004, 126(47),15394-15395.
    [34]Wu, C.-D.; Lin, W., Self-Assembly of Homochiral Porous Solids Based on 1D Cadmium(Ⅱ) Coordination Polymers. Inorg. Chem.2005,44(5),1178-1180.
    [35]Tang, Y.-Z.; Wang, X.-S.; Zhou, T.; Xiong, R.-G., A Novel 2D Manganese(Ⅱ) Coordination Polymer Exhibiting Ferromagnetic Interaction. Cryst. Growth Des.2005, 6(1),11-13.
    [36]Wang, X.-S.; Ma, S.; Forster, P. M.; Yuan, D.; Eckert, J.; Lopez, J. J.; Murphy, B. J.; Parise, J. B.; Zhou, H.-C., Enhancing H2 Uptake by "Close-Packing" Alignment of Open Copper Sites in Metal-Organic Frameworks. Angew. Chem. Int. Ed.2008,47 (38),7263-7266.
    [37]Sun, D.; Ma, S.; Simmons, J. M.; Li, J.-R.; Yuan, D.; Zhou, H.-C, An Unusual Case of Symmetry-Preserving Isomerism. Chem. Commun.2010,46(8),1329-1331.
    [38]Cui, P.; Dou, J.; Sun, D.; Dai, F.; Wang, S.; Sun, D.; Wu, Q., Reaction Vessel-and Concentration-Induced Supramolecular Isomerism in Layered Lanthanide-Organic Frameworks. CrystEngComm 2011,13 (23),6968-6971.
    [39]Volkringer, C.; Loiseau, T.; Guillou, N.; Ferey, G. r.; Haouas, M.; Taulelle, F.; Audebrand, N.; Margiolaki, I.; Popov, D.; Burghammer, M.; Riekel, C., Structural Transitions and Flexibility during Dehydration-Rehydration Process in the MOF-type Aluminum Pyromellitate Al2(OH)2[C10O8H2] (MIL-118). Cryst. Growth Des.2009,9 (6),2927-2936.
    [40]Volkringer, C.; Loiseau, T.; Guillou, N.; Ferey, G. r.; Haouas, M.; Taulelle, F.; Elkaim, E.; Stock, N., High-Throughput Aided Synthesis of the Porous Metal-Organic Framework-Type Aluminum Pyromellitate, MIL-121, with Extra Carboxylic Acid Functionalization. Inorg Chem.2010,49(21),9852-9862.
    [41]Volkringer, C.; Loiseau, T.; Haouas, M.; Taulelle, F.; Popov, D.; Burghammer, M.; Riekel, C.; Zlotea, C.; Cuevas, F.; Latroche, M.; Phanon, D.; Knofelv, C.; Llewellyn, P. L.; Ferey, G. r., Occurrence of Uncommon Infinite Chains Consisting of Edge-Sharing Octahedra in a Porous Metal Organic Framework-Type Aluminum Pyromellitate Al4(OH)g[C10O8H2] (MIL-120):Synthesis, Structure, and Gas Sorption Properties. Chem. Mater.2009, 21 (24),5783-5791.
    [42]Koh, K.; Wong-Foy, A. G.; Matzger, A. J., A Crystalline Mesoporous Coordination Copolymer with High Microporosity. Angew. Chem. Int. Ed.2008,47 (4),677-680.
    [43]Park, T.-H.; Hickman, A. J.; Koh, K.; Martin, S.; Wong-Foy, A. G.; Sanford, M. S.; Matzger, A. J., Highly Dispersed Palladium(II) in a Defective Metal-Organic Framework:Application to C-H Activation and Functionalization. J. Am. Chem. Soc. 2011,133 (50),20138-20141.
    [44]Goodgame, D. M. L.; Menzer, S.; Ross, A. T.; Williams, D. J., Use of Heterometal Combinations to Construct Very Large Ring Frameworks; Synthesis and Structural Characterisation of the 36-Membered Ring Compound [{NiNd(4-picolylpyrrolidin-2-one)4(NCS)2(N03)3}]. J. Chem. Soc, Chem. Commun. 1994, (22),2605-2606.
    [45]Abrahams, B. F.; Batten, S. R.; Grannas, M. J.; Hamit, H.; Hoskins, B. F.; Robson, R., Ni(tpt)(NO3)2—A Three-Dimensional Network with the Exceptional (12,3) Topology:A Self-Entangled Single Net. Angew. Chem. Int. Ed. 1999, 38(10), 1475-1477.
    [46]Bu, X.-H.; Chen, W.; Lu, S.-L.; Zhang, R.-H.; Liao, D.-Z.; Bu, W.-M.; Shionoya, M.; Brisse, F.; Ribas, J., Flexible meso-Bis(sulfinyl) Ligands as Building Blocks for Copper(II) Coordination Polymers:Cavity Control by Varying the Chain Length of Ligands. Angew. Chem. Int. Ed.2001,40(17),3201-3203.
    [47]Lopez, S.; Kahraman, M; Harmata, M.; Keller, S. W., Novel 2-fold Interpenetrating Diamondoid Coordination Polymers:[Cu(3,3'-bipyridine)2]X (X= BF4-, PF6-). Inorg. Chem.1997,36(26),6138-6140.
    [48]Hirsch, K. A.; Wilson, S. R.; Moore, J. S., Coordination Networks of 3,3'-Dicyanodiphenylacetylene and Silver(I) Salts:Structural Diversity through Changes in Ligand Conformation and Counterion. Inorg. Chem.1997,36 (14), 2960-2968.
    [49]Hu, T.; Bi, W.; Hu, X.; Zhao, X.; Sun, D., Construction of Metal-Organic Frameworks with Novel{ZnsO13 SBU or Chiral Channels through in Situ Ligand Reaction. Cryst. Growth Des.2010, 10(8),3324-3326.
    [50]Pan, L.; Frydel, T.; Sander, M. B.; Huang, X.; Li, J., The Effect of pH on the Dimensionality of Coordination Polymers. Inorg. Chem.2001,40(6),1271-1283.
    [51]Peng, R.; Li, D.; Wu, T.; Zhou, X.-P.; Ng, S. W., Increasing Structure Dimensionality of Copper(I) Complexes by Varying the Flexible Thioether Ligand Geometry and Counteranions. Inorg. Chem.2006,45(10),4035-4046.
    [52]Dong, Y.-B.; Jiang, Y.-Y.; Li, J.; Ma, J.-P.; Liu, F.-L.; Tang, B.; Huang, R.-Q.; Batten, S. R., Temperature-Dependent Synthesis of Metal-Organic Frameworks Based on a Flexible Tetradentate Ligand with Bidirectional Coordination Donors. J. Am. Chem. Soc.2007,129(15),4520-4521.
    [53]Lan, Y.; Kennepohl, D. K.; Moubaraki, B.; Murray, K. S.; Cashion, J. D.; Jameson, G. B.; Brooker, S., Coordination Algorithms Control Molecular Architecture:[CuI4(L2)4]4+ Grid Complex Versus [MIl2(L2)2X4]y+ Side-By-Side Complexes (M=Mn, Co, Ni, Zn; X=Solvent or Anion) and [FeⅡ(L2)3][Cl3FeⅢOFeⅢCl3]. Chem. Eur. J.2003,9(16),3772-3784.
    [54]Zhang, Z.-H.; Shen, Z.-L.; Okamura, T.-a.; Zhu, H.-F.; Sun, W.-Y.; Ueyama, N., Syntheses and Structures of Two Series of Coordination Frameworks Based on the Assembly of 1,3,5-Benzenetriacetic Acid with Lanthanide Metal Salts. Cryst. Growth Des.2005,J(3),1191-1197.
    [55]Halper, S. R.; Do, L.; Stork, J. R.; Cohen, S. M., Topological Control in Heterometallic Metal-Organic Frameworks by Anion Templating and Metalloligand Design. J. Am. Chem. Soc.2006,128(47),15255-15268.
    [56]Rowsell, J. L. C.; Yaghi, O. M., Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks. J. Am. Chem. Soc. 2006,128 (4),1304-1315.
    [57]He, H.; Yuan, D.; Ma, H.; Sun, D.; Zhang, G.; Zhou, H.-C., Control over Interpenetration in Lanthanide-Organic Frameworks:Synthetic Strategy and Gas-Adsorption Properties. Inorg. Chem.2010,49(17),7605-7607.
    [58]Vagin, S.; Ott, A. K.; Rieger, B., Paddle-Wheel Zinc Carboxylate Clusters as Building Units for Metal-Organic Frameworks. Chem. Ing. Tech.2007,79 (6), 767-780.
    [59]Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O'Keeffe, M.; Yaghi, O. M., Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. J. Am. Chem. Soc.2005,127(5),1504-1518.
    [60]Chen, B.; Xiang, S.; Qian, G., Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules. Acc. Chem. Res.2010,43 (8),1115-1124.
    [61]Kanoo, P.; Gurunatha, K. L.; Maji, T. K., Versatile functionalities in MOFs assembled from the same building units:interplay of structural flexibility, rigidity and regularity. J. Mater. Chem.2010, 20 (7),1322-1331.
    [62]Zhao, D.; Timmons, D. J.; Yuan, D.; Zhou, H.-C., Tuning the Topology and Functionality of Metal-Organic Frameworks by Ligand Design. Acc. Chem. Res. 2010,44(2),123-133.
    [63]Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M., Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks. Acc. Chem. Res.2001,34(4),319-330.
    [64]Wang, X.-Z.; Zhu, D.-R.; Xu, Y.; Yang, J.; Shen, X.; Zhou, J.; Fei, N.; Ke, X.-K.; Peng, L.-M., Three Novel Metal-Organic Frameworks with Different Topologies Based on 3,3'-Dimethoxy-4,4'-biphenyldicarboxylic Acid:Syntheses, Structures, and Properties. Cryst. Growth Des.2009, 10(2),887-894.
    [65]Forster, P. M.; Burbank, A. R.; Livage, C.; Ferey, G.; Cheetham, A. K., The Role of Temperature in the Synthesis of Hybrid Inorganic-Organic Materials:the Example of Cobalt Succinates. Chem. Commun.2004, (4),368-369.
    [66]Tong, M.-L.; Kitagawa, S.; Chang, H.-C.; Ohba, M., Temperature-Controlled Hydrothermal Synthesis of a 2D Ferromagnetic Coordination Bilayered Polymer and a Novel 3D Network with Inorganic Co3(OH)2 Ferrimagnetic Chains. Chem. Commun. 2004, (4),418-419.
    [67]He, H.; Collins, D.; Dai, F.; Zhao, X.; Zhang, G.; Ma, H.; Sun, D., Construction of Metal-Organic Frameworks with 1D Chain,2D Grid, and 3D Porous Framework Based on a Flexible Imidazole Ligand and Rigid Benzenedicarboxylates. Cryst. Growth Des.2009,10(2),895-902.
    [68]Gao, Q.; Xie, Y.-B.; Li, J.-R.; Yuan, D.-Q.; Yakovenko, A. A.; Sun, J.-H.; Zhou, H.-C., Tuning the Formations of Metal-Organic Frameworks by Modification of Ratio of Reactant, Acidity of Reaction System, and Use of a Secondary Ligand. Cryst. Growth Des.2011,12(1),281-288.
    [69]Zhang, J.-P.; Huang, X.-C.; Chen, X.-M., Supramolecular Isomerism in Coordination Polymers. Chem. Soc. Rev.2009,38(8),2385-2396.
    [70]Zheng, X.-D.; Jiang, L.; Feng, X.-L.; Lu, T.-B., The Supramolecular Isomerism Based on Argentophilic Interactions:The Construction of Helical Chains with Defined Right-Handed and Left-Handed Helicity. Inorg. Chem.2008,47 (23), 10858-10865.
    [71]Zhang, J.-P.; Kitagawa, S., Supramolecular Isomerism, Framework Flexibility, Unsaturated Metal Center, and Porous Property of Ag(I)/Cu(I) 3,3',5,5'-Tetrametyl-4,4'-Bipyrazolate.J. Am. Chem. Soc.2008,130(3),907-917.
    [72]Gale, P. A.; Light, M. E.; Quesada, R., Solvent-induced supramolecular isomerism in [Pt(S[double bond, length as m-dash]C(NH2)2)4]2+ croconate salts. Chem. Commun.2005, (47),5864-5866.
    [73]Briceno, A.; Leal, D.; Atencio, R.; Diaz de Delgado, G., Supramolecular Isomerism in Multivalent Metal-Templated Assemblies with Topochemical Influence in the Regioselective Synthesis of Tetrakis(2-pyridyl)cyclobutane Isomers. Chem. Commun.2006, (33),3534-3536.
    [74]Aitipamula, S.; Nangia, A., Guest-Induced Supramolecular Isomerism in Inclusion Complexes of T-Shaped Host 4,4-Bis(4'-hydroxyphenyl)cyclohexanone. Chem. Eur. J.2005,11(22),6727-6742.
    [75]Ma, S.; Sun, D.; Ambrogio, M.; Fillinger, J. A.; Parkin, S.; Zhou, H.-C., Framework-Catenation Isomerism in Metal-Organic Frameworks and Its Impact on Hydrogen Uptake. J. Am. Chem. Soc.2001,129(7),1858-1859.
    [76]Lin, W., Homochiral porous metal-organic frameworks:Why and how? J. Solid State Chem.2005,178(8),2486-2490.
    [77]Ma, L.; Abney, C.; Lin, W., Enantioselective Catalysis with Homochiral Metal-Organic Frameworks. Chem. Soc. Rev.2009,38 (5),1248-1256.
    [78]Ma, L.; Lin, W., Chirality-Controlled and Solvent-Templated Catenation Isomerism in Metal-Organic Frameworks. J. Am. Chem. Soc.2008,130 (42), 13834-13835.
    [79]Tan, H.; Li, Y.; Zhang, Z.; Qin, C.; Wang, X.; Wang, E.; Su, Z., Chiral Polyoxometalate-Induced Enantiomerically 3D Architectures:A New Route for Synthesis of High-Dimensional Chiral Compounds. J. Am. Chem. Soc.2007,129 (33), 10066-10067.
    [80]Zhang, Z.-M.; Yao, S.; Li, Y.-G.; Clerac, R.; Lu, Y.; Su, Z.-M.; Wang, E.-B., Protein-Sized Chiral Fe168 Cages with NbO-Type Topology. J. Am. Chem. Soc.2009, 131 (41),14600-14601.
    [81]Zhang, J.; Chen, S.; Wu, T.; Feng, P.; Bu, X., Homochiral Crystallization of Microporous Framework Materials from Achiral Precursors by Chiral Catalysis. J. Am. Chem. Soc.2008,130(39),12882-12883.
    [82]Dai, F.; He, H.; Zhao, X.; Ke, Y.; Zhang, G.; Sun, D., 1D zigzag chain vs. 1D Helical Chain:the Role of the Supramolecular Interactions on the Formation of Chiral Architecture. CrystEngComm 2010,12(2),337-340.
    [83]Furukawa, H.; Kim, J.; Ockwig, N. W.; O'Keeffe, M.; Yaghi, O. M., Control of Vertex Geometry, Structure Dimensionality, Functionality, and Pore Metrics in the Reticular Synthesis of Crystalline Metal-Organic Frameworks and Polyhedra. J. Am. Chem. Soc.2008,130(35),11650-11661.
    [84]Zhao, D.; Tan, S.; Yuan, D.; Lu, W.; Rezenom, Y. H.; Jiang, H.; Wang, L.-Q.; Zhou, H.-C., Surface Functionalization of Porous Coordination Nanocages Via Click Chemistry and Their Application in Drug Delivery. Adv. Mater.2011,23 (1),90-93.
    [85]Carlucci, L.; Ciani, G.; Proserpio, D. M., Polycatenation, polythreading and polyknotting in coordination network chemistry. Coord Chem. Rev.2003,246(1-2), 247-289.
    [86]Carlucci, L.; Ciani, G.; Maggini, S.; Proserpio, D. M., A New Polycatenated 3D Array of Interlaced 2D Brickwall Layers and 1D Molecular Ladders in [Mn2(bix)3(NO3)4]·2CHCl3 [bix=1,4-bis(imidazol-1-ylmethyl)benzene] That Undergoes Supramolecular Isomerization upon Guest Removal. Cryst. Growth Des. 2007,8(1),162-165.
    [87]Batten, S. R.; Robson, R., Interpenetrating Nets:Ordered, Periodic Entanglement. Angew. Chem. Int. Ed.1998,37(11),1460-1494.
    [88]Carlucci, L.; Ciani, G.; Proserpio, D. M., A New Type of Entanglement Involving One-Dimensional Ribbons of Rings Catenated to a Three-Dimensional Network in the Nanoporous Structure of [Co(bix)2(H2O)2](SO4)[middle dot]7H2O [bix =1,4-bis(imidazol-1-ylmethyl)benzene]. Chem. Commun.2004,(4),380-381.
    [89]Fu, Z.-Y.; Wu, X.-T.; Dai, J.-C.; Wu, L.-M.; Cui, C.-P.; Hu, S.-M., Interpenetration in [Cd(isonicotinate)(1,2-bis(4-pyridyl)ethane)(HO)], a novel octahedral polymer containing an unusual two-dimensional bilayer motif generated by self-assembly of rectangle building blocks. Chem. Commun.2001,(18),1856-1857.
    [90]Zhang, J.; Chew, E.; Chen, S.; Pham, J. T. H.; Bu, X., Three-Dimensional Homochiral Transition-Metal Camphorate Architectures Directed by a Flexible Auxiliary Ligand. Inorg. Chem.2008,47(9),3495-3497.
    [91]Hou, L.; Zhang, J.-P.; Chen, X.-M., Two Metal-Carboxylate Frameworks Featuring Uncommon 2D+ 3D and 3-Fold-Interpenetration:(3,5)-Connected Isomeric hms and gra Nets. Cryst. Growth Des.2009,9(5),2415-2419.
    [92]Shekhah, O.; Wang, H.; Paradinas, M.; Ocal, C.; Schupbach, B.; Terfort, A.; Zacher, D.; Fischer, R. A.; Woll, C., Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy. Nat. Mater.2009,8(6),481-484.
    [93]Wang, Q.; Zhang, J.; Zhuang, C.-F.; Tang, Y.; Su, C.-Y., Guest Inclusion and Interpenetration Tuning of Cd(Ⅱ)/Mn(Ⅱ) Coordination Grid Networks Assembled from a Rigid Linear Diimidazole Schiff Base Ligand. Inorg. Chem.2008,48 (1), 287-295.
    [94]Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T., Control over Catenation in Metal-Organic Frameworks via Rational Design of the Organic Building Block. J. Am. Chem. Soc.2009, 132(3),950-952.
    [95]Zhang, J.; Wojtas, L.; Larsen, R. W.; Eddaoudi, M.; Zaworotko, M. J., Temperature and Concentration Control over Interpenetration in a Metal-Organic Material. J. Am. Chem. Soc.2009,131 (47),17040-17041.
    [96]Choi, H. J.; Dinca, M.; Long, J. R., Broadly Hysteretic H2 Adsorption in the Microporous Metal-Organic Framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc.2008,130 (25),7848-7850.
    [97]Lee, J. Y.; Pan, L.; Kelly, S. P.; Jagiello, J.; Emge, T. J.; Li, J., Achieving High Density of Adsorbed Hydrogen in Microporous Metal Organic Frameworks. Adv. Mater.2005,17(22),2703-2706.
    [98]Sun, D.; Collins, D. J.; Ke, Y.; Zuo, J.-L.; Zhou, H.-C., Construction of Open Metal-Organic Frameworks Based on Predesigned Carboxylate Isomers:From Achiral to Chiral Nets. Chem. Eur. J.2006,12(14),3768-3776.
    [99]Nouar, F.; Eubank, J. F.; Bousquet, T.; Wojtas, L.; Zaworotko, M. J.; Eddaoudi, M., Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous Metal-Organic Frameworks. J. Am. Chem. Soc.2008,130(6),1833-1835.
    [100]Mulfort, K. L.; Hupp, J. T., Chemical Reduction of Metal-Organic Framework Materials as a Method to Enhance Gas Uptake and Binding. J. Am. Chem. Soc.2007, 129 (31),9604-9605.
    [101]Kitagawa, S.; Kitaura, R.; Noro, S.-i., Functional Porous Coordination Polymers. Angew. Chem.Int. Ed.2004,43 (18),2334-2375.
    [102]Ferey, G., Hybrid porous solids:past, present, future. Chem. Soc. Rev.2008,37 (1),191-214.
    [103]Zhao, D.; Yuan, D.; Zhou, H.-C., The Current Status of Hydrogen Storage in Metal-Organic Frameworks. Energy Environ. Sci.2008,1(2),222-235.
    [104]Wang, Q.; Johnson, J. K., Molecular simulation of Hydrogen Adsorption in Single-Walled Carbon Nanotubes and Idealized Carbon Slit Pores. J. Chem. Phys. 1999,110(1),577-586.
    [105]Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M., A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals. Nature 2004,427(6974),523-527.
    [106]Furukawa, H.; Miller, M. A.; Yaghi, O. M., Independent Verification of the Saturation Hydrogen Uptake in MOF-177 and Establishment of a Benchmark for Hydrogen Adsorption in Metal-Organic Frameworks. J. Mater. Chem.2007,17(30), 3197-3204.
    [1]Hou, L.; Lin, Y.-Y.; Chen, X.-M., Porous Metal-Organic Framework Based on μ4-oxo Tetrazinc Clusters:Sorption and Guest-Dependent Luminescent Properties. Inorg. Chem.2008,47(4),1346-1351.
    [2]Kitagawa, S.; Kitaura, R.; Noro, S.-I., Functional Porous Coordination Polymers. Angew. Chem. Int. Ed.2004,43(18),2334-2375.
    [3]Chun, H., Low-Level Self-Assembly of Open Framework Based on Three Different Polyhedra:Metal-Organic Analogue of Face-Centered Cubic Dodecaboride. J. Am. Chem. Soc.2007,130 (3),800-801.
    [4]Dinca, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R., Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn2+ Coordination Sites. J. Am. Chem. Soc.2006,128(51),16876-16883.
    [5]Dinca, M.; Han, W. S.; Liu, Y.; Dailly, A.; Brown, C. M.; Long, J. R., Observation of Cu2+-H2 Interactions in a Fully Desolvated Sodalite-Type Metal-Organic Framework. Angew. Chem. Int. Ed.2007,46(9),1419-1422.
    [6]Carlucci, L.; Ciani, G.; Proserpio, D. M., Polycatenation, polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev.2003,246 (1-2), 247-289.
    [7]Carlucci, L.; Ciani, G.; Maggini, S.; Proserpio, D. M., A New Polycatenated 3D Array of Interlaced 2D Brickwall Layers and 1D Molecular Ladders in [Mn2(bix)3(NO3)4]·2CHCl3 [bix=1,4-bis(imidazol-1-ylmethyl)benzene] That Undergoes Supramolecular Isomerization upon Guest Removal. Crystal Growth & Design 2007, 8(1),162-165.
    [8]Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T., Control over Catenation in Metal-Organic Frameworks via Rational Design of the Organic Building Block. J. Am. Chem. Soc.2009,132(3),950-952.
    [9]Zhang, J.; Wojtas, L.; Larsen, R. W.; Eddaoudi, M.; Zaworotko, M. J., Temperature and Concentration Control over Interpenetration in a Metal-Organic Material. J. Am. Chem. Soc.2009,131(47),17040-17041.
    [10]He, H.; Yuan, D.; Ma, H.; Sun, D.; Zhang, G.; Zhou, H.-C., Control over Interpenetration in Lanthanide-Organic Frameworks:Synthetic Strategy and Gas-Adsorption Properties. Inorg. Chem.2010,49 (17),7605-7607.
    [11]Sun, D.; Ke, Y.; Mattox, T. M.; Ooro, B. A.; Zhou, H.-C., Temperature-Dependent Supramolecular Stereoisomerism in Porous Copper Coordination Networks Based on a Designed Carboxylate Ligand. Chem. Commun. 2005, (43),5447-5449.
    [12]Masaoka, S.; Tanaka, D.; Nakanishi, Y.; Kitagawa, S., Reaction-Temperature-Dependent Supramolecular Isomerism of Coordination Networks Based on the Organometallic Building Block [CuI2(μ2-BQ)(μ2-OAc)2]. Angew. Chem. Int. Ed.2004,43(19),2530-2534.
    [13]Gale, P. A.; Light, M. E.; Quesada, R., Solvent-Induced Supramolecular Isomerism in [Pt(S[double bond, length as m-dash]C(NH2)2)4]2+ croconate salts. Chem. Commun.2005, (47),5864-5866.
    [14]Briceno, A.; Leal, D.; Atencio, R.; Diaz de Delgado, G., Supramolecular Isomerism in Multivalent Metal-Templated Assemblies with Topochemical Influence in the Regioselective Synthesis oftetrakis(2-pyridyl)cyclobutane isomers. Chem. Commun.2006, (33),3534-3536.
    [15]Huang, X.-C.; Li, D.; Chen, X.-M., Solvent-Induced Supramolecular Isomerism in Silver(i) 2-methylimidazolate. CrystEngComm 2006,8(4),351-355.
    [16]Ma, S.; Sun, D.; Ambrogio, M.; Fillinger, J. A.; Parkin, S.; Zhou, H.-C., Framework-Catenation Isomerism in Metal-Organic Frameworks and Its Impact on Hydrogen Uptake. J. Am. Chem. Soc. 2007, 129(1),1858-1859.
    [17]Sun, D.; Ma, S.; Simmons, J. M.; Li, J.-R.; Yuan, D.; Zhou, H.-C., An Unusual Case of Symmetry-Preserving Isomerism. Chem. Commun.2010,46(8),1329-1331.
    [18]Rowsell, J. L. C.; Yaghi, O. M., Strategies for Hydrogen Storage in Metal-Organic Frameworks. Angew. Chem. Int. Ed.2005,44(30),4670-4679.
    [19]Rowsell, J. L. C.; Eckert, J.; Yaghi, O. M., Characterization of H2 Binding Sites in Prototypical Metal-Organic Frameworks by Inelastic Neutron Scattering. J. Am. Chem. Soc.2005,127(42),14904-14910.
    [20]Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M., Gas Adsorption Sites in a Large-Pore Metal-Organic Framework. Science 2005,309 (5739),1350-1354.
    [21]Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi,O. M., A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals. Nature 2004,427(6974),523-527.
    [22]Yan, Y.; Blake, A. J.; Lewis, W.; Barnett, S. A.; Dailly, A.; Champness, N. R.; Schroder, M., Modifying Cage Structures in Metal-Organic Polyhedral Frameworks for H2 Storage. Chem. Eur. J.2011,17(40),11162-11170.
    [23]Zhuang, W.; Ma, S.; Wang, X.-S.; Yuan, D.; Li, J.-R.; Zhao, D.; Zhou, H.-C., Introduction of Cavities up to 4 nm into a Hierarchically-Assembled Metal-Organic Framework Using an Angular, Tetratopic Ligand. Chem. Commnn.2010,46(29), 5223-5225.
    [24]Yan, Y.; Lin, X.; Yang, S.; Blake, A. J.; Dailly, A.; Champness, N. R.; Hubberstey, P.; Schroder, M., Exceptionally High H2 Storage by a Metal-Organic Polyhedral Framework. Chem. Commun.2009,(9),1025-1027.
    [25]Zhao, D.; Yuan, D.; Sun, D.; Zhou, H.-C., Stabilization of Metal-Organic Frameworks with High Surface Areas by the Incorporation of Mesocavities with Microwindows. J. Am. Chem. Soc.2009,131(26),9186-9188.
    [26]Li, J.-R.; Zhou, H.-C., Metal-Organic Hendecahedra Assembled from Dinuclear Paddlewheel Nodes and Mixtures of Ditopic Linkers with 120 and 90° Bend Angles. Angew. Chem. Int. Ed.2009,48(45),8465-8468.
    [27]Li, J.-R.; Yakovenko, A. A.; Lu, W.; Timmons, D. J.; Zhuang, W.; Yuan, D.; Zhou, H.-C., Ligand Bridging-Angle-Driven Assembly of Molecular Architectures Based on Quadruply Bonded Mo-Mo Dimers. J. Am. Chem. Soc.2010,132 (49), 17599-17610.
    [28]Sheldrick, G. M., SADABS 2.05. University of Gcttingen, Gcttingen.
    [29]SHELXTL, Bruker Analytical Instrumentation. Madison'2000.
    [30]Fu, Z.-Y.; Wu, X.-T.; Dai, J.-C; Wu, L.-M.; Cui, C.-P.; Hu, S.-M., Interpenetration in [Cd(isonicotinate)(1,2-bis(4-pyridyl)ethane)(HO)], a Novel Octahedral Polymer Containing an Unusual Two-Dimensional Bilayer Motif Generated by Self-Assembly of Rectangle Building Blocks. Chem. Commun.2001, (18),1856-1857.
    [31]Zhang, J.; Chew, E.; Chen, S.; Pham, J. T. H.; Bu, X., Three-Dimensional Homochiral Transition-Metal Camphorate Architectures Directed by a Flexible Auxiliary Ligand. Inorg. Chem.2008,47(9),3495-3497.
    [32]Chen, Z.; Xiang, S.; Liao, T.; Yang, Y.; Chen, Y.-S.; Zhou, Y.; Zhao, D.; Chen, B., A New Multidentate Hexacarboxylic Acid for the Construction of Porous Metal-Organic Frameworks of Diverse Structures and Porosities. Cryst. Growth Des.2010,10(6),2775-2779.
    [33]Lin, X.; Telepeni, I.; Blake, A. J.; Dailly, A.; Brown, C. M.; Simmons, J. M.; Zoppi, M.; Walker, G. S.; Thomas, K. M.; Mays, T. J.; Hubberstey, P.; Champness, N. R.; Schroder, M., High Capacity Hydrogen Adsorption in Cu(II) Tetracarboxylate Framework Materials:The Role of Pore Size, Ligand Functionalization, and Exposed Metal Sites. J. Am. Chem. Soc.2009,131 (6),2159-2171.
    [34]Wen, L.; Lu, Z.; Lin, J.; Tian, Z.; Zhu, H.; Meng, Q., Syntheses, Structures, and Physical Properties of Three Novel Metal-Organic Frameworks Constructed from Aromatic Polycarboxylate Acids and Flexible Imidazole-Based Synthons. Cryst.1 Growth Des.2006,7(1),93-99.
    [35]Wen, L.; Li, Y.; Lu, Z.; Lin, J.; Duan, C.; Meng, Q., Syntheses and Structures of Four d10 Metal-Organic Frameworks Assembled with Aromatic Polycarboxylate and bix [bix=1,4-Bis(imidazol-1-ylmethyl)benzene]. Cryst. Growth Des.2005,6(2), 530-537.
    [36]Collin, J.-P.; Dixon, I. M.; Sauvage, J.-P.; Williams, J. A. G.; Barigelletti, F.; Flamigni, L., Synthesis and Photophysical Properties of Iridium(III) Bisterpyridine and Its Homologues:a Family of Complexes with a Long-Lived Excited State. J. Am. Chem. Soc.1999,121(21),5009-5016.
    [37]Habib, H. A.; Hoffmann, A.; Hoppe, H. A.; Steinfeld, G.; Janiak, C., Crystal Structure Solid-State Cross Polarization Magic Angle Spinning 13C NMR Correlation in Luminescent d10 Metal-Organic Frameworks Constructed with the 1,2-Bis(1,2,4-triazol-4-yl)ethane Ligand.Inorg. Chem.2009,48(5),2166-2180.
    [38]Ren, P.; Liu, M.-L.; Zhang, J.; Shi, W.; Cheng, P.; Liao, D.-Z.; Yan, S.-P., 1D, 2D and 3D Luminescent Zinc(Ⅱ) Coordination Polymers Assembled from Varying Flexible Thioether Ligands. Dalton Trans.2008, (35),4711-4713.
    [1]Davies, R. P.; Less, R. J.; Lickiss, P. D.; Robertson, K.; White, A. J. P., Tetravalent Silicon Connectors MenSi(p-C6H4CO2H)4-n (n= 0,1,2) for the Construction of Metal-Organic Frameworks. Inorg. Chem.2008,47(21),9958-9964.
    [2]Lambert, J. B.; Liu, Z.; Liu, C., Metal-Organic Frameworks from Silicon-and Germanium-Centered Tetrahedral Ligands. Organometallics 2008,27(7),1464-1469.
    [3]Liu, Z.; Stern, C. L.; Lambert, J. B., Metal-Organic Frameworks from Dipodal and Tripodal Silicon-Centered Tetrahedral Ligands. Organometallics 2008,28(1), 84-93.
    [4]Davies, R. P.; Less, R.; Lickiss, P. D.; Robertson, K.; White, A. J. P., Structural Diversity in Metal-Organic Frameworks Built from Rigid Tetrahedral [Si(p-C6H4CO2)4]4-Struts. Cryst. Growth Des.2010,10(10),4571-4581.
    [5]Wenzel, S. E.; Fischer, M.; Hoffinann, F.; Froba, M., Highly Porous Metal-Organic Framework Containing a Novel Organosilicon Linker-A Promising Material for Hydrogen Storage. Inorg. Chem.2009,48 (14),6559-6565.
    [6]Murray, L. J.; Dinca, M.; Long, J. R., Hydrogen Storage in Metal-organic Frameworks. Chem. Soc. Rev.2009,38 (5),1294-1314.
    [7]Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M., Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010,329(5990),424-428.
    [8]Dinca, M.; Long, J. R., Hydrogen Storage in Microporous Metal-Organic Frameworks with Exposed Metal Sites. Angew. Chem. Int. Ed.2008,47(36), 6766-6779.
    [9]Nijem, N.; Veyan, J.-F. o.; Kong, L.; Li, K.; Pramanik, S.; Zhao, Y.; Li, J.; Langreth, D.; Chabal, Y. J., Interaction of Molecular Hydrogen with Microporous Metal Organic Framework Materials at Room Temperature. J. Am. Chem. Soc.2010, 132(5),1654-1664.
    [10]Nijem, N.; Veyan, J.-F. o.; Kong, L.; Wu, H.; Zhao, Y.; Li, J.; Langreth, D. C.; Chabal, Y. J., Molecular Hydrogen "Pairing" Interaction in a Metal Organic Framework System with Unsaturated Metal Centers (MOF-74). J. Am. Chem. Soc. 2010,132(42),14834-14848.
    [11]Chen, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S.; Yaghi, O. M., High H2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites. Angew. Chem. Int. Ed.2005,44(30),4745-4749.
    [12]Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M., Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 2003, 300(5622),1127-1129.
    [13]Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Millange, F.; Loiseau, T.; Ferey, G., Different Adsorption Behaviors of Methane and Carbon Dioxide in the Isotypic Nanoporous Metal Terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc.2005,127 (39),13519-13521.
    [14]Gao, Q.; Xie, Y.-B.; Li, J.-R.; Yuan, D.-Q.; Yakovenko, A. A.; Sun, J.-H.; Zhou, H.-C, Tuning the Formations of Metal-Organic Frameworks by Modification of Ratio of Reactant, Acidity of Reaction System, and Use of a Secondary Ligand. Cryst. Growth Des.2011, 12(1),281-288.
    [15]Ma, S.; Wang, X.-S.; Collier, C. D.; Manis, E. S.; Zhou, H.-C., Ultramicroporous Metal-Organic Framework Based on 9,10-Anthracenedicarboxylate for Selective Gas Adsorption. Inorg. Chem.2007,46 (21),8499-8501.
    [16]Zheng, B.; Bai, J.; Duan, J.; Wojtas, L.; Zaworotko, M. J., Enhanced CO2 Binding Affinity of a High-Uptake rht-Type Metal-Organic Framework Decorated with Acylamide Groups. J. Am. Chem. Soc.2010,133(4),748-751.
    [17]Zhao, D.; Yuan, D.; Sun, D.; Zhou, H.-C., Stabilization of Metal-Organic Frameworks with High Surface Areas by the Incorporation of Mesocavities with Microwindows. J. Am. Chem. Soc.2009,131(26),9186-9188.
    [18]Yan, Y.; Blake, A. J.; Lewis, W.; Barnett, S. A.; Dailly, A.; Champness, N. R.; Schroder, M., Modifying Cage Structures in Metal-Organic Polyhedral Frameworks for H2 Storage. Chem. Eur. J.2011,17(40),11162-11170.
    [19]Sheldrick, G. M, SADABS 2.05. University of Gcttingen, Gcttingen.
    [20]SHELXTL, Bruker Analytical Instrumentation. Madison2000.
    [21]Allen, F. H., The Cambridge Structural Database:a quarter of a million crystal structures and rising. Acta Crystallogr., Sect. B:Struct. Sci.2002,58,380-388.
    [22]Abrahams, B. F.; Hawley, A.; Haywood, M. G.; Hudson, T. A.; Robson, R.; Slizys, D. A., Serendipity and Design in the Generation of New Coordination Polymers:An Extensive Series of Highly Symmetrical Guanidinium-Templated, Carbonate-Based Networks with the Sodalite Topology. J. Am. Chem. Soc.2004,126 (9),2894-2904.
    [23]Chen, Z.-F.; Xiong, R.-G.; Abrahams, B. F.; You, X.-Z.; Che, C.-M., An unprecedented six-fold anion-type chiral diamondoid-like eight-coordinate Cd(II) coordination polymer with a second-order nonlinear optical effect. J. Chem. Soc., Dalton Trans.2001, (17),2453-2455.
    [24]Ashiry, K.0.; Zhao, Y.-H.; Shao, K.-Z.; Su, Z.-M.; Fu, Y.-M.; Hao, X.-R., A Metal-organic Framework Containing Meso-helical Chains:Synthesis, Characterization and Luminescent Property. Inorg. Chem. Commun.2008,11(10), 1181-1183.
    [25]Chen, S.-C.; Zhang, Z.-H.; Huang, K.-L.; Chen, Q.; He, M.-Y.; Cui, A.-J.; Li, C.; Liu, Q.; Du, M., Solvent-Controlled Assembly of Manganese(II) Tetrachloroterephthalates with 1D Chain,2D Layer, and 3D Coordination Architectures. Cryst. Growth Des.2008, 8 (9),3437-3445.
    [26]Yuan, D.; Zhao, D.; Sun, D.; Zhou, H.-C., An Isoreticular Series of Metal-Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity. Angew. Chem. Int. Ed 2010,49(31), 5357-5361.
    [27]Yan, Y.; Telepeni, I.; Yang, S.; Lin, X.; Kockelmann, W.; Dailly, A.; Blake, A. J.; Lewis, W.; Walker, G. S.; Allan, D. R.; Barnett, S. A.; Champness, N. R.; Schroder, M., Metal-Organic Polyhedral Frameworks:High H2 Adsorption Capacities and Neutron Powder Diffraction Studies. J. Am. Chem. Soc.2010,132 (12), 4092-4094.
    [28]Wen, L.; Lu, Z.; Lin, J.; Tian, Z.; Zhu, H.; Meng, Q., Syntheses, Structures, and Physical Properties of Three Novel Metal-Organic Frameworks Constructed from Aromatic Polycarboxylate Acids and Flexible Imidazole-Based Synthons. Cryst. Growth Des.2006,7(1),93-99.
    [29]Lin, J.-G.; Zang, S.-Q.; Tian, Z.-F.; Li, Y.-Z.; Xu, Y.-Y.; Zhu, H.-Z.; Meng, Q.-J., Metal-organic Frameworks Constructed from Mixed-ligand 1,2,3,4-tetra-(4-pyridyl)-butane and benzene-polycarboxylate Acids:Syntheses, Structures and Physical Properties. CrystEngComm 2007, P(10),915-921.
    [30]Collin, J.-P.; Dixon, I. M.; Sauvage, J.-P.; Williams, J. A. G.; Barigelletti, F.; Flamigni, L., Synthesis and Photophysical Properties of Iridium(III) Bisterpyridine and Its Homologues:a Family of Complexes with a Long-Lived Excited State. J. Am. Chem. Soc.1999,121(21),5009-5016.
    [31]Habib, H. A.; Hoffmann, A.; Hoppe, H. A.; Steinfeld, G.; Janiak, C., Crystal Structure Solid-State Cross Polarization Magic Angle Spinning 13C NMR Correlation in Luminescent dio Metal-Organic Frameworks Constructed with the 1,2-Bis(1,2,4-triazol-4-yl)ethane Ligand. Inorg. Chem.2009,48(5),2166-2180.
    [32]Ren, P.; Liu, M.-L.; Zhang, J.; Shi, W.; Cheng, P.; Liao, D.-Z.; Yan, S.-P., 1D, 2D and 3D Luminescent Zinc(ii) Coordination Polymers Assembled from Varying Flexible Thioether Ligands. Dalton Transactions 2008, (35),4711-4713.
    [33]Yan, Y.; Lin, X.; Yang, S.; Blake, A. J.; Dailly, A.; Champness, N. R.; Hubberstey, P.; Schroder, M., Exceptionally High H2 Storage by a Metal-organic Polyhedral Framework. Chem. Commun.2009,(9),1025-1027.
    [34]Yang, S.; Lin, X.; Dailly, A.; Blake, A. J.; Hubberstey, P.; Champness, N. R.; Schroder, M., Enhancement of H2 Adsorption in Coordination Framework Materials by Use of Ligand Curvature. Chem. Eur. J.2009,15(19),4829-4835.
    [35]Nagarkar, S. S.; Chaudhari, A. K.; Ghosh, S. K., Selective CO2 Adsorption in a Robust and Water-Stable Porous Coordination Polymer with New Network Topology. Inorg. Chem.2011,51(1),572-576.
    [1]Natarajan, S.; Mahata, P., Metal-organic Framework Structures-How Closely Are They Related to Classical Inorganic Structures? Chem. Soc. Rev.2009,38(8), 2304-2318.
    [2]Chen, B.; Xiang, S.; Qian, G., Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules. Acc. Chem. Res.2010,43 (8),1115-1124.
    [3]Kitagawa, S.; Matsuda, R., Chemistry of Coordination Space of Porous Coordination Polymers. Coord Chem. Rev.2007,251 (21-24),2490-2509.
    [4]Murray, L. J.; Dinca, M.; Long, J. R., Hydrogen Storage in Metal-organic Frameworks. Chem. Soc. Rev.2009,38 (5),1294-1314.
    [5]Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic Framework Materials as Catalysts. Chem. Soc. Rev.2009,38(5), 1450-1459.
    [6]Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective Gas Adsorption and Separation in Metal-organic Frameworks. Chem. Soc. Rev.2009,38(5),1477-1504.
    [7]Ma, L.; Wu, C.-D.; Wanderley, M. M.; Lin, W., Single-Crystal to Single-Crystal Cross-Linking of an Interpenetrating Chiral Metal-Organic Framework and Implications in Asymmetric Catalysis. Angew. Chem. Int. Ed.2010,49 (44), 8244-8248.
    [8]Smejkal, T.; Han, H.; Breit, B.; Krische, M. J., All-Carbon Quaternary Centers via Ruthenium-Catalyzed Hydroxymethylation of 2-Substituted Butadienes Mediated by Formaldehyde:Beyond Hydroformylation. J. Am. Chem. Soc.2009,131 (30), 10366-10367.
    [9]Andrews, R. S.; Becker, J. J.; Gagne, M. R., Intermolecular Addition of Glycosyl Halides to Alkenes Mediated by Visible Light. Angew. Chem. Int. Ed.2010,49(40), 7274-7276.
    [10]Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H., Surface Nano-architecture of a Metal-organic Framework. Nat. Mater.2010,9(7), 565-571.
    [11]Forster, P. M.; Cheetham, A. K., Open-Framework Nickel Succinate, [Ni7(C4H4O4)6(OH)2(H2O)2]·2H2O:A New Hybrid Material with Three-Dimensional Ni-O-Ni Connectivity. Angew. Chem. Int. Ed.2002,41 (3), 457-459.
    [12]Forster, P. M.; Thomas, P. M.; Cheetham, A. K., Biphasic Solvothermal Synthesis:A New Approach for Hybrid Inorganic—Organic Materials. Chem. Mater. 2001,14(1),17-20.
    [13]Hu, T.; He, H.; Dai, F.; Zhao, X.; Sun, D., A New Cu(Ⅰ) Coordination Polymer with the CdSO4 Structure Type Prepared via Biphasic Solvothermal Reaction. CrystEngComm 2010,12(7),2018-2020.
    [14]Home, W. S.; Stout, C. D.; Ghadiri, M. R., A Heterocyclic Peptide Nanotube. J. Am. Chem. Soc.2003,125(31),9372-9376.
    [15]Shenton, W.; Douglas, T.; Young, M.; Stubbs, G.; Mann, S., Inorganic-Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus. Adv. Mater.1999,11(3),253-256.
    [16]Yamaguchi, T.; Tashiro, S.; Tominaga, M.; Kawano, M.; Ozeki, T.; Fujita, M., A 3.5-nm Coordination Nanotube. J. Am. Chem. Soc.2004,126(35),10818-10819.
    [17]Bu, F.; Xiao, S.-J., A 4-Connected Anionic Metal-organic Nanotube Constructed from Indium Isophthalate. CrystEngComm 2010,12(11),3385-3387.
    [18]Chattopadhyay, T.; Kogiso, M.; Asakawa, M.; Shimizu, T.; Aoyagi, M., Copper(Ⅱ)-coordinated Organic Nanotube:A Novel Heterogeneous Catalyst for Various Oxidation Reactions. Catal. Commun.2010,12(1),9-13.
    [19]Dai, F.; He, H.; Sun, D., A Metal-Organic Nanotube Exhibiting Reversible Adsorption of (H2O)12 Cluster. J. Am. Chem. Soc.2008,130 (43),14064-14065.
    [20]Sheldrick, G. M, SADABS 2.05. University of Gcttingen, Gcttingen.
    [21]SHELXTL, Bruker Analytical Instrumentation. Madison 2000.
    [22]Gregory, J. K.; Clary, D. C.; Liu, K.; Brown, M. G.; Saykally, R. J., The Water Dipole Moment in Water Clusters. Science 1997, 275(5301),814-817.
    [23]Matsumoto, M.; Saito, S.; Ohmine, I., Molecular Dynamics Simulation of the Ice Nucleation and Growth Process Leading to Water Freezing. Nature 2002,416(6879), 409-413.
    [24]Atwood, J. L; Barbour, L. J.; Ness, T. J.; Raston, C. L.; Raston, P. L., A Well-Resolved Ice-like (H2O)8 Cluster in an Organic Supramolecular Complex. J. Am. Chem. Soc.2001,123(29),7192-7193.
    [25]Lakshminarayanan, P. S.; Suresh, E.; Ghosh, P., Formation of an Infinite 2D-Layered Water of (H2O)45 Cluster in a Cryptand-Water Supramolecular Complex: A Template Effect. J. Am. Chem. Soc.2005,127(38),13132-13133.
    [26]Jin, C.-M.; Zhu, Z.; Chen, Z.-F.; Hu, Y.-J.; Meng, X.-G., An Unusual Three-Dimensional Water Cluster in Metal-Organic Frameworks Based on ZnX2 (X = ClO4, BF4) and an Azo-Functional Ligand. Cryst. Growth Des.2010,10(5), 2054-2056.
    [27]Li, C.-H.; Huang, K.-L.; Dou, J.-M.; Chi, Y.-N.; Xu, Y.-Q.; Shen, L.; Wang, D.-Q.; Hu, C.-W., An Interesting Six-Connected 3D Nanowater Framework Constructed from Turbine-Type (H2O)18 Clusters Based on a Mn(Ⅲ) Complex. Cryst. Growth Des.2008,8(9),3141-3143.
    [28]Ooi, T.; Kato, D.; Inamura, K.; Ohmatsu, K.; Maruoka, K., Practical Stereoselective Synthesis of β-Branched a-Amino Acids through Efficient Kinetic Resolution in the Phase-Transfer-Catalyzed Asymmetric Alkylations. Org. Lett.2007, 9(20),3945-3948.
    [29]Zahl, A.; van Eldik, R.; Swaddle, T. W., Cation-Independent Electron Transfer between Ferricyanide and Ferrocyanide Ions in Aqueous Solution. Inorg. Chem.2002, 41 (4),757-764.
    [30]Farrusseng, D.; Aguado, S.; Pinel, C., Metal-Organic Frameworks: Opportunities for Catalysis. Angew. Chem. Int. Ed.2009,48 (41),7502-7513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700