辉钼矿湿法冶金新工艺及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对现有辉钼矿焙烧工艺污染严重,且难以实现钼及伴生金属高效经济回收的弊端,进行了辉钼矿常温常压湿法浸出和浸出液中钼、铼的分离富集及其机理的研究,为发展环境友好的钼湿法冶金新工艺提供理论基础。
     基于含氧氯酸盐在溶液中具有高的电极电位,表现出很强氧化能力的特性,对氯酸钠和次氯酸钠氧化分解辉钼矿、黄铜矿等进行热力学计算。结果表明,氯酸钠、次氯酸钠氧化分解辉钼矿、黄铜矿等过程的△G°值均为负值,且绝对值较大,说明氯酸纳、次氯酸钠都能应用于对辉钼矿的氧化分解。
     研究了氯酸钠氧化分解辉钼矿的行为与规律,发明了一种使用电解氯化钠盐水生成的氯酸钠电解液为氧化剂、在酸性水溶液条件下高效氧化分解辉钼矿精矿的新方法。以氯酸钠为氧化剂,在C(NaCl)=0.71 mol/L,C(H2SO4)=73.3 g/L,NaClO3/MoS2=3.6(mol/mol),L/S=30,T=70℃,搅拌速率为400 r/min, t=6 h的条件下,钼的浸出率为98.62%,铼的浸出率为99.52%,铜的浸出率为99.77%,铁的浸出率为99.28%,实现了多种硫化矿物的全分解。在对氯酸钠氧化分解辉钼矿研究的基础上,将电化学合成的氯酸钠电解液,不经净化、结晶等操作,调整酸度后直接用来浸出辉钼矿。优化确定采用的氯酸钠电解合成工艺条件为:槽电压3.0V,电流密度653.2 A/m2,搅拌速度100 r/min,Na2Cr2O7浓度3 g/L, pH=6.7,温度75℃,电解时间35h,此时电解液含氯酸钠290.90g/L,含次氯酸钠7.08g/L,钼、铼浸出率分别为98.51%和99.56%。采用氯酸钠电解液湿法氧化分解辉钼矿的方法具有氧化剂生产成本低、使用安全等优点。浸出动力学研究表明浸出过程符合收缩核模型,表观活化能Ea=104.6 kJ/mol,过程受化学反应控制。
     研究并揭示了辉钼矿的电氧化分解过程与机理,发明了一种应用碳酸盐-酸式碳酸盐缓冲体系的辉钼矿选择性电氧化浸出方法,实现了辉钼矿与黄铜矿等金属硫化矿物的选择性浸出,显著提高了电流效率。电氧化分解辉钼矿研究表明,pH=9时,辉钼矿分解速率最快,将碳酸盐-酸式碳酸盐缓冲体系应用到辉钼矿电氧化浸出过程中,在槽电压3.5V电流密度653.2 A/m2,液固比25:1,搅拌速度400 r/min,氯化钠浓度4mol/L,碳酸钠6g/L,碳酸氢铵5g/L,缓冲体系pH=8.5-9.5,室温的条件下,电解240min时钼浸出率可达99.35%,铼浸出率为99.79%,电流效率为62.75%,而非缓冲体系电氧化工艺达到同样钼浸出率时电流效率仅为40.44%。通过缓冲体系的应用,使钼精矿中钼、铼选择性高效氧化浸出,而黄铜矿基本不浸出,浸出渣中铜含量为10.84%,回收率达到97.93%。缓冲体系中电氧化工艺是一种更为高效环保的辉钼矿选择性电氧化分解工艺。该工艺特别适用于德兴铜矿高铜钼精矿的的湿法分解。
     通过对电氧化过程阳极氧化、氧化剂变化规律的研究,建立了电氧化浸出过程的动力学模型,揭示了缓冲体系中电氧化分解辉钼矿的浸出机理。结果表明,辉钼矿在阳极上不能直接被氧化,NaCl介质中析氯反应起了主导作用,辉钼矿的氧化浸出主要是借助于阳极析出的氯气转化生成的氧化剂,氧化剂主要成分是NaClO。浸出动力学研究表明,pH=9的碳酸盐-酸式碳酸盐缓冲体系中,辉钼矿的浸出表观活化能Ea=8.56 kJ/mol,过程受固膜扩散控制。
     采用溶剂萃取技术对辉钼矿浸出液中的Mo(Ⅵ)、Re(Ⅶ)进行了萃取与反萃研究,建立了萃取反应模型方程,揭示了萃取剂N235对钼、铼金属离子的萃取机理。在优化的萃取条件下,氯酸钠电解液浸出辉钼矿溶液经3级萃取后,Mo(Ⅵ)、Re(Ⅶ)的萃取率分别达到99.84%和95.19%;采用17%的氨水为反萃剂,在优化的反萃条件下,3级反萃后Mo(Ⅵ)、Re(Ⅶ)的反萃率分别达到99.90%和99.73%。在优化的萃取条件下,电氧化分解辉钼矿浸出液经3级萃取后,Mo(Ⅵ)、Re(Ⅶ)的萃取率分别达到99.77%和94.73%;采用17%的氨水为反萃剂,在优化的反萃条件下,3级反萃后Mo(Ⅵ)、Re(Ⅶ)的反萃率分别达到99.89%和99.54%。等摩尔法实验和红外光谱分析表明,N235萃取Mo(Ⅵ)、Re(Ⅶ)离子时,叔胺基与溶液中的离子发生了配位反应,分别以(R3NH2)[(MoO2)2(SO4)3]和R3NH.ReO4形式进行萃取。
     采用D201树脂对反萃液中的Mo(Ⅵ)、Re(Ⅶ)吸附分离性能进行了考察,建立了树脂吸附动力学和热力学模型,揭示了阴离子交换树脂对Mo(Ⅵ)、Re(Ⅶ)的吸附机理。静态吸附实验表明,D201树脂对Mo(Ⅵ)、Re(Ⅶ)的吸附容量都随吸附时间和金属离子初始浓度的增加而增大。静态分离实验表明,树脂对溶液中的Re(Ⅶ)具有良好的吸附选择性,溶液中Mo(Ⅵ)初始浓度越大分离因子越高。对氯酸钠浸出体系反萃液,在吸附温度30℃,pH=8,吸附时间1h条件下,Re(Ⅶ)、Mo(Ⅵ)吸附率分别为92.41%、3.19%,分离因子为190.49;对电氧化浸出体系反萃液,在吸附温度30℃,pH=8,吸附时间1h条件下,Re(Ⅶ)、Mo(Ⅵ)吸附率分别为92.18%、3.46%,分离因子为169.56。实验数据符合Boyd液膜扩散方程,树脂对Mo(Ⅵ)、Re(Ⅶ)的吸附过程属于液膜扩散控制过程。吸附过程为单分子层吸附,符合Langmuir和Freundlich等温吸附模型,根据拟合结果计算得到的D201树脂对Mo(Ⅵ)、Re(Ⅶ)的饱和吸附容量分别为4.2633 mmol/g、4.2355 mmol/g。
     全流程技术经济分析表明,与传统焙烧工艺相比,缓冲体系电氧化浸出工艺是一种高效环保的辉钼矿湿法分解工艺。对于德兴铜矿的辉钼精矿,钼回收率达到99.04%,铼回收率达到85.84%,铜回收率超过97%,年净增经济效益2000多万元,减排SO22681t/年,具有明显的经济效益和环境效益。
The roasting method gradually shows its shortcomings. During roasting, many valuable metals are lost due to volatilization and the SO2 generated is a source of environmental pollution. The novel cold atmospheric leaching of molybdenite, the process of extraction and separation of molybdenum and rhenium in the extract, and their mechanism have been investigated, providing theoretical basis for environment-friendly hydrometallurgy of molybdenite.
     Chlorate and hypochlorite in solution have high electrode potential and strong oxidative property. Thermodynamic calculations of the oxygenolysis process of molybdenite by sodium chlorate and sodium hypochlorite were carried out. The results showed that values of△G°were negative and the absolute values of them were high if sodium chlorate and sodium hypochlorite were used as oxidant in the molybdenite leaching process. In the view of thermodynamic point, MoS2, CuFeS2, FeS2 and ReS2 etc. could be leached by acidic chlorate system and alkaline sodium hypochlorite system theoretically.
     In this paper, the technology of molybdenum extraction from molybdenite concentrate by using sodium chlorate has been investigated, and a novel hydrometallurgical extraction technology of molybdenite by using sodium chlorate electrolyte was introduced. The optimized leaching conditions are as followed:C(NaCl)=0.71 mol/L, C(H2SO4)=73.3 g/L, NaClO3/MoS2=3.6 (mol/mol), L/S=30, T=70℃, stirring rate is 400 r/min, t=6 h. Under these conditions, leaching yield of molybdenum is 98.62%, leaching yield of copper is 99.77%, leaching yield of iron is 99.28%, leaching yield of rhenium,99.52%; while leaching of molybdenite is completed, Cu, Fe, Re were almost completely leached into the liquid. The acidic sodium chlorate electrolyte by electrochemical synthesis, without purification, crystallization, but just adjust the acidity and was directly used for leaching of molybdenite. The optimized electrosynthesis conditions of sodium chlorate are as followed:cell voltage of 3.0 V, current density of 653.2 A/m2, stirring rate of 100 r/min, concentration of potassium dichromate of 3 g/L, pH=6.7,75℃,35 h. Under this electrosynthesis conditions, sodium chlorate is 290.90 g/L, sodium hypochlorite is 7.08 g/L, leaching yield of molybdenum is 98.51%, and leaching yield of rhenium is 99.56%. It was an efficient and economic wet leaching process that sodium chlorate electrolyte was used for leaching molybdenite, and it can also reduce cost largely. The kinetic study showed that the process of leaching molybdenite using acid sodium chlorate system is represented by shrinking core model, the apparent activation energy (Ea) for the dissolution reaction was calculated as 104.6.6 kJ/mol showed that the chemical reaction is the control step of leaching process.
     According to the characteristic of electric-oxidation leaching molybdenite, the electro-oxidation technology in CO32--HCO3-buffer system was introduced, molybdenite can be selectively oxidized, and current efficiency increases obviously. Experimental studies showed that when pH=9, the oxidation rate of molybdenite is the fastest. The optimized leaching conditions are as followed:cell voltage of 3.5 V, current density of 653.2 A/m2, liquid-solid ratio of 25:1, stirring rate of 400 r/min, concentration of sodium chloride of 4 mol/L, sodium carbonate of 6 g/L, ammonium acid carbonate of 5 g/L, pH value of buffer system of 8.5-9.5, at room temperature. Under this process conditions, the leaching yield of Mo reaches 99.35%, leaching yield of rhenium is 99.79%after leached 240 min. The current efficiency of buffer system is of 62.75%, but that of unbuffered system is only of 40.44%. In CO32--HCO3- buffer system, it restrained leaching reaction for chalcopyrite, chalcopyrite would not be leached which reduced its electricity consumption, copper content of 10.84% in residue and recovery rate of 97.93%.The application of the buffer system can significantly reduce the energy consumption for electro-oxidation leaching of molybdenite.
     Anode oxidation and oxidant have been investigated, and dynamic model of leaching process was established. The results showed that molybdenite couldn't be electro-oxidated at the anode directly in the buffer system. The chlorine evolution reaction has played a dominant role in sodium chloride medium. Sodium hypochlorite is the main oxidant of oxidation leaching, which transformed from chloration liberated at the anode. The kinetic study showed that a shrinking core model is presented to describe the dissolution and to analyze the data. It was established that the leaching process is mainly controlled by diffusion through a porous product layer, the apparent activation energy of this dissolution process was found to be 8.56 kJ/mol.
     The studies on extraction of Mo(Ⅵ), Re(Ⅶ) in the solution and its mechanism by using N235 extractant have been investigated. For extract solution of sodium chlorate, the percentage extraction rates of Mo(Ⅵ) and Re(Ⅶ) under the optimized extraction conditions were about 99.84%and 95.19%; Stripping of molybdenum to aqueous phase was efficient when 17% ammonia liquor were applied, the Mo(Ⅵ) and Re(Ⅶ) stripping efficiencies under the optimized stripping conditions were about 99.90% and 99.73%. For electric-oxidation extract solution, the percentage extraction rates of Mo(Ⅵ) and Re(Ⅶ) under the optimized extraction conditions were about 99.77%and 94.73%; Stripping of molybdenum to aqueous phase was efficient when 17% ammonia liquor were applied, the Mo(Ⅵ) and Re(Ⅶ) stripping efficiencies under the optimized stripping conditions were about 99.89% and 99.54%. The results of equimolar seriers method and infrared spectral analysis indicates that the coordinate reactions in aqueous solution happened while N235 extracted Mo(Ⅵ) and Re(Ⅶ) ions, (R3NH2)[(MoO2)2(SO4)3] and R3NH·Re04 come into being, respectively。
     The adsorption and separation capability for Mo(Ⅵ) and Re(Ⅶ) ions of D201 resin have been investigated, adsorption kinetics and thermodynamics were revealed by analyzing adsorption data. The results showed that the adsorption capacity of D201 for Mo(Ⅵ) and Re(Ⅶ) ions increases with increase in adsorbing time and the initial ions concentration. For dualistic mixed solution of Mo(Ⅵ) and Re(Ⅶ), the separation capability of D201 for Re(Ⅶ) and Mo(Ⅵ) has been investigated, it indicates that D201 has excellent adsorption selection for Re(Ⅶ) ions, and satisfy the separation demands. For stripping solution of sodium chlorate system, the adsorption rate of Re(Ⅶ) and Mo(Ⅵ) are 92.41%,3.19%,respectively, and separating factor is 190.49,when adsorption condition is 30℃, pH=8, and absorbing time 1 h; For stripping solution of electric-oxidation system, the adsorption rate of Re(Ⅶ) and Mo(Ⅵ) are 92.18%,3.46%, respectively, and separating factor is 169.56,when adsorption condition is 30℃, pH=8, and absorbing time 1 h.The experimental data fit Boyd's diffuse equation of liquid film, indicating that the adsorption is controlled by liquid film diffuse; the isothermal adsorption obeys Langmuir and Freundlich equation, especially the former equation. The saturated adsorption capacity of D201 for Mo(Ⅵ) and Re(Ⅶ) calculated base on simulated results were 4.2633 mmol/g,4.2355 mmol/g, respectively.
     The results of rough cost and economic analysis for molybdenite of Dexing Copper Mine showed that, compared to conventional roasting process, the overall yield of molybdenum is 99.04%, the overall yield of rhenium is 85.84%, increase the recovery for rhenium by 25%, and more than 97% copper can be recovered, The new-increased income is over 2000 million yuan per annum, the reduced quality of SO2 is 2681 t per annum.
引文
[1]张文朴.我国钼资源中稀贵金属的综合利用与再生回收研发进展.稀有金属与硬质合金,2007,35(2):35-40
    [2]Gupta C K.Extractive metallurgy of molybdenum. London:CRC Press,1992.15-30
    [3]向铁根.钼冶金.长沙:中南大学出版社,2002.1-20
    [4]张启修,赵秦生.钨钼冶金.北京:冶金工业出版社,2005.26-32
    [5]罗振中.钼的应用及其发展.中国钼业,1998,27(2):7-10
    [6]Kirk O. Encyclopaedia of chemical technology, Molybdenum and Molybdenum Alloy. New York:Wiley-Interscience,1981.670
    [7]Lindstrom R E, Scheiner B J. Extraction of molybdenum from ores by electro-oxidation. Bureau of Mines Metals Recovery Program USBM Tech. Progress Rep.1972:4-7
    [8]马周红,王耀宁,兰新哲,等.树脂富集钼精矿焙烧烟尘浸出液中铼的研究.西安建筑科技大学学报(自然科学版),2005,37(4):584-586
    [9]U. S. Bureau of Mines. Mineral Commodity Summaries.Non-ferrous metals,1995, (1):137-141
    [10]王守德,焦忠祥.减低氧化钼生产能耗的探讨.中国钼业,1994,18(5):21-26
    [11]刘英汉.从含铼钼精矿中提取钼和铼的研究.江西大学报,1989,13(1):88-95
    [12]Gregory J O, Thomas R C. Bioleaching of molybdenite. Hydrometallurgy,2008, 93(1):10-15
    [13]Lan X, Liang S, Song Y. Recovery of rhenium from molybdenite calcine by a resin-in-pulp process. Hydrometallurgy,2006,82(3):133-136
    [14]魏绪钧译.用硝酸分解钼精矿.国外稀有金属,1983,8(6):26-30
    [15]程光荣.用压热浸出和溶剂萃取技术生产钼酸铵.中国钼业,1994,51(3):82-87
    [16]Warren I H, Mounsey D M. Factors influencing the selective leaching of molybdenum with sodium hypochlorite from copper/molybdenum sulphide minerals. Hydrometallurgy,1983,10(3):343-357
    [17]Antonijevic M M, Pacovic N V. Investigation of molybdenite oxidation by sodium dichromate. Minerals Engineering,1992,5(2):223-233
    [18]Bhappu R R, Reynolds E H, Stahmenn W S. Studies on hypochlorite leaching of molybdenite, Unit Processes in Hydrometallurgy. Gordon and Breach, New York,1963.95-113
    [19]Barr D S, Scheiner B J, Hendrix J L. Examination of the chlorate factor in electro-oxidation leaching of molybdenum concentrates using flow-through cells. International Journal of Mineral Processing,1977,4(2):83-88
    [20]Biswas R K, Wakihara M, Taniguchi M. Recovery of vanadium and molybdenum from heavy oil desulphurization waste catalyst. Hydrometallurgy,1985,14: 219-230
    [21]符剑刚,钟宏,吴江丽,等.常温常压条件下辉钼矿的湿法浸出.金属矿山,2004,342(12):35-38
    [22]Juneja J M, Sohan Singh, Bose D K. Investigations on the extraction of molybdenum and rhenium values from low-grade molybdenite concentrate. Hydrometallurgy,1996,41:201-209
    [23]Romano P. Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria. FZMS Microbiology Letters,2001,196(1):71-75
    [24]任宝江.回转窑焙烧钼精矿的生产实践.有色金属(冶炼部分),1999,2:18-20
    [25]Shariat M H, Nasiri M F. An investigation of the decomposition of molybdenite in magnetically rotated plasma. Journal of Materials Processing Technology, 1995,52:547-560.
    [26]魏守德,李文忠.回转窑焙烧钼精矿.铁合金,1989,(4):15-17
    [27]Sasaki I. Method for regenerating molybdenum-containing oxide fluidized-bed catalyst. United States Patent, US6559085,2003-5-6
    [28]Singh S, Chetty M K, Juneja J M, et al. Studies on the processing of a low-grade molybdenite concentrate by lime roasting. Chemical Engineering Journal,1988, 1(4):337-342
    [29]盘茂森,朱云.高压浸出钼酸钙中钼的实验研究.中国钼业,2005,29(12):19
    [30]William A Y, Tucson A. Process for converting molybdenite to molybdenum oxide. United States Patent, US4551312,1985-11-5
    [31]Sweetser J, William H, Leonard N. Process for autoclaving molybdenum disulfide. United States Patent, US5804151,1998-9-8
    [32]赵业松.钼铁生产用氧化钼的焙烧方法.有色金属,1998,5(5):24-26
    [33]Donald O B. Process for thermal dissociation of molybdenum disulfide. United States Patent, US3966459,1976-6-29
    [34]彭建蓉,杨大锦,陈加希,等.原生钼矿加压碱浸试验研究.稀有金属,2007, 31(6):110-113
    [35]Ketcham J. Pressure oxidation process for the production of molybdenum trioxide from molybdenite. United States Patent, US6149883,2000-11-21
    [36]邹平,赵有才,杜强,等.金堆城低品位辉钼矿的可浸性.有色金属,2007,59(1):59-62
    [37]柯家俊.辉钼矿氧化浸取动力学研究.化工冶金,1982,4:1-7
    [38]邱定番.矿浆电解.北京:冶金工业出版社,1999.179-186
    [39]CAO Zhan-fang, ZHONG Hong, LIU Guang-yi, et al. Electric-oxidation kinetics of molybdenite concentrate in acidic NaCl solution. The Canadian Journal of Chemical Engineering,2009,87(6):939-944
    [40]Arslan F, Paul F D. Electro-oxidation of pyrite in sodium chloride solutions. Hydrometallurgy,1997,46(2):157-169
    [41]Ureta-Zanartu M S, Bustos P, Diez M C. Electro-oxidation of chlorophenols at a gold electrode. Electrochimica Acta,2001,46(10):2545-2551
    [42]符剑刚,钟宏,彭斌.超声强化电氧化法湿法分解辉钼矿.过程工程学报,2005,5(4):389-392
    [43]Henry P, Van L A. Selective separation of vanadium from molybdenum by electrochemical ion exchange. Hydrometallurgy,1998, (48):73-81
    [44]Kruesi P R. Process for the recovery of molybdenum and rhenium from sulfides by electrolytic dissolution. United States Patent, US3755104,1973-08-28
    [45]Vanderpool C D.Recovery of molybdenum from molybdenum disulfide. United States Patent, US4447404,1984-5-8
    [46]王开毅,成本诚,舒万银.溶剂萃取化学.长沙:中南工业大学出版社1991.77-84
    [47]朱屯,李洲.溶剂萃取.北京:化学工业出版社,2008.50-69
    [48]李绍秀,张秀娟.三烷基氧化膦萃取钨、钼的机理研研究.化学世界,1998,39(5):257-260
    [49]刘建,李建P204-kerosene-EDTA体系萃取分离钨钼.中国钼业,2007,31(4):26-29
    [50]李建,刘建.磷类萃取剂萃取钼(Ⅵ)的性能研究.湿法冶金,2007,26(3):146-149
    [51]沈明伟,朱昌洛,李华伦.P507-煤油体系在钒钼萃取分离中的试验研究.矿产综合利用,2007,22(4):14-19
    [52]Ali K A, Vanjara A K. Solvent extraction and separation of Bi (Ⅲ) and Sb (Ⅲ) from HCl and HBr media using tri-n-octyl phosphine oxide (TOPO). Ind. J. Chem. Technol,2001,8:239-243
    [53]Chang H S, Ju Y K, Jun Y K, et al. A solvent extraction approach to recover ace-tic acid from mixed waste acids produced during semiconductor wafer process. Journal of Hazardous Materials,2009,162:1278-1284
    [54]Maclnnis M B, Kim T K. Commercial processes for tungsten and molybdenum. Handbook of solvernt extration. New York:John Widely & Sons.Inc,1983.693
    [55]李循勋,文星照.用萃取法从酸沉母液中回收钼.中国钼业,1995,19(6):11-13
    [56]曹佐英,张启修.钨钼分离研究进展.稀有金属,2004,28(6):1076-1081
    [57]黄宝茅,程光荣.用萃取法从尾矿次氯酸钠浸出溶液中回收钼酸铵的研究.湿法冶金,1995,56(4):1-8
    [58]Vieuxl A S, Kabwe W B, Nselel M. Organic phase species in the extraction of molybdenum (VI) by aliquat 336 from chloride media. Hydrometallurgy,1980, 6(12):35-47
    [59]Karagiozova L, Vasilev C. Separation of molybdenum and rhenium by extraction with mixtures of trioctylamine and aliquat 336 followed by selective stripping. Hydrometallurgy,1979,4(1):51-55
    [60]徐徽,皮关华,陈白珍,等.用溶剂萃取法从碱浸液中回收钼的研究.湖南师范大学自然科学学报,2007,30(1):43-46
    [61]刘旭恒,孙放,赵中伟.钨钼分离的研究进展.稀有金属与硬质合金,2007,35(4):42-45
    [62]钟宏,符剑刚,刘凌波.采用N235从含Mo,Mn酸浸液中萃取回收Mo.过程工程学报,2006,6(1):28-31
    [63]周新文,刘东新,唐丽霞.Alamine304-1从酸性废水中萃取钼的研究.中国钼业,2007,31(5):45-47
    [64]唐忠阳,李洪桂,霍广生.高压氧分解-萃取法回收铜钼中矿中的钼.稀有金属与硬质合金,2003,31(1):1-3
    [65]Gerhardt N I, Palant A A, Petrova V A, et al. Solvent extraction of molybdenum, tungsten and vanadium by diisododecylamine from leach liquors. Hydrometallurgy,2001,60(3):1-5
    [66]Iyer J N, Dhadke P M. Solvent extraction and separation studies of antimony (Ⅲ) and bismuth (Ⅲ) by using Cyanex-925. Ind. J. Chem. Technol,2003,10:665-669
    [67]Gerhardt N I, Palant A A, Dungan S R. Extraction of tungsten (VI), molybdenum (Ⅵ) and rhenium (Ⅶ) by diisododecylamine. Hydrometallurgy,2000,55:1-15
    [68]Cox M, Flett D S, Velea T, et al. Impurity removal from copper tankhouse liquors by solvent extraction. International Solvent Extraction Conference, Cape Town, and 2002,995-1000
    [69]Coca J, Diez F V, Moriz M. Solvent extraction of molybdenum and tungsten by Alamine 336 and DEHPA. Hydrometallurgy,1990,25:125-135
    [70]Stepanov S I. Chemistry of solvent extraction of rare metals by quaternary ammonium salts. ISEC'96, Melbourne,1996,1:553-558
    [71]Yun C, Qiming F, Yanhai S, et al. Investigations on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst. Inter. J.of Mineral Processing,2006,79:42-48
    [72]Mohamed H, Mahmmoud H,唐宝彬.用α-羟基肟萃取分离Mo(Ⅵ)和W(Ⅵ).湿法冶金,1997,63(3):39-44
    [73]佐野诚,吴继宝.用D2EHPA和LIX63萃取钼和钨.中国钨业,1989,12(6):22-24
    [74]黄文强,李晨曦.吸附分离材料.北京:化学工业出版社,2005.5-32
    [75]周春山.化学分离富集方法及应用.长沙:中南工业大学出版社,1997.37-51
    [76]李洪桂.有色金属提取冶金手册.北京:冶金工业出版社,1999:73-86
    [77]游建南.萃淋树脂分离技术的发展及其在湿法冶金中的应用.湿法冶金,2000,19(1):57-73
    [78]Vart A, Pasquale M. Platinum group metal chelates derived from 2-mercapto-, 2-hydroxy- and 2-amino-pyridines and pyrimidines. Inorganica Chimica Acta, 1985,104(1):5-6
    [79]马步伟,赵振新,李铁生.携三唑硫酮功能基螯合纤维的研制.平顶山工学院学报,2006,15(6):28-31
    [80]Ramesh A, Hasegawa H, Sugimoto W, et al. Adsorption of gold (Ⅲ), platinum (Ⅳ) and palladium (Ⅱ) onto glycine modified crosslinked chitosan resin. Bioresource Technology,2008,99:3801-3809
    [81]Sanchez J M, Hidalgo M, Salvado V. The selective adsorption of gold (Ⅲ) and palladium (Ⅱ) on new phosphine sulphide-type chelating polymers bearing different spacer arms Equilibrium and kinetic characterization. Reactive & Functional Polymers,2001,46:283-291
    [82]Tomoyuki S, Masao T, Kyouichi S, et al. Recovery of cadmium from waste of scallop processing with amidoxime adsorbent synthesized by graft polymerization. Radiation Physics and Chemistry,2003,66 (1):43-47
    [83]熊春华,舒增年.4-氨基吡啶树脂吸附铬(Ⅵ)的研究.有色金属,2000,52(3):66-69
    [84]熊春华,舒增年,王永江.4-氨基吡啶树脂吸附钼(Ⅵ).化工学报,2005,56(7):1267-1270
    [85]Jain V K, Handa A, Agrawal Y K. Polymer supported calixarene-semicar-bazone derivative for separation and preconcentration of La (Ⅲ), Ce (Ⅲ), Th (Ⅳ) and U (VI). Reactive and Functional Polymers,2002,51(2):101-110
    [86]Trivedi U V, Menon S K, Agrawal Y K. Poly-mer supported calixarene hydroxamic acid:a novel chelating resin. Reactive and Functional polymers, 2002,50(3):205-216
    [87]Ding S, Zhang X Y, Feng X H, et al. Synthesis of N, N'-diallyl dibenzo 18-crown-6 crown ether crosslinked chitosan and their adsorption properties for metal ions. Reactive & Functional Polymers,2006,66:357-363
    [88]李华昌.铂族金属分离中的萃淋树脂技术.贵金属,2001,2(4):28-33
    [89]何焕杰,王永红.互贯网络三乙烯四胺弱碱树脂吸附铼的性能和机理研究.离子交换与吸附,1994,10(4):322-327
    [90]徐志昌,张萍.从辉钼矿焙烧烟尘中回收铼.中国钼业,2000,24(1):24-26
    [91]秦玉楠.离子交换法提取铼酸铵新工艺.中国钼业,1998,22(5):39-41
    [92]刘峙荣,刘欣萍,刘健强,等.SMF-425树脂吸附和解吸铼的研究.湿法冶金,2002,21(2):70-75
    [93]徐勤,何焕杰,王瑞华,等.中性磷萃淋树脂吸附铼的性能和机理研究.湿法冶金,1997,61(1):26-30
    [94]郭锦勇,李庸华,杨志平,等.D-990离子树脂吸附铂和铼的性能研究.稀有金属,2000,24(6):401-405
    [95]刘峙嵘,李建华,刘云海,等.R-518树脂富集铼的性能研究.山东冶金,2000,22(2):37-39
    [96]刘峙嵘,邹丽霞,吕效磊,等.F2型树脂吸附铼的研究.现代化工,2001,21(5):32-36
    [97]刘峙嵘,刘欣萍,彭雪娇,等.阴离子交换树脂F3吸附铼的研究.稀有金属,2002,26(3):221-224
    [98]刘峙荣,康文,王作举,等.R-519树脂富集铼的性能研究.华东地质学院学报,2000,23(4):286-288
    [99]刘峙荣,李佳茂,郭锦勇.F1树脂吸附和解吸铼的研究.湿法冶金,2000,19 (4):12-20
    [100]锦西化工厂.氯碱工业分析.北京:石油化工出版社,1976.100-117
    [101]贾丽娟,钟宏,符剑刚.溶液中钼的快速测定.稀有金属与硬质合金,2007,35(3):34-37
    [102]邓桂春,腾洪辉,刘国杰,等.铼的分离与分析研究进展.稀有金属,2004,28(4):771-775.
    [103]陈延禧.电解工程.天津:天津科学技术出版社,1993.160-163
    [104]任永刚.二氧化氯浸出复杂硫化金精矿的实验研究.无机盐工业,2006,38(6): 46-48
    [105]朱元保,沈子琛,张传福,等.电化学数据手册.长沙:湖南科学技术出版社,1984.195-230
    [106]李洪桂.湿法冶金学.长沙:中南大学出版社,2002.113
    [107]李希明,柯家骏.硫化钼矿浸出过程热力学分析.化工冶金,1982,6(4):89-95
    [108]叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社,2002.1-24
    [109]许志宏.无机热化学数据库.北京:科学出版社,1987.110-130
    [110]J.A.迪安主编.兰氏化学手册(,尚久方).北京:科学出版社,1991.663-671
    [111]Gokhan U. Kinetics of sphalerite dissolution by sodium chlorate in hydrochloric acid. Hydrometallurgy,2008,95:39-43
    [112]李东亮,张良,韩选利,等.二氧化氯浸金实验研究.西安建筑科技大学学报,2002,34(2):187-192
    [113]郭汉贤.应用化工动力学.北京:化学工业出版社,2003.426-428
    [114]蒋汉瀛.湿法冶金学过程物理化学.北京:冶金工业出版社,1984.71-80
    [115]杨显万,张英杰.矿浆电解原理.北京:冶金工业出版社,2000.81-92
    [116]Padilla R, Pavez P, Ruiz M C. Kinetics of copper dissolution from sulfidized chalcopyrite at high pressures in H2SO4-O2. Hydrometallurgy,2008,91:45-51
    [117]Aydogan S, Ucar G, Canbazoglu M. Dissolution kinetics of chalcopyrite in acidic potassium dichromate solution. Hydrometallurgy,2006,81(7):45-51
    [118]Romano P, Blazquez M L, Ballester A, et al. Reactivity of a Molybdenite concentrate against Chemical or bacterial attact. Minerals Engineering,2001, 14(9):987-996
    [119]Shao Q, Lan Y Z. Comprehensive leaching kinetics by sulfuric acid from zinc hydrometallurgy residue. Nonferrous Metal,2006,2(3):11-15
    [120]赵中伟,李洪桂,孙培梅,等.广泛粒度分布条件下片状矿物浸出动力学.矿 冶工程,2002,22(2):87-89
    [121]Gharabaghi M, Noaparast M, Irannajad M. Selective leaching kinetics of low-grade calcareous phosphate ore in acetic acid. Hydrometallurgy,2009,95: 3-4
    [122]Manoj K, Mankhand T R, Murthy D S, et al. Refining of a low-grade molybdenite concentrate. Hydrometallurgy,2007,86(3):56-62
    [123]石富.稀土电解槽的研究现状及发展趋势.中国稀土学报,2007,25(12):70-76
    [124]赵玉娥,赵金德,曹学静.无隔膜电解槽中苯的直接电氧化.吉林大学自然科学学报,1999,4(10):95-97
    [125]大连理工大学无机化学教研室编.无机化学.北京:高等教育出版社,2001.121-125
    [126]吴辉煌.电化学.北京:化学工业出版社,2004.211-234
    [127]周守勇,彭盘英,崔世海,等.293K下K+/CO2-,HCO3-、Cl-、H2O四元体系相图的研究-从农药废中回收无机盐.化工进展,2005,24(7):796-799
    [128]孙峻,苏仕军,丁桑岚,等.pH值缓冲剂及烟气氧含量对软锰矿浆烟气脱硫体系的影响.四川大学学报,2007,39(4):73-78
    [129]日根文男著,安国驹,陈之川译.电解槽工学.北京:化学工业出版社,1985.112-121
    [130]胡耀红,陈力格.DSA涂层钛阳极及其应用.电镀与涂饰,2003,22(5):58-59
    [131]谢素玲.高性能多用途的DSA阳极.电镀与涂饰,2004,23(3):50-53
    [132]石绍渊,孔江涛,朱秀萍,等.钛基Sn或Pb氧化物涂层电极的制备与表征.环境化学,2006,23(4):429-433
    [133]王德军,计文忠.单极式和复极式电解槽生产氯气在直接氯化乙烯生产中的应用.氯碱工业,2006,6:10-13
    [134]Fu J G, Zhong H. Electro-oxidation process for molybdenum concentrates. Journal of Central South University of Technology,2005,2(2):134-140
    [135]陆兆锷.电极过程原理和应用.北京:高等教育出版社,1992.150-176
    [136]张英杰,杨显万,章江洪,等.元阳金精矿矿浆电解的阳极过程.有色金属,2008,54(3):28-31
    [137]张平民,关鲁雄,唐瑞仁.工科大学化学.长沙:湖南教育出版社,2002.78-81
    [138]Krishnaswamy P. Kinetics of the aqueous oxidation of molybdenite and the role of crystal anisotropy on the electrochemical mechanism of the process. University of California,1981,4(8):10-12
    [139]Wen C Y. Noncatalytic heterogeneous solid-fluid reaction models. Ind. Eng. Chem,1968,60:34-54
    [140]Reza E K, Mohammad H A, Ali S. Mechanochemical effects on the molybdenite roasting kinetics. Chemical Engineering Journal,2006,121:65-71
    [141]Rath P C, Paramguru R K, Jena P K. Kinetics of dissolution of sulphide minerals in ferric chloride solution.1. Dissolution of galena, sphalerite and chalcopyrite. Trans. Inst. Min. Metall. (Sect. C),1988,97:150-158
    [142]Neou-Singouna P, Fourlaris G A. Kinetic study of the ferric chloride leaching of an iron-activated bulk sulphide concentrate. Hydrometallurgy,1990,23(2-3): 203-219
    [143]Aydogan S, Aras A, Canbazoglu M. Dissolution kinetics of sphalerite in acidic ferric chloride leaching. Chem. Eng. J,2005a, and 114:67-72
    [144]Afsahi M M, Sohrabi M, Kumar R V, et al. A study on the kinetics of hydrogen reduction of molybdenum disulphide powders. Thermochimica Acta, 2008,473:61-67
    [145]Abdel-Aal E A. Kinetics of sulfuric acid leaching of low-grade zinc silicate ore. Hydrometallurgy,2000,55:247-254
    [146]Ashraf M, Zafar Z I, Ansari T M. Selective leaching kinetics and upgrading of low-grade calcareous phosphate rock in succinic acid. Hydrometallurgy, 2005,80:286-292
    [147]林春生.萃取法从钼、铼溶液中回收铼.中国钼业,2005,29(1):41-43
    [148]赵瑶兴,孙祥玉.有机分子结构光谱鉴定.北京:科学出版社,2004.373-388
    [149]Boyd G E, Adamson A W, Myers I S. The exchange adsorption of ions from aqueous solution by organic zeolites II. Kinetics. Journal of the American Chemistry Society,1947,69(3):2836-2848
    [150]王帅.聚酯基硫脲树脂的合成及其对贵金属离子的吸附分离性能.[博士学位论文].长沙:中南大学,2008
    [151]袁彦超,石光,陈炳稔,等.交联壳聚糖树脂吸附Cu2+的机理研究.离子交换与吸附,2004,20(3):223-230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700