基于微等离子体的原子化与离子化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分析系统的小型化是分析化学的一个重要研究方向。微等离子体因为具有体积小、能耗低、气体损耗小、制造费用低廉等优点引起了广泛关注。在本博士论文中,提出了利用微等离子体来建立新型的原子化与离子化方法。本论文主要的研究内容如下:
     1.提出了基于介质阻挡放电微等离子体的新型氢化物原子化器。与常规的AAS电热石英管原子化器高温下原子化不同,该原子化器能够在低温、低功率消耗下实现氢化物的原子化。另外该原子化器还具有体积小、易于制作、对水蒸气耐受力强的优点。它不仅仅能够实现砷化氢的原子化,还能将有机砷氢化物原子化,可以与HPLC联用实现砷的形态分析。在此实验的基础上,我们还发展了适用于AFS的低温原子化器并应用于As、Se、Pb等元素的分析。
     2.研究了微等离子体在原子发射光谱中的应用。利用液体阴极放电微等离子体建立了一种新型的汞蒸汽发生技术。该方法不需要任何还原剂,液体中溶解的汞就能够直接被还原为Hg蒸汽,进而用ICP-AES进行检测。该方法具有很高的蒸汽发生效率,还原过程也是瞬时发生的,而且它能够不需要预先将有机汞转化为无机汞,实现有机汞的直接蒸汽发生。此外,我们建立了基于介质阻挡放电的微等离子体发射源,并应用于汞的原子发射光谱检测。该微等离子体对水蒸气有很好的耐受能力,可以不去除水蒸气对冷蒸汽发生引入的Hg激发进行检测。该发射源体积小、功耗低,而且Hg发射线附近的发射背景低且无其它谱线干扰,可以仅仅借助滤光片而不需要其他的分光系统对Hg实现检测。
     3.建立了一种新型的基于微等离子体射流的大气压解吸附离子源。该离子源通过毛细管内产生的DBD等离子体射流对样品表面的物质进行离子化。它可以对许多常见的有机物(包括极性的和非极性)实现离子化而进行质谱检测。利用该解吸附离子源,我们对药片中的有效组分实现了直接分析,而且还对香烟中的尼古丁、大蒜中的蒜氨酸、以及咖啡豆中的咖啡因实现了直接测定。我们还实现了滤纸表面农药的直接检测。由于该方法不需要复杂的样品处理,不需要溶剂,是一种非常有前景的大气压离子化技术。
The development of miniaturized chemical analysis systems is an important trend in analytical chemistry. Recently, microplasmas have attracted attention as potential detection devices for microfluidic systems because of their small size, reduced gas and power consumption, and relatively low manufacturing cost. In the present dissertation, microplasmas have been investigated to develop new atomization and ionization methods. The main contents of the present dissertation are as follows:
     1. A novel hydride atomizer for AAS based on atmospheric pressure dielectric barrier discharge (DBD) microplasma has been developed. This atomizer offers the advantages of low operation temperature and low power consumption in comparison with the currently used electrothermal quartz atomization operated at 900 0C with a power supply of several hundred watts. The present technique has additional advantages: small size, easiness for fabrication, and good tolerance to residue moisture. Moreover, results indicated that DBD could be used not only for the atomization of arsine, but also for the atomization of hydrides of MMA and DMA. Thus it was coupled to HPLC for the speciation of arsenic. This atomizer was also extended to the atomization of other volatile elements (Sb, Se, and Sn). Based on this study, a low temperature atomizer for AFS has also been developed and applied for the analysis of As, Se, Pb, and Sb.
     2. New method for mercury analysis based on microplasma sources has been developed for atomic emission spectrometry. First, a new vapor-generation technique is reported for mercury determination in aqueous solutions. Without need for a chemical reducing agent, dissolved mercury species are converted to volatile Hg vapor using a solution cathode glow discharge. In addition, it is applicable to both inorganic and organic Hg determination and has high generation efficiency. Second, microplasma emission source based on DBD has been developed for the determination of Hg. It offers several important advantages over other emission sources: low power consumption (<1W), small size and ease of fabrication, low gas consumption. The DBD microplasma has a relatively modest gas temperature (N2+ rotational temperature of 578±92K) and low continuum and structured background emission. This simple spectral background suggests that Hg emission could be detected effectively with a simple interference filter. The DBD microplasma is also tolerant of residual water vapor within the sample gas stream, making it attractive for use with cold vapor generation sample introduction. Further, the small plasma dimensions, in-line flow cell style, and high plasma stability make the DBD attractive for use with flow injection strategies. These studies suggest that a portable, miniature, automated atomic emission spectrometer based on the DBD would be attractive for the determination of mercury in the field.
     3. A novel plasma-based desorption/ionization method that can yield mass spectral information under ambient conditions from a range of surfaces without the requirement for sample preparation or additives is reported. The source is carried out by generating a nonthermal DBD plasma jet which interacts directly with the surface of the analyte. Desorption and ionization then occurs at the surface, and ions are sampled by the mass spectrometer. The technique is demonstrated for the detection of active ingredients in pharmaceutical formulations. It has also been successfully applied to the analysis of nicotine in cigarette, thiosulfates in garlic and caffeine in coffee beans. Moreover, it can be applied to the direct analysis of pesticides on the surface. Without the need for prior sample preparation, solvents, it is a promising technique for high-throughput screening in pharmaceutical or food safety analysis.
引文
[1]许根惠,姜恩永,盛京等.等离子体技术与应用.北京:化学工业出版社, 2006.
    [2] National Research Council (U.S.). Plasma 2010 Committee. Plasma Science: Advancing Knowledge in the National Interest Washington, DC: National Academies Press, 2007.
    [3]中华人民共和国外交部,美国能源部未来25年战略计划. [2004-08-13]. http://www.fmprc.gov.cn/chn/ziliao/wzzt/jjywj/t147169.htm.
    [4] McTaggart F K. Plasma Chemistry in Electrical Discharges. New York: Elsevier, 1967.
    [5] Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems-a novel concept for chemical sensing. Sensors and Actuators B-Chemical. 1990, 1: 244-248.
    [6] White A D. New Hollow Cathode Glow Discharge. Journal of Applied Physics. 1959, 30(5): 711-719.
    [7] Lopez-Callejas R, Perez-Martinez J A, Pena-Eguiluz R, et al. An RF microplasma facility development for medical applications. Surface & Coatings Technology. 2007, 201(9-11): 5684-5687.
    [8] Boeuf J P. Plasma display panels: physics, recent developments and key issues. Journal of Physics D-Applied Physics. 2003, 36(6): R53-R79.
    [9] Eden J G, Park S J. New opportunities for plasma science in nonequilibrium, low-temperature plasmas confined to microcavities: There's plenty of room at the bottom. Physics of Plasmas. 2006, 13(5): 057101.
    [10] Kono A, Wang J, Aramaki M. Production and characterization of high-pressure microwave glow discharge in a microgap aiming at VUV light source. Thin Solid Films. 2006, 506: 444-448.
    [11] Janasek D, Franzke J, Manz A. Scaling and the design of miniaturized chemical-analysis systems. Nature. 2006, 442(7101): 374-380.
    [12] Miclea M, Kunze K, Heitmann U, et al. Diagnostics and application of the microhollow cathode discharge as an analytical plasma. Journal of Physics D-Applied Physics. 2005, 38(11): 1709-1715.
    [13] Hopwood J A. Microfabricated inductively coupled plasma generator. Journal of Microelectromechanical Systems. 2000, 9(3): 309-313.
    [14] von Allmen P, Sadler D J, Jensen C, et al. Linear, segmented microdischarge array with an active length of similar to 1 cm: cw and pulsed operation in the rare gases and evidence of gain on the 460.30 nm transition of Xe+. Applied Physics Letters. 2003, 82(25): 4447-4449.
    [15] Sakai O, Sakaguchi T, Tachibana K. Verification of a plasma photonic crystal formicrowaves of millimeter wavelength range using two-dimensional array of columnar microplasmas. Applied Physics Letters. 2005, 87(24): 241505.
    [16] Sakai O, Sakaguchi T, Ito Y, et al. Interaction and control of millimetre-waves with microplasma arrays. Plasma Physics and Controlled Fusion. 2005, 47: B617-B627.
    [17] Sankaran R M, Holunga D, Flagan R C, et al. Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges. Nano Letters. 2005, 5(3): 537-541.
    [18] Hsu D D, Graves D B. Microhollow cathode discharge stability with flow and reaction. Journal of Physics D-Applied Physics. 2003, 36(23): 2898-2907.
    [19] Takao Y, Ono K. A miniature electrothermal thruster using microwave-excited plasmas: a numerical design consideration. Plasma Sources Science & Technology. 2006, 15(2): 211-227.
    [20] Moreau E, Louste C, Artana G, et al. Contribution of plasma control technology for aerodynamic applications. Plasma Processes and Polymers. 2006, 3(9): 697-707.
    [21] Roth J R, Sherman D M, Wilkinson S P. Electrohydrodynamic flow control with a glow-discharge surface plasma. Aiaa Journal. 2000, 38(7): 1166-1172.
    [22] Tan H M L, Akagi T, Ichiki T. Localized plasma treatment of poly(dimethylsiloxane) surfaces and its application to controlled cell cultivation. Journal of Photopolymer Science and Technology. 2006, 19(2): 245-250.
    [23] Shimizu Y, Sasaki T, Ito T, et al. Fabrication of spherical carbon via UHF inductively coupled microplasma CVD. Journal of Physics D-Applied Physics. 2003, 36(23): 2940-2944.
    [24] Yamatake A, Fletcher J, Yasuoka K, et al. Water treatment by fast oxygen radical flow with DC-driven microhollow cathode discharge. Ieee Transactions on Plasma Science. 2006, 34(4): 1375-1381.
    [25] Quan X, Chen S, Platzer B, et al. Simultaneous determination of chlorinated organic compounds from environmental samples using gas chromatography coupled with a micro electron capture detector and micro-plasma atomic emission detector. Spectrochimica Acta Part B-Atomic Spectroscopy. 2002, 57(1): 189-199.
    [26] Koutsospyros A D, Yin S M, Christodoulatos C, et al. Plasmochemical degradation of volatile organic compounds (VOC) in a capillary discharge plasma reactor. Ieee Transactions on Plasma Science. 2005, 33(1): 42-49.
    [27] Iza F, Kim G J, Lee S M, et al. Microplasmas: Sources, particle kinetics, and biomedical applications. Plasma Processes and Polymers. 2008, 5(4): 322-344.
    [28] Miclea M, Okruss M, Kunze K, et al. Microplasma-based atomic emission detectors for gas chromatography. Analytical and Bioanalytical Chemistry. 2007, 388(8): 1565-1572.
    [29] Tachibana K. Current status of microplasma research. Ieej Transactions on Electrical and Electronic Engineering. 2006, 1(2): 145-155.
    [30] Foest R, Schmidt M, Becker K. Microplasmas, an emerging field of low-temperature plasma science and technology. International Journal of Mass Spectrometry. 2006, 248(3): 87-102.
    [31] Becker K H, Schoenbach K H, Eden J G. Microplasmas and applications. Journal of Physics D-Applied Physics. 2006, 39(3): R55-R70.
    [32] Broekaert J A C, Siemens V. Some trends in the development of microplasmas for spectrochemical analysis. Analytical and Bioanalytical Chemistry. 2004, 380(2): 185-189.
    [33] Karanassios V. Microplasmas for chemical analysis: analytical tools or research toys? Spectrochimica Acta Part B-Atomic Spectroscopy. 2004, 59(7): 909-928.
    [34] Franzke J, Kunze K, Miclea M, et al. Microplasmas for analytical spectrometry. Journal of Analytical Atomic Spectrometry. 2003, 18(7): 802-807.
    [35] Broekaert J A C. The development of microplasmas for spectrochemical analysis. Analytical and Bioanalytical Chemistry. 2002, 374(2): 182-187.
    [36] Miclea M, Franzke J. Analytical detectors based on microplasma spectrometry. Plasma Chemistry and Plasma Processing. 2007, 27(2): 205-224.
    [37] Franzke J, Miclea M. Sample analysis with miniaturized plasmas. Applied Spectroscopy. 2006, 60(3): 80A-90A.
    [38] Miclea M, Kunze K, Franzke J, et al. Plasmas for lab-on-the-chip applications. Spectrochimica Acta Part B-Atomic Spectroscopy. 2002, 57(10): 1585-1592.
    [39] Pohl P, Zapata I J, Amberger M A, et al. Characterization of a microwave microstrip helium plasma with gas-phase sample introduction for the optical emission spectrometric determination of bromine, chlorine, sulfur and carbon using a miniaturized optical fiber spectrometer. Spectrochimica Acta Part B-Atomic Spectroscopy. 2008, 63(3): 415-421.
    [40] Jimenez Zapata I, Pohl P, Bings N H, et al. Evaluation and application of argon and helium microstrip plasma for the determination of mercury by the cold vapor technique and optical emission spectrometry. Analytical and Bioanalytical Chemistry. 2007, 388(8): 1615-23.
    [41] Broekaert J A C, Siemens V, Bings N H. Microstrip microwave induced plasma on a chip for atomic emission spectral analysis. Ieee Transactions on Plasma Science. 2005, 33(2): 560-561.
    [42] Stonies R, Schermer S, Voges E, et al. A new small microwave plasma torch. Plasma Sources Science & Technology. 2004, 13(4): 604-611.
    [43] Schermer S, Bings N H, Bilgic A M, et al. An improved microstrip plasma for optical emission spectrometry of gaseous species. Spectrochimica Acta Part B-Atomic Spectroscopy. 2003, 58(9): 1585-1596.
    [44] Bilgic A M, Engel U, Voges E, et al. A new low-power microwave plasma source using microstrip technology for atomic emission spectrometry. Plasma Sources Science & Technology. 2000, 9(1): 1-4.
    [45] Pohl P, Zapata I J, Voges E, et al. Comparison of the cold vapor generation using NaBH4 and SnCl2 as reducing agents and atomic emission spectrometry for the determination of Hg with a microstrip microwave induced argon plasma exiting from the wafer. Microchimica Acta. 2008, 161(1-2): 175-184.
    [46] Pohl P, Zapata I J, Bings N H, et al. Optical emission spectrometric determination of arsenic and antimony by continuous flow chemical hydride generation and a miniaturized microwave microstrip argon plasma operated inside a capillary channel in a sapphire wafer. Spectrochimica Acta Part B-Atomic Spectroscopy. 2007, 62(5): 444-453.
    [47] Bilgic A M, Voges E, Engel U, et al. A low-power 2.45 GHz microwave induced helium plasma source at atmospheric pressure based on microstrip technology. Journal of Analytical Atomic Spectrometry. 2000, 15(6): 579-580.
    [48] Engel U, Bilgic A M, Haase O, et al. A microwave-induced plasma based on microstrip technology and its use for the atomic emission spectrometric determination of mercury with the aid of the cold-vapor technique. Analytical Chemistry. 2000, 72(1): 193-197.
    [49] Iza F, Hopwood J. Split-ring resonator microplasma: microwave model, plasma impedance and power efficiency. Plasma Sources Science & Technology. 2005, 14(2): 397-406.
    [50] Iza F, Hopwood J A. Low-power microwave plasma source based on a microstrip split-ring resonator. Ieee Transactions on Plasma Science. 2003, 31(4): 782-787.
    [51] Hopwood J, Iza F, Coy S, et al. A microfabricated atmospheric-pressure microplasma source operating in air. Journal of Physics D-Applied Physics. 2005, 38(11): 1698-1703.
    [52] Hopwood J, Iza F. Ultrahigh frequency microplasmas from 1 pascal to 1 atmosphere. Journal of Analytical Atomic Spectrometry. 2004, 19(9): 1145-1150.
    [53] Iza F, Hopwood J A. Rotational, vibrational, and excitation temperatures of a microwave-frequency microplasma. Ieee Transactions on Plasma Science. 2004, 32(2): 498-504.
    [54] Xue J, Hopwood J A. Microplasma trapping of particles. Ieee Transactions on Plasma Science. 2007, 35: 1574-1579.
    [55] Jun X, Hopwood J A. In Particle-microplasma interactions, IEEE Pulsed Power Plasma Science Conference, 2007, p 637.
    [56] Jun X, Hopwood J A. In Particle trapping by dusty microplasmas, IEEE Conference Record - Abstracts. The 33rd IEEE International Conference on Plasma Science (IEEE Cat. No. 06CH37759), 2006, p 296.
    [57] Narendra J J, Grotjohn T A, Asmussen J. In Temperature and density measurements ofminiature microwave plasma discharges, IEEE Conference Record-Abstracts. 31st IEEE International Conference On Plasma Science (IEEE Cat. No.04CH37537), 2004, p140.
    [58] Narendra J, Gu Y, Zhang J, et al. In Local area materials etching using microstripline-based miniature microwave discharge, IEEE Conference Record-Abstracts. The 33rd IEEE International Conference on Plasma Science (IEEE Cat. No. 06CH37759), 2006, p248.
    [59] Narendra J, Tran D, Chen H, et al. In Local area materials processing using a microstripline-based miniature microwave discharge, IEEE Conference Record-Abstracts. 2005 IEEE International Conference on Plasma Science-ICOPS 2005 (IEEE Cat No. 05CH37707), 2005, p9.
    [60] Minayeva O B, Hopwood J A. Microfabricated inductively coupled plasma-on-a-chip for molecular SO2 detection: a comparison between global model and optical emission spectrometry. Journal of Analytical Atomic Spectrometry. 2003, 18(8): 856-863.
    [61] Minayeva O B, Hopwood J. Langmuir probe diagnostics of a microfabricated inductively coupled plasma on a chip. Journal of Applied Physics. 2003, 94(5): 2821-2828.
    [62] Iza F, Hopwood J. Influence of operating frequency and coupling coefficient on the efficiency of microfabricated inductively coupled plasma sources. Plasma Sources Science & Technology. 2002, 11(3): 229-235.
    [63] Minayeva O B, Hopwood J A. Emission spectroscopy using a microfabricated inductively coupled plasma-on-a-chip-Invited Lecture. Journal of Analytical Atomic Spectrometry. 2002, 17(9): 1103-1107.
    [64] Hopwood J, Minayeva O, Yin Y. Fabrication and characterization of a micromachined 5 mm inductively coupled plasma generator. Journal of Vacuum Science & Technology B. 2000, 18(5): 2446-2451.
    [65] Yin Y, Messier J, Hopwood J A. Miniaturization of inductively coupled plasma sources. Ieee Transactions on Plasma Science. 1999, 27(5): 1516-1524.
    [66] Ichiki T, Koidesawa T, Horiike Y. An atmospheric-pressure microplasma jet source for the optical emission spectroscopic analysis of liquid sample. Plasma Sources Science & Technology. 2003, 12(4): S16-S20.
    [67] Bass A, Chevalier C, Blades N W. A capacitively coupled microplasma (CCμP) formed in a channel in a quartz wafer. Journal of Analytical Atomic Spectrometry. 2001, 16(9): 919-921.
    [68] Yoshiki H, Horiike Y. Capacitively coupled microplasma source on a chip at atmospheric pressure. Japanese Journal of Applied Physics Part 2-Letters. 2001, 40(4A): L360-L362.
    [69] Yoshiki H, Oki A, Ogawa H, et al. Generation of a capacitively coupled microplasma and its application to the inner-wall modification of a poly(ethylene terephthalate) capillary. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films. 2002, 20(1):24-29.
    [70] Yoshiki H, Oki A, Ogawa H, et al. Inner wall modification of a poly(ethylene terephthalate) (PET) capillary by 13.56 MHz capacitively coupled microplasma. Thin Solid Films. 2002, 407(1-2): 156-162.
    [71] Yoshiki H, Horiike Y. Load impedance measurement of an on-chip atmospheric capacitively coupled microplasma source. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers. 2004, 43(12): 8308-8309.
    [72] Rahman M M, Blades M W. Effects from easily ionized elements on silver analyte in atmospheric pressure parallel plate capacitively coupled plasma (PP-CCP). Spectrochimica Acta Part B-Atomic Spectroscopy. 2000, 55(4): 327-338.
    [73] Rahman M M, Blades M W. Ionization of Mg and Cd in an atmospheric pressure parallel plate capacitively coupled plasma. Journal of Analytical Atomic Spectrometry. 2000, 15(10): 1313-1319.
    [74] Skelton R J, Chang H-C K, Farnsworth P B, et al. Radio frequency plasma detector for sulfur selective capillary gas chromatographic analysis of fossil fuels. Analytical Chemistry. 1989, 61(20): 2292-2298.
    [75] Skelton R J, Markides K E, Lee M L, et al. Characterization of near-infrared atomic emission from a radio-frequency plasma for selective detection in capillary gas chromatography. Applied Spectroscopy. 1990, 44(5): 853-857.
    [76] Brede C, Lundanes E, Greibrokk Y, et al. Simultaneous element-selective detection of C, F, Cl, Br, and I by capillary gas chromatography coupled with microplasma mass spectrometry. Hrc-Journal of High Resolution Chromatography. 1998, 21(12): 633-639.
    [77] Brede C, Lundanes E, Greibrokk T, et al. Capillary gas chromatography coupled with microplasma mass spectrometry - Improved ion source design compatible with bench-top mass spectrometric instrumentation. Hrc-Journal of High Resolution Chromatography. 1998, 21(5): 282-286.
    [78] Brede C, Pedersen-Bjergaard S, Lundanes E, et al. Microplasma mass spectrometric detection in capillary gas chromatography. Analytical Chemistry. 1998, 70(3): 513-518.
    [79] Pedersenbjergaard S, Greibrokk T. On-column atomic-emission detection in capillary gas-chromatography using a radio-frequency plasma. Journal of Microcolumn Separations. 1994, 6(1): 11-18.
    [80] Asp T N, PedersenBjergaard S, Greibrokk T. Determination of extractable organic chlorine and bromine by probe injection dual-microplasma atomic emission spectrometry. Analytical Chemistry. 1997, 69(17): 3558-3564.
    [81] Pedersen-Bjergaard S, Greibrokk T. On-column bromine- and chlorine-selective detection for capillary gas chromatography using a radio frequency plasma. Analytical Chemistry.1993, 65: 1998-2002.
    [82] Brede C, Pedersen-Bjergaard S, Lundanes E, et al. Capillary gas chromatography coupled with negative ionization microplasma mass spectrometry for halogen-selective detection. Journal of Analytical Atomic Spectrometry. 2000, 15(1): 55-60.
    [83] Brede C, Pedersen-Bjergaard S, Lundanes E, et al. Capillary gas chromatography coupled with microplasma mass spectrometry for organotin speciation. Journal of Chromatography A. 1999, 849(2): 553-562.
    [84] Kogelschatz U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing. 2003, 23(1): 1-46.
    [85] Wei L S, Zhou J H, Wang Z H, et al. Theoretical analysis of ozone generation by pulsed dielectric barrier discharge in oxygen. Journal of Plasma Physics. 2007, 73: 427-432.
    [86] Park S L, Moon J D, Lee S H, et al. Effective ozone generation utilizing a meshed-plate electrode in a dielectric-barrier discharge type ozone generator. Journal of Electrostatics. 2006, 64(5): 255-262.
    [87] Kimura T, Hattori Y, Oda A. Ozone production efficiency of atmospheric dielectric barrier discharge of oxygen using time-modulated power supply. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers. 2004, 43(11A): 7689-7692.
    [88] Yagi S, Kuzumoto M. Silent Discharges in Ozonizers and CO2-Lasers. Australian Journal of Physics. 1995, 48(3): 411-418.
    [89] Zhang J Y, Boyd I W. Multi-wavelength excimer ultraviolet sources from a mixture of krypton and iodine in a dielectric barrier discharge. Applied Physics B-Lasers and Optics. 2000, 71(2): 177-179.
    [90] Zhang J Y, Boyd I W. Efficient XeI* excimer ultraviolet sources from a dielectric barrier discharge. Journal of Applied Physics. 1998, 84(3): 1174-1178.
    [91] Falkenstein Z, Coogan J J. The development of a silent discharge-driven XeBr* excimer UV light source. Journal of Physics D-Applied Physics. 1997, 30(19): 2704-2710.
    [92] Ye D Q, Huang H B, Chen W L, et al. Catalytic decomposition of toluene using various dielectric barrier discharge reactors. Plasma Science & Technology. 2008, 10(1): 89-93.
    [93] Martin L, Ognier S, Gasthauer E, et al. Destruction of highly diluted volatile organic components (VOCs) in air by dielectric barrier discharge and mineral bed adsorption. Energy & Fuels. 2008, 22(1): 576-582.
    [94] Subrahmanyam C, Renken A, Kiwi-Minsker L. Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chemical Engineering Journal. 2007, 134(1-3): 78-83.
    [95] Ikeda Y, Verboncoeur J P, Christenson P J, et al. Global modeling of a dielectric barrier discharge in Ne-Xe mixtures for an alternating current plasma display panel. Journal of Applied Physics. 1999, 86(5): 2431-2441.
    [96] Wagner H E, Brandenburg R, Kozlov K V, et al. The barrier discharge: basic properties and applications to surface treatment. Vacuum. 2003, 71(3): 417-436.
    [97] Topala I, Dumitrascu N. Dynamics of the wetting process on dielectric barrier discharge (DBD)-treated wood surfaces. Journal of Adhesion Science and Technology. 2007, 21(11): 1089-1096.
    [98] Morent R, De Geyter N, Leys C, et al. Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surface & Coatings Technology. 2007, 201(18): 7847-7854.
    [99] Tong W, Lu C H, Cai Y K, et al. Surface modification of fluororubber using atmospheric pressure dielectric barrier discharge (DBD). Plasma Science & Technology. 2007, 9(3): 296-300.
    [100] Kunze K, Miclea M, Musa G, et al. Diode laser-aided diagnostics of a low-pressure dielectric barrier discharge applied in element-selective detection of molecular species. Spectrochimica Acta Part B-Atomic Spectroscopy. 2002, 57(1): 137-146.
    [101] Kunze K, Miclea M, Franzke J, et al. The dielectric barrier discharge as a detector for gas chromatography. Spectrochimica Acta Part B-Atomic Spectroscopy. 2003, 58(8): 1435-1443.
    [102] Miclea M, Kunze K, Musa G, et al. The dielectric barrier discharge-a powerful microchip plasma for diode laser spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy. 2001, 56(1): 37-43.
    [103] Gras R, Luong J, Monagle M, et al. Gas chromatographic applications with the dielectric barrier discharge detector. Journal of Chromatographic Science. 2006, 44(2): 101-107.
    [104] Li Y M, Hu J, Tang L, et al. Miniaturized dielectric barrier discharge included chemiluminescence for detection of volatile chloinated hydrocarbons separated by gas chromatography. Journal of Chromatography A. 2008, 1192(1): 194-197.
    [105] He Y H, Lv Y, Li Y M, et al. Dielectric barrier discharge-induced chemiluminescence: Potential application as GC detector. Analytical Chemistry. 2007, 79(12): 4674-4680.
    [106] Guchardi R, Hauser P C. Capacitively coupled microplasma for on-column detection of chromatographically separated inorganic gases by optical emission spectrometry. Journal of Chromatography A. 2004, 1033(2): 333-338.
    [107] Guchardi R, Hauser P C. Determination of organic compounds by gas chromatography using a new capacitively coupled microplasma detector. Analyst. 2004, 129(4): 347-351.
    [108] Guchardi R, Hauser P C. Determination of non-metals in organic compounds by gas chromatography with a miniature capacitively coupled plasma emission detector. Journal of Analytical Atomic Spectrometry. 2004, 19(8): 945-949.
    [109] Guchardi R, Hauser P C. A capacitively coupled microplasma in a fused silica capillary.Journal of Analytical Atomic Spectrometry. 2003, 18(9): 1056-1059.
    [110] Michels A, Tombrink S, Vautz W, et al. Spectroscopic characterization of a microplasma used as ionization source for ion mobility spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy. 2007, 62: 1208-1215.
    [111] Eijkel J C T, Stoeri H, Manz A. A molecular emission detector on a chip employing a direct current microplasma. Analytical Chemistry. 1999, 71(14): 2600-2606.
    [112] Eijkel J C T, Stoeri H, Manz A. An atmospheric pressure dc glow discharge on a microchip and its application as a molecular emission detector. Journal of Analytical Atomic Spectrometry. 2000, 15(3): 297-300.
    [113] Eijkel J C T, Stoeri H, Manz A. An atmospheric pressure plasma on a chip applied as a molecular emission detector in gas chromatography. Micro Total Analysis Systems 2000, Proceedings. 2000: 591-594.
    [114] Eijkel J C T, Stoeri H, Manz A. A dc microplasma on a chip employed as an optical emission detector for gas chromatography. Analytical Chemistry. 2000, 72(11): 2547-2552.
    [115] Bessoth F G, Naji O P, Eijkel J C T, et al. Towards an on-chip gas chromatograph: the development of a gas injector and a dc plasma emission detector. Journal of Analytical Atomic Spectrometry. 2002, 17(8): 794-799.
    [116] Naji O P, Manz A. A double plasma gas chromatography injector and detector. Lab on a Chip. 2004, 4(5): 431-437.
    [117] Schoenbach K H, El-Habachi A, Moselhy M M, et al. Microhollow cathode discharge excimer lamps. Physics of Plasmas. 2000, 7(5): 2186-2191.
    [118] Miclea M, Kunze K, Franzke J, et al. Microplasma jet mass spectrometry of halogenated organic compounds. Journal of Analytical Atomic Spectrometry. 2004, 19(8): 990-994.
    [119] Penache C, Miclea M, Brauning-Demian A, et al. Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy. Plasma Sources Science & Technology. 2002, 11(4): 476-483.
    [120] Miclea M, Kunze K, Penache C, et al. Diode laser diagnostics of an atmospheric pressure microhollow cathode discharge. Joint Conference ESCAM PIG 16. Sixteenth European Conference on Atomic and Molecular Physics of Ionized Gases. ICRP 5 Fifth International Conference on Reactive Plasma. Conference Proceedings. 2002, 2: 281-282.
    [121] Mezei P, Cserfalvi T. Electrolyte cathode atmospheric glow discharges for direct solution analysis. Applied Spectroscopy Reviews. 2007, 42(6): 573-604.
    [122] Webb M R, Andrade F J, Hieftje G M. Use of electrolyte cathode glow discharge (ELCAD) for the analysis of complex mixtures. Journal of Analytical Atomic Spectrometry. 2007, 22(7): 766-774.
    [123] Mezei P, Cserfalvi T. The investigation of an abnormal electrolyte cathode atmosphericglow discharge (ELCAD). Journal of Physics D-Applied Physics. 2006, 39(12): 2534-2539.
    [124] Webb M R, Chan G C Y, Andrade F J, et al. Spectroscopic characterization of ion and electron populations in a solution-cathode glow discharge. Journal of Analytical Atomic Spectrometry. 2006, 21(5): 525-530.
    [125] Mezei P, Cserfalvi T, Csillag L. The spatial distribution of the temperatures and the emitted spectrum in the electrolyte cathode atmospheric glow discharge. Journal of Physics D-Applied Physics. 2005, 38(16): 2804-2811.
    [126] Webb M R, Andrade F J, Gamez G, et al. Spectroscopic and electrical studies of a solution-cathode glow discharge. Journal of Analytical Atomic Spectrometry. 2005, 20(11): 1218-1225.
    [127] Cserfalvi T, Mezei P. Investigations on the element dependency of sputtering process in the electrolyte cathode atmospheric discharge. Journal of Analytical Atomic Spectrometry. 2005, 20(9): 939-944.
    [128] Jenkins G, Franzke J, Manz A. Direct optical emission spectroscopy of liquid analytes using an electrolyte as a cathode discharge source (ELCAD) integrated on a micro-fluidic chip. Lab on a Chip. 2005, 5(7): 711-718.
    [129] Davis W C, Marcus R K. An atmospheric pressure glow discharge optical emission source for the direct sampling of liquid media. Journal of Analytical Atomic Spectrometry. 2001, 16(9): 931-937.
    [130] Marcus R K, Davis W C. An atmospheric pressure glow discharge optical emission source for the direct sampling of liquid media. Analytical Chemistry. 2001, 73(13): 2903-2910.
    [131] Kim H J, Lee J H, Kim M Y, et al. Development of open-air type electrolyle-as-cathode glow discharge-atomic emission spectrometry for determination of trace metals in water. Spectrochimica Acta Part B-Atomic Spectroscopy. 2000, 55(7): 823-831.
    [132] Cserfalvi T, Mezei P. Direct solution analysis by glow-discharge-electrolyte-cathode discharge spectrometry. Journal of Analytical Atomic Spectrometry. 1994, 9(3): 345-349.
    [133] Yagov V V, Gentsina M L. Effect of supporting electrolyte composition on the intensity of metal lines in electrolyte-cathode discharge spectra. Journal of Analytical Chemistry. 2004, 59(1): 64-70.
    [134] Mottaleb M A, Yang J S, Kim H J. Electrolyte-as-cathode glow discharge (ELCAD)/glow discharge electrolysis at the gas-solution interface. Applied Spectroscopy Reviews. 2002, 37(3): 247-273.
    [135] Mottaleb M A, Woo Y A, Kim H J. Evaluation of open-air type electrolyte-as-cathode glow discharge-atomic emission spectrometry for determination of trace heavy metals in liquid samples. Microchemical Journal. 2001, 69(3): 219-230.
    [136] Park Y S, Ku S H, Hong S H, et al. Fundamental studies of electrolyte-as-cathode glow discharge-atomic emission spectrometry for the determination of trace metals in flowing water. Spectrochimica Acta Part B-Atomic Spectroscopy. 1998, 53(6-8): 1167-1179.
    [137] Mezei P, Cserfalvi T, Kim H J, et al. The influence of chlorine on the intensity of metal atomic lines emitted by an electrolyte cathode atmospheric glow discharge. Analyst. 2001, 126(5): 712-714.
    [138] Cserfalvi T, Mezei P. Operating mechanism of the electrolyte cathode atmospheric glow discharge. Fresenius Journal of Analytical Chemistry. 1996, 355(7-8): 813-819.
    [139] Mezei P, Cserfalvi T, Janossy M. Pressure dependence of the atmospheric electrolyte cathode glow discharge spectrum. Journal of Analytical Atomic Spectrometry. 1997, 12(10): 1203-1208.
    [140] Cserfalvi T, Mezei P, Apai P. Emission studies on a glow-discharge in atmospheric-pressure air using water as a cathode. Journal of Physics D-Applied Physics. 1993, 26(12): 2184-2188.
    [141] Webb M R, Andrade F J, Hieftje G M. High-throughput elemental analysis of small aqueous samples by emission spectrometry with a compact, atmospheric-pressure solution-cathode glow discharge. Analytical Chemistry. 2007, 79(20): 7807-7812.
    [142] Webb M R, Andrade F J, Hieftje G M. Compact glow discharge for the elemental analysis of aqueous samples. Analytical Chemistry. 2007, 79(20): 7899-7905.
    [143] Jenkins G, Manz A. A miniaturized glow discharge applied for optical emission detection in aqueous analytes. Journal of Micromechanics and Microengineering. 2002, 12(5): N19-N22.
    [144] Wilson C G, Gianchandani Y B. Spectral detection of metal contaminants in water using an on-chip microglow discharge. Ieee Transactions on Electron Devices. 2002, 49(12): 2317-2322.
    [145] Mitra B, Wilson C G, Que L, et al. Microfluidic discharge-based optical sources for detection of biochemicals. Lab on a Chip. 2006, 6(1): 60-65.
    [146] Pohl P. Hydride generation-recent advances in atomic emission spectrometry. Trac-Trends in Analytical Chemistry. 2004, 23(2): 87-101.
    [147] Robbins W B, Caruso J A. Development of hydride generation methods for atomic spectroscopic analysis. Analytical Chemistry. 1979, 51: 889A-899A.
    [148] Yan X P, Ni Z M. Vapor generation atomic-absorption spectrometry. Analytica Chimica Acta. 1994, 291(1-2): 89-105.
    [149] Gan W E, Zhang Z X, Su Q D, et al. Determination of lead in human hair using flame atomic absorption spectrometry and nebulization assisted with hydride generation. Spectroscopy and Spectral Analysis. 2004, 24(4): 484-486.
    [150] Ha J, Sun H W, Sun J M, et al. Determination of tellurium in urine by hydride generation atomic absorption spectrometry with derivative signal processing. Analytica Chimica Acta. 2001, 448(1-2): 145-149.
    [151] Ouyang J, Yan S, Zhang X R. Speciation of organic arsenic species by using liquid chromatography coupled with hydride-generation atomic absorption spectrometry. Chinese Journal of Analytical Chemistry. 1999, 27(10): 1151-1155.
    [152] Zhang X R, Cornelis R, Mees L. Speciation of antimony(III) and antimony(V) species by using high-performance liquid chromatography coupled to hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry. 1998, 13(3): 205-207.
    [153] Jin Y, Wu H, Tian Y, et al. Indirect determination of sulfide at ultratrace levels in natural waters by flow injection on-line sorption in a knotted reactor coupled with hydride generation atomic fluorescence spectrometry. Analytical Chemistry. 2007, 79(18): 7176-7181.
    [154] Long X B, Miro M, Hansen E H, et al. Hyphenating multisyringe flow injection lab-on-valve analysis with atomic fluorescence spectrometry for on-line bead injection preconcentration and determination of trace levels of hydride-forming elements in environmental samples. Analytical Chemistry. 2006, 78(24): 8290-8298.
    [155] Yin X B, Yan X P, Jiang Y, et al. On-line coupling of capillary electrophoresis to hydride generation atomic fluorescence spectrometry for arsenic speciation analysis. Analytical Chemistry. 2002, 74(15): 3720-3725.
    [156] Amberger M A, Bings N H, Pohl P, et al. Investigation of electrochemical hydride generation coupled to microwave plasma torch optical emission spectrometry for the determination of arsenic: analytical figures of merit, interference studies and applications to environmentally relevant samples. International Journal of Environmental Analytical Chemistry. 2008, 88(9): 625-636.
    [157] Pohl P, Zapata I J, Bings N H. Optimization and comparison of chemical and electrochemical hydride generation for optical emission spectrometric determination of arsenic and antimony using a novel miniaturized microwave induced argon plasma exiting the microstrip wafer. Analytica Chimica Acta. 2008, 606(1): 9-18.
    [158] dos Santos E J, Herrmann A B, Frescura V L A, et al. Determination of lead in sediments and sewage sludge by on-line hydride-generation axial-view inductively-coupled plasma optical-emission spectrometry using slurry sampling. Analytical and Bioanalytical Chemistry. 2007, 388(4): 863-868.
    [159] Hernandez P C, Tyson J F, Uden P C, et al. Determination of selenium by flow injection hydride generation inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry. 2007, 22(3): 298-304.
    [160] Welz B, Schubert-jacobs M, Sperling M, et al. Investigation of reactions and atomization ofarsine in a heated quartz tube using atomic absorption and mass spectrometry. Spectrochimica acta part B- atomic spectrometry. 1990, 45(11): 235-1256.
    [161] L'vov B V, Walsh A, Dixon J H. Atomic absorption spectrochemical analysis. London: Adam hilger, 1970.
    [162] Braman R S, Justen L L, Foreback C C. Direct volatilization-spectral emission type detection system for nanogram amounts of arsenic and antimony. Analytical Chemistry. 1972, 44(13): 2195-2199.
    [163] Braman R S, Johnson D L, Foreback C C, et al. Separation and determination of nanogram amounts of inorganic arsenic and methylarsenic compounds. Analytical Chemistry. 1977, 49(4): 621-625.
    [164] Feldman C. Improvements in the arsine accumulation-helium glow detector procedure for determining traces of arsenic. Analytical Chemistry. 1979, 51(6): 664-669.
    [165] Matsumoto K, Ishiwatari T, Fuwa.K. Hydride generation and atomic emission spectrometry with helium glow discharge detection for analysis of biological samples. Analytical Chemistry. 1984, 56(8): 1545-1548.
    [166] Wetzel W C, Broekaert J A C, Hieftje G M. Determination of arsenic by hydride generation coupled to time-of-flight mass spectrometry with a gas sampling glow discharge. Spectrochimica Acta Part B-Atomic Spectroscopy. 2002, 57(6): 1009-1023.
    [167] Orellana-Velado N G, Fernandez M, Pereiro R, et al. Arsenic and antimony determination by on-line flow hydride generation-glow discharge-optical emission detection. Spectrochimica Acta Part B-Atomic Spectroscopy. 2001, 56(1): 113-122.
    [168] Winchester M R, Payling R. Radio-frequency glow discharge spectrometry: A critical review. Spectrochimica Acta Part B-Atomic Spectroscopy. 2004, 59(5): 607-666.
    [169] McSheehy S, Szpunar J, Morabito R, et al. The speciation of arsenic in biological tissues and the certification of reference materials for quality control. Trac-Trends in Analytical Chemistry. 2003, 22(4): 191-209.
    [170] Crecelius E, Yager J. Intercomparison of analytical methods for arsenic speciation in human urine. Environmental Health Perspectives. 1997, 105(6): 650-653.
    [171] Dedina J, Rubeska I. Hydride atomization in a cool hydrogen–oxygen flame burning in a quartz tube atomizer. Spectrochimica Acta Part B-Atomic Spectrometry. 1980, 35: 119-128.
    [172] Welz B, Melcher M. Investigations on atomisation mechanisms of volatile hydride-forming elements in a heated quartz cell. Part 1. Gas-phase and surface effects; decomposition and atomisation of arsine. Analyst. 1983, 108: 213-224.
    [173] Welz B, Schubert-jacobs M, Sperling M, et al. Investigation of reactions and atomization of arsine in a heated quartz tube using atomic absorption spectrometry. Spectrochimica ActaPart B-Atomic Spectrometry. 1990, 45(11): 1235-1256.
    [174] Tesfalidet S, Wikander G, Irgum K. Determination of hydrogen radicals in analytical flames using electron spin resonance spectroscopy applied to direct investigations of flame-based atomization units for hydride generation atomic absorption spectrometry. Analytical Chemistry. 1999, 71(6): 1225-1231.
    [175] Bax D, van Elteren J T, Agterdenbos J. The determination of arsenic with hydride generation AAS. A study of the factors influencing the reactions in the absorption cuvette. Spectrochimica Acta Part B-Atomic Spectrometry. 1986, 41(9): 1007-1013.
    [176] Mellor J W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry. London: Longmans, 1929.
    [177] Koreckova K, Frech W, Lundberg E, et al. Investigations of reactions involved in electrothermal atomic absorption procedures. Part 10. Factors influencing the determination of arsenic. Analytica Chimica Acta. 1981, 130(2): 267-280.
    [178] Chen C J, Hsueh Y M, Lai M S, et al. Increased prevalence of hypertension and long-term arsenic exposure. Hypertension. 1995, 25(1): 53-60.
    [179] Abernathy C, Calderon R L, Chappell W R. Arsenic exposure and health effects. London: Elsevier Science Ltd, 1999
    [180] Concha G, Nermell B, Vahter M. Metabolism of inorganic arsenic in children with chronic high arsenic exposure in northern Argentina. Environmental Health Perspectives. 1998, 106(6): 355-359.
    [181] Concha G, Vogler G, Lezcano D, et al. Exposure to inorganic arsenic metabolites during early human development. Toxicological Sciences. 1998, 44(2): 185-190.
    [182] Rahman M, Tondel M, Ahmad S A, et al. Diabetes mellitus associated with arsenic exposure in Bangladesh. American Journal of Epidemiology. 1998, 148(2): 198-203.
    [183] Rahman M, Tondel M, Ahmad S A, et al. Hypertension and arsenic exposure in Bangladesh. Hypertension. 1999, 33(1): 74-78.
    [184] Tseng C H, Tai T Y, Chong C K, et al. Long-term arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: A cohort study in arseniasis-hyperendemic villages in Taiwan. Environmental Health Perspectives. 2000, 108(9): 847-851.
    [185] Wasserman G A, Liu X H, Parvez F, et al. Water arsenic exposure and children's intellectual function in Araihazar, Bangladesh. Environmental Health Perspectives. 2004, 112(13): 1329-1333.
    [186] Pi J B, Yamauchi H, Kumagai Y, et al. Evidence for induction of oxidative stress caused by chronic exposure of chinese residents to arsenic contained in drinking water. Environmental Health Perspectives. 2002, 110(4): 331-336.
    [187] Sun G F. Arsenic contamination and arsenicosis in China. Toxicology and AppliedPharmacology. 2004, 198(3): 268-271.
    [188] Sun G F, Xu Y Y, Li X, et al. Urinary arsenic metabolites in children and adults exposed to arsenic in drinking water in Inner Mongolia, China. Environmental Health Perspectives. 2007, 115(4): 648-652.
    [189] Chen H, Li S F, Liu J, et al. Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: implications for arsenic hepatocarcinogenesis. Carcinogenesis. 2004, 25(9): 1779-1786.
    [190] Karagas M R, Tosteson T D, Blum J, et al. Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a US population. Environmental Health Perspectives. 1998, 106: 1047-1050.
    [191] Smith A H, Arroyo A P, Mazumder D N G, et al. Arsenic-induced skin lesions among Atacameno people in Northern Chile despite good nutrition and centuries of exposure. Environmental Health Perspectives. 2000, 108(7): 617-620.
    [192] Enterline P E, Day R, Marsh G M. Cancers related to exposure to arsenic at a copper smelter. Occupational and Environmental Medicine. 1995, 52(1): 28-32.
    [193] Baghel A, Singh B, Pandey P, et al. A rapid field detection method for arsenic in drinking water. Analytical Sciences. 2007, 23(2): 135-137.
    [194] Deshpande L S, Pande S P. Development of arsenic testing field kit-A tool for rapid on-site screening of arsenic contaminated water sources. Environmental Monitoring and Assessment. 2005, 101(1-3): 93-101.
    [195] Hussam A, Alauddin M, Khan A H, et al. Evaluation of arsine generation in arsenic field kit. Environmental Science & Technology. 1999, 33(20): 3686-3688.
    [196] Jakariya M, Vahter M, Rahman M, et al. Screening of arsenic in tubewell water with field test kits: Evaluation of the method from public health perspective. Science of the Total Environment. 2007, 379(2-3): 167-175.
    [197] Sankararamakrishnan N, Chauhan D, Nickson R T, et al. Evaluation of two commercial field test kits used for screening of groundwater for arsenic in Northern India. Science of the Total Environment. 2008, 401(1-3): 162-167.
    [198] Steinmaus C M, George C M, Kalman D A, et al. Evaluation of two new arsenic field test kits capable of detecting arsenic water concentrations close to 10μg/L. Environmental Science & Technology. 2006, 40(10): 3362-3366.
    [199] Hossain F, Bagtzoglou A C, Nahap N, et al. Statistical characterization of arsenic contamination in shallow tube wells of western Bangladesh. Hydrological Processes. 2006, 20(7): 1497-1510.
    [200] Khandaker N R. Limited accuracy of arsenic field test kit. Environmental Science & Technology. 2004, 38(24): 479A-479A.
    [201] Pande S P, Deshpande L S, Kaul S N. Laboratory and field assessment of arsenic testing field kits in Bangladesh and West Bengal, India. Environmental Monitoring and Assessment. 2001, 68(1): 1-18.
    [202] Rahman M M, Mukherjee D, Sengupta M K, et al. Effectiveness and reliability of arsenic field testing kits: Are the million dollar screening projects effective or not? Environmental Science & Technology. 2002, 36(24): 5385-5394.
    [203] Jain C K, Ali I. Arsenic: Occurrence, toxicity and speciation techniques. Water Research. 2000, 34(17): 4304-4312.
    [204] Idowu A D, Dasgupta P K, Zhang G F, et al. A gas-phase chemiluminescence-based analyzer for waterborne arsenic. Analytical Chemistry. 2006, 78(20): 7088-7097.
    [205] Idowu A D, Dasgupta P K. Liquid chromatographic arsenic speciation with gas-phase chemiluminescence detection. Analytical Chemistry. 2007, 79(23): 9197-9204.
    [206] El-Hadri F, Morales-Rubio A, de la Guardia M. Determination of total arsenic in soft drinks by hydride generation atomic fluorescence spectrometry. Food Chemistry. 2007, 105(3): 1195-1200.
    [207] Reyes M N M, Cervera M L, Campos R C, et al. Determination of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid in cereals by hydride generation atomic fluorescence spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy. 2007, 62(9): 1078-1082.
    [208] Yu Y L, Du Z, Chen M L, et al. A miniature lab-on-valve atomic fluorescence spectrometer integrating a dielectric barrier discharge atomizer demonstrated for arsenic analysis. Journal of Analytical Atomic Spectrometry. 2008, 23(4): 493-499.
    [209] Zhu Z L, Qin Q. Recent development of speciation analysis for trace arsenic. Spectroscopy and Spectral Analysis. 2008, 28(5): 1176-1180.
    [210] Montaser A, Fassel V A. Inductively coupled plasmas as atomization cells for atomic fluorescence spectrometry. Analytical Chemistry. 1976, 48(11): 1490-1499.
    [211] Demers D R, Allemand C D. Atomic fluorescence spectrometry with an inductively coupled plasma as atomization cell and pulsed hollow cathode lamps for excitation. Analytical Chemistry. 1981, 53(12): 1915-1921.
    [212] Kosinski M A, Uchida H, Winefordner J D. Atomic fluorescence spectrometry with inductively coupled plasma as excitation source and atomization cell. Analytical Chemistry. 1983, 55(4): 688-692.
    [213] Perkins L D, Long G L. Evaluation of line and continuum sources for atomic fluorescence spectrometry using a low-powered argon microwave-induced plasma. Applied Spectroscopy. 1988, 42(7): 1285-1289.
    [214] Perkins L D, Long G L. Characterization of a high-efficiency helium microwave-inducedplasma as an atomization source for atomic spectrometric analysis. Applied Spectroscopy. 1989, 43(3): 499-504.
    [215] Glick M, Smith B W, Winefordner J D. Laser-excited atomic fluorescence in a pulsed hollow-cathode glow discharge. Analytical Chemistry. 1990, 62(2): 157-61.
    [216] Greenfield S. Atomic fluorescence spectrometry-progress and future-prospects. Trac-Trends in Analytical Chemistry. 1995, 14(9): 435-442.
    [217] Zhu Z L, Zhang S C, Lv Y, et al. Atomization of hydride with a low-temperature, atmospheric pressure dielectric barrier discharge and its application to arsenic speciation with atomic absorption spectrometry. Analytical Chemistry. 2006, 78(3): 865-872.
    [218] Zhu Z L, Zhang S C, Xue J H, et al. Application of atmospheric pressure dielectric barrier discharge plasma for the determination of Se, Sb and Sn with atomic absorption spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy. 2006, 61(8): 916-921.
    [219] Del Razo L M, Stybo M, Cullen W R, et al. Determination of trivalent methylated arsenicals in biological matrices. Toxicology and Applied Pharmacology. 2001, 174(3): 282-293.
    [220] Clarkson T W, Magos L, Myers G J. The toxicology of mercury–current exposures andclinical manifestations. The New England Journal of Medicine. 2003, 349(18): 1731-1737.
    [221] Hatch W R, Ott W L. Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry. Analytical Chemistry. 1968, 40: 2085-2087.
    [222] Cullen M. Atomic Spectrometry in Elemental Analysis. Oxford: Blackwell Publishing, 2004.
    [223] Welz B, Sperling M. Atomic absorption spectrometry. Weinheim: Wiley-VCH Verlag Gmbh 1999.
    [224] He Y H, Hou X D, Zheng C B, et al. Critical evaluation of the application of photochemical vapor generation in analytical atomic spectrometry. Analytical and Bioanalytical Chemistry. 2007, 388(4): 769-774.
    [225] Arbab-Zavar M H, Rounaghi G H, Chamsaz M, et al. Determination of mercury(II) ion by electrochemical cold vapor generation atomic absorption spectrometry. Analytical Sciences. 2003, 19(5): 743-746.
    [226] Cerveny V, Rychlovsky P, Netolicka J, et al. Electrochemical generation of mercury cold vapor and its in-situ trapping in gold-covered graphite tube atomizers. Spectrochimica Acta Part B-Atomic Spectroscopy. 2007, 62(3): 317-323.
    [227] Li X, Wang Z H. Determination of mercury by intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry. Analytica Chimica Acta. 2007, 588(2): 179-183.
    [228] Denkhaus E, Golloch A, Guo X M, et al. Electrolytic hydride generation (EC-HG)-a sample introduction system with some special features. Journal of Analytical Atomic Spectrometry. 2001, 16(8): 870-878.
    [229] Guo X M, Sturgeon R E, Mester Z, et al. UV vapor generation for determination of selenium by heated quartz tube atomic absorption spectrometry. Analytical Chemistry. 2003, 75(9): 2092-2099.
    [230] Guo X M, Sturgeon R E, Mester Z, et al. Vapor generation by UV irradiation for sample introduction with atomic spectrometry. Analytical Chemistry. 2004, 76(8): 2401-2405.
    [231] Han C F, Zheng C B, Wang J, et al. Photo-induced cold vapor generation with low molecular weight alcohol, aldehyde, or carboxylic acid for atomic fluorescence spectrometric determination of mercury. Analytical and Bioanalytical Chemistry. 2007, 388(4): 825-830.
    [232] Vieira M A, Ribeiro A S, Curtius A J, et al. Determination of total mercury and methylmercury in biological samples by photochemical vapor generation. Analytical and Bioanalytical Chemistry. 2007, 388 (4): 837-847
    [233] Zheng C B, Li Y, He Y H, et al. Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury: potential application to mercury speciation in water. Journal of Analytical Atomic Spectrometry. 2005, 20(8): 746-750.
    [234] Gil S, Lavilla I, Bendicho C. Ultrasound-promoted cold vapor generation in the presence of formic acid for determination of mercury by atomic absorption spectrometry. Analytical Chemistry. 2006, 78(17): 6260-6264.
    [235] Gil S, Lavilla I, Bendicho C. Greener analytical method for determination of thiomersal (sodium ethylmercurithiosalicylate) in ophthalmic solutions using sono-induced cold vapour generation-atomic absorption spectrometry after UV/H2O2 advanced oxidation. Journal of Analytical Atomic Spectrometry. 2007, 22(5): 569-572.
    [236] Gil S, Lavilla I, Bendicho C. Green method for ultrasensitive determination of Hg in natural waters by electrothermal-atomic absorption spectrometry following sono-induced cold vapor generation and 'in-atomizer trapping'. Spectrochimica Acta Part B-Atomic Spectroscopy. 2007, 62(1): 69-75.
    [237] Ribeiro A S, Vieira M A, Willie S, et al. Ultrasound-assisted vapor generation of mercury. Analytical and Bioanalytical Chemistry. 2007, 388(4): 849-857.
    [238] Mezei P, Cserfalvi T. Electrolyte cathode atmospheric glow discharges for direct solution analysis. Applied Spectroscopy Reviews. 2007, 42: 573-604.
    [239] Fernandez C, Conceicao A C L, Rial-Otero R, et al. Sequential flow injection analysis system on-line coupled to high intensity focused ultrasound: Green methodology for trace analysis applications as demonstrated for the determination of inorganic and total mercuryin waters and urine by cold vapor atomic absorption spectrometry. Analytical Chemistry. 2006, 78(8): 2494-2499.
    [240] Liang D C, Blades M W. Atmospheric pressure capacitively coupled plasma atomizer for atomic absorption spectrometry Analytical Chemistry. 1988, 60(1): 27-31.
    [241] Anderson C, Hur M, Zhang P, et al. Two-dimensional space-time-resolved emission spectroscopy on atmospheric pressure glows in helium with impurities. Journal of Applied Physics. 2004, 96(4): 1835-1839.
    [242] Massines F, Rabehi A, Decomps P, et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. Journal of Applied Physics. 1998, 83(6): 2950-2957.
    [243] Ishii I, Montaser A. A tutorial discussion on measurements of rotational temperature in inductively coupled plasmas. Spectrochimica Acta Part B-Atomic Spectroscopy. 1991, 46: 1197-1206.
    [244] Rahman M M, Blades M W. Atmospheric pressure, radio frequency, parallel plate capacitively coupled plasma-excitation temperatures and analytical figures of merit. Spectrochimica Acta Part B-Atomic Spectroscopy. 1997, 52(13): 1983-1993.
    [245] Motret O, Hibert C, Pellerin S, et al. Rotational temperature measurements in atmospheric pulsed dielectric barrier discharge-gas temperature and molecular fraction effects. Journal of Physics D-Applied Physics. 2000, 33(12): 1493-1498.
    [246] Cooks R G, Ouyang Z, Takats Z, et al. Ambient mass spectrometry. Science. 2006, 311(5767): 1566-1570.
    [247] Takats Z, Wiseman J M, Gologan B, et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004, 306(5695): 471-473.
    [248] Venter A, Nefliu M, Cooks R G. Ambient desorption ionization mass spectrometry. Trac-Trends in Analytical Chemistry. 2008, 27(4): 284-290.
    [249] Chen H W, Talaty N N, Takats Z, et al. Desorption electrospray ionization mass spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment. Analytical Chemistry. 2005, 77(21): 6915-6927.
    [250] Cotte-Rodriguez I, Hernandez-Soto H, Chen H, et al. In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization. Analytical Chemistry. 2008, 80(5): 1512-1519.
    [251] Justes D R, Talaty N, Cotte-Rodriguez I, et al. Detection of explosives on skin using ambient ionization mass spectrometry. Chemical Communications. 2007, (21): 2142-2144.
    [252] Song Y S, Talaty N, Tao W A, et al. Rapid ambient mass spectrometric profiling of intact, untreated bacteria using desorption electrospray ionization. Chemical Communications. 2007, (1): 61-63.
    [253] Van Berkel G J, Ford M J, Deibel M A. Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization. Analytical Chemistry. 2005, 77(5): 1207-1215.
    [254] Wiseman J M, Ifa D R, Song Q Y, et al. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angewandte Chemie-International Edition. 2006, 45(43): 7188-7192.
    [255] Wiseman J M, Ifa D R, Venter A, et al. Ambient molecular imaging by desorption electrospray ionization mass spectrometry. Nature Protocols. 2008, 3(3): 517-524.
    [256] Cody R B, Laramee J A, Durst H D. Versatile new ion source for the analysis of materials in open air under ambient conditions. Analytical Chemistry. 2005, 77(8): 2297-2302.
    [257] Kpegba K, Spadaro T, Cody R B, et al. Analysis of self-assembled monolayers on gold surfaces using direct analysis in real time mass spectrometry. Analytical Chemistry. 2007, 79(14): 5479-5483.
    [258] Morlock G, Ueda Y. New coupling of planar chromatography with direct analysis in real time mass spectrometry. Journal of Chromatography A. 2007, 1143(1-2): 243-251.
    [259] Petucci C, Diffendal J, Kaufman D, et al. Direct analysis in real time for reaction monitoring in drug discovery. Analytical Chemistry. 2007, 79(13): 5064-5070.
    [260] Pierce C Y, Barr J R, Cody R B, et al. Ambient generation of fatty acid methyl ester ions from bacterial whole cells by direct analysis in real time (DART) mass spectrometry. Chemical Communications. 2007, (8): 807-809.
    [261] Ratcliffe L V, Rutten F J M, Barrett D A, et al. Surface analysis under ambient conditions using plasma-assisted desorption/ionization mass spectrometry. Analytical Chemistry. 2007, 79(16): 6094-6101.
    [262] Brede C, Pedersen-Bjergaard S, Lundanes E, et al. Capillary gas chromatography coupled with negative ionization microplasma mass spectrometry for halogen-selective detection. Journal of Analytical Atomic Spectrometry. 1999, 15(1): 55-60.
    [263] Smith A T, Karanassios V In Portability of on-site environmental monitoring: the state-of-the-art in miniature mass spectrometers, Proc. of the Fourth Biennial International Conference on Monitoring and Measurement of the Environment (EnviroAnalysis), 2002; R.ClementBurk B, Eds. pp 303-308.
    [264] Gist G L, Burg J R. Benzene - A review of the literature from a health effects perspective. Toxicology and Industrial Health. 1997, 13(6): 661-714.
    [265] Mehlman M A. Benzene, a multi-organ carcinogen. European Journal of Oncology. 2008, 13(1): 7-19.
    [266] Birch A J. Reduction by dissolving metals. part I. Journal of the Chemical Society. 1944: 430-436.
    [267] Andrade F J, Shelley J T, Wetzel W C, et al. Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Analytical Chemistry. 2008, 80(8): 2646-2653.
    [268] Andrade F J, Shelley J T, Wetzel W C, et al. Atmospheric pressure chemical ionization source. 2. Desorption-ionization for the direct analysis of solid compounds. Analytical Chemistry. 2008, 80(8): 2654-2663.
    [269] McEwen C N, McKay R G, Larsen B S. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Analytical Chemistry. 2005, 77(23): 7826-7831.
    [270] Na N, Zhang C, Zhao M X, et al. Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge. Journal of Mass Spectrometry. 2007, 42(8): 1079-1085.
    [271] Na N, Zhao M X, Zhang S C, et al. Development of a dielectric barrier discharge ion source for ambient mass spectrometry. Journal of the American Society for Mass Spectrometry. 2007, 18: 1859-1862.
    [272] Shiea J, Huang M Z, Hsu H J, et al. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Communications in Mass Spectrometry. 2005, 19(24): 3701-3704.
    [273]黄琼辉.国内外农药残留检测技术研究进展和发展方向.福建农业学报. 2008, 23(2): 218-222.
    [274]吴英.蔬菜中有机磷农药快速检测方法-GC/MS法的研究.中国卫生检验杂志2008. 2008, 18(1): 64-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700