基于纳米材料表面化学发光的传感器阵列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传感器阵列是传感器研究的活跃领域,它集成了单个传感器的功能,在食品安全、临床诊断、环境监测等领域有广泛的应用前景。光信号检测能够从强度、波长、发光寿命等方面提供丰富的识别信息,因此光学传感器阵列的研究最近得到了较快发展。本论文提出了基于纳米材料表面化学发光响应原理的传感器阵列,建立了快速筛选传感单元材料的新方法,发展了用于传感机理研究的分析表征手段,为传感器阵列的研究提供了新思路。研究内容包括:
     1.提出了基于纳米材料表面化学发光响应原理的传感器阵列。系统研究了硫化氢、三甲胺、乙醇等不同种类的化合物在各种纳米材料表面的化学发光特性,发现不同的样品分子在同一种纳米材料表面的化学发光效率不同,同一种样品分子在不同纳米材料表面的化学发光效率也不同的现象。因此,样品分子在纳米材料表面发生催化反应所得到的发光信号可以提供分子的识别信息。根据这一现象,利用一组纳米催化材料设计了基于纳米材料表面化学发光的传感器阵列。
     2.建立了快速筛选传感单元材料的新方法。设计了一组不同种类的负载贵金属的纳米氧化物催化材料,研究了纳米材料表面的化学发光性能与其催化活性之间的关系,发现纳米材料表面的化学发光性能与材料的催化活性之间存在着显著的相关性。这一方法不仅能够用于该传感器阵列所需要的传感材料的快速筛选,也能够用于催化材料的快速评价,对组合催化合成中高通量催化剂筛选有潜在的应用价值。
     3.发展了用于传感机理研究的分析表征手段。研究了固体表面样品在介质阻挡放电低温等离子体中的解吸附/离子化现象,设计了新型常压质谱离子源,分别以阵列表面的氨基酸和爆炸物样品的分析为例,证明了该方法可用于阵列表面上痕量物质的实时、原位分析,为传感机理研究提供了必要的表征手段。这种离子源在其它化学反应过程的实时在线监测中具有潜在的用途。
Sensor array, which integrates the functions of multiple sensors, is one of the hot topics in the study of sensors. Sensor array has a wide variety of application areas including food and beverages, medical diagnostics, environmental monitoring, and a host of others. Abundant information can be provided by optical signals for the analyte identification, including luminescence intensity, wavelength, lifetime, etc. Thus, the rapid development for optical sensor arrays has been achieved recently. In the present dissertation, a sensor array of nanomaterial-based cataluminescence was developed. Based on this sensor array, a new way for rapid screening of sensor materials was reported. Furthermore, a new analysis technique was also designed for studying the sensing mechanism, which provides us a novel pathway for the research of sensor array. The main contents of the present dissertation are as follows:
     1. A new sensor array based on nanomaterial-based cataluminescence was developed for analytes recognitions. By studying the cataluminescence behavior of sulfureted hydrogen, trimethylamine and ethanol on surfaces of nanomaterials, the specificity between cataluminescence signals and nanomaterials was established. The different cataluminescence responses were obtained both for the same analyte on different nanomaterials, and for the different analytes on the same nanomaterial. As a result, the optical information from the oxidation of analytes on the surfaces of nanomaterials can be used for analytes recognitions. Based on this phenomenon, an optical sensor array was developed with an array of different nanomaterials for analytes recognitions.
     2. A new method for rapid screening of sensor materials was reported. A series of metal catalysts deposited on nanomaterials supports were prepared for studying the correlation between catalytic activities and cataluminescence responses for the CO oxidation. The well correlation between catalytic activities and cataluminescence intensities was established. Then, a cataluminescence-based imaging method was successfully used for the high-throughput screening of sensor materials.
     3. A new analysis technique was designed for studying the sensing mechanism. An ambient ionization source for mass spectrometry was designed, which was based on desorption and ionization of analytes from the solid surfaces by the low temperature plasma of dielectric barrier discharge. The direct analysis of amino acids and explosives on the array surface was achieved, which demonstrated that the present method can be used for the real-time and in situ detection of trace analytes on the array surface. This provides us a novel pathway for studying the sensing mechanism.
引文
[1] Barnea, G.; O'Donnell, S.; Mancia, F., et al. Odorant receptors on axon termini in the brain. Science, 2004, 304 (5676): 1468-1468.
    [2] Zou, Z. H.; Horowitz, L. F.; Montmayeur, J. P., et al. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature, 2001, 414 (6860): 173-179.
    [3] Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 1982, 299 (5881): 352-355.
    [4] Dickinson, T. A.; White, J.; Kauer, J. S., et al. A chemical-detecting system based on a cross-reactive optical sensor array. Nature, 1996, 382 (6593): 697-700.
    [5] Rakow, N. A.; Suslick, K. S. A colorimetric sensor array for odour visualization. Nature, 2000, 406 (6797): 710-713.
    [6]周旭.现代传感器技术.北京:国防工业出版社, 2006.
    [7] Albert, K. J.; Lewis, N. S.; Schauer, C. L., et al. Cross-reactive chemical sensor arrays. Chem. Rev., 2000, 100 (7): 2595-2626.
    [8] Zhu, Y. F.; Shi, J. J.; Zhang, Z. Y., et al. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Anal. Chem., 2002, 74 (1): 120-124.
    [9] Zhang, Z. Y.; Xu, K.; Baeyens, W. R. G., et al. An energy-transfer cataluminescence reaction on nanosized catalysts and its application to chemical sensors. Anal. Chim. Acta, 2005, 535 (1-2): 145-152.
    [10] Zhang, Z. Y.; Xu, K.; Xing, Z., et al. A nanosized Y2O3-based catalytic chemiluminescent sensor for trimethylamine. Talanta, 2005, 65 (4): 913-917.
    [11] Zhang, Z. Y.; Jiang, H. J.; Xing, Z., et al. A highly selective chemiluminescent H2S sensor. Sensor. Actuat. B-Chem., 2004, 102 (1): 155-161.
    [12] Zhang, Z. Y.; Zhang, C.; Zhang, X. R. Development of a chemiluminescence ethanol sensor based on nanosized ZrO2. Analyst, 2002, 127 (6): 792-796.
    [13] Cao, X. O.; Zhang, X. R. A research on determination of explosive gases utilizing cataluminescence sensor array. Luminescence, 2005, 20 (4-5): 243-250.
    [14] Huang, G. M.; Lv, Y.; Zhang, S. C., et al. Development of an aerosol chemiluminescent detector coupled to capillary electrophoresis for saccharide analysis. Anal. Chem., 2005, 77 (22): 7356-7365.
    [15] Lv, Y.; Zhang, S. C.; Liu, G. H., et al. Development of a detector for liquid chromatography based on aerosol chemiluminescence on porous alumina. Anal. Chem., 2005, 77 (5): 1518-1525.
    [16] Shi, J. J.; Li, J. J.; Zhu, Y. F., et al. Nanosized SrCO3-based chemiluminescence sensor for ethanol. Anal. Chim. Acta, 2002, 466 (1): 69-78.
    [17] Wu, Y. Y.; Zhang, S. C.; Na, N., et al. A novel gaseous ester sensor utilizing chemiluminescence on nano-sized SiO2. Sensor. Actuat B-Chem., 2007, 126: 461-466.
    [18] Sun, Z. Y.; Zhang, X. R.; Na, N., et al. Synthesis of ZrO2-carbon nanotube composites and their application as chemiluminescent sensor material for ethanol. J. Phys. Chem. B, 2006, 110 (27): 13410-13414.
    [19] Sun, Z. Y.; Yuan, H. Q.; Liu, Z. M., et al. A highly efficient chemical sensor material for H2S: alpha-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater., 2005, 17 (24): 2993-+.
    [20] Zhang, Z. Y.; Zhang, S. C.; Zhang, X. R. Recent developments and applications of chemiluminescence sensors. Anal. Chim. Acta, 2005, 541 (1-2): 37-47.
    [21] Cao, X. O.; Zhang, Z. Y.; Zhang, X. R. Study of gaseous acetaldehyde sensor utilizing cataluminescence on nanosized SrCO3. Chinese J. Anal. Chem., 2004, 32 (12): 1567-1570.
    [22] Cao, X. O.; Zhang, Z. Y.; Zhang, X. R. A novel gaseous acetaldehyde sensor utilizing cataluminescence on nanosized BaCO3. Sensor. Actuat B-Chem., 2004, 99 (1): 30-35.
    [23] Shi, J. J.; Zhu, Y. F.; Zhang, X. R., et al. Recent developments in nanomaterial optical sensors. Trac-Trends Anal. Chem., 2004, 23 (5): 351-360.
    [24] Shi, J. J.; Li, J. J.; Zhu, Y. F., et al. Nanosized SrCO3-based chemiluminescence sensor for ethanol. Anal. Chim. Acta, 2002, 466 (1): 69-78.
    [25] Strike, D. J.; Meijerink, M. G. H.; Koudelka-Hep, M. Electronic noses - A mini-review. Fresen. J. Anal. Chem., 1999, 364 (6): 499-505.
    [26] LaFratta, C. N.; Walt, D. R. Very high density sensing arrays. Chem. Rev., 2008, 108 (2): 614-637.
    [27] PK Horan, P. K.; Wheeless, L. L. Quantitative single cell analysis and sorting. Science, 1977, 14: 149-157.
    [28] Wilson, R.; Cossins, A. R.; Spiller, D. G. Encoded microcarriers for high-throughput multiplexed detection. Angew. Chem. Int. Edit., 2006, 45 (37): 6104-6117.
    [29] Finkel, N. H.; Lou, X. H.; Wang, C. Y., et al. Barcoding the microworld. Anal. Chem., 2004, 76 (19): 353A-359A.
    [30] Ferguson, J. A.; Steemers, F. J.; Walt, D. R. High-density fiber-optic DNA random microsphere array. Anal. Chem., 2000, 72 (22): 5618-5624.
    [31] Epstein, J. R.; Ferguson, J. A.; Lee, K. H., et al. Combinatorial decoding: An approach for universal DNA array fabrication. J. Am. Chem. Soc., 2003, 125 (45): 13753-13759.
    [32] Biran, I.; Walt, D. R. Optical Imaging fiber-based single live cell arrays: A high-density cell assay platform. Anal. Chem., 2002, 74 (13): 3046-3054.
    [33] Stojanovic, M. N.; Green, E. G.; Semova, S., et al. Cross-reactive arrays based on three-way junctions. J. Am. Chem. Soc., 2003, 125 (20): 6085-6089.
    [34] Drew, S. M.; Janzen, D. E.; Mann, K. R. Characterization of a cross-reactive electronic nose with vapoluminescent array elements. Anal. Chem., 2002, 74 (11): 2547-2555.
    [35] Fojta, M. Electrochemical sensors for DNA interactions and damage. Electroanalysis, 2002, 14 (21): 1449-1463.
    [36] Krommenhoek, E. E.; Gardeniers, J. G. E.; Bomer, J. G., et al. Integrated electrochemical sensor array for on-line monitoring of yeast fermentations. Anal. Chem., 2007, 79: 5567-5573.
    [37] Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors. Chem. Rev., 2008, 108 (2): 329-351.
    [38] Vlasov, Y.; Legin, A. Non-selective chemical sensors in analytical chemistry: from "electronic nose" to "electronic tongue". Fresen. J. Anal. Chem., 1998, 361 (3): 255-260.
    [39] Cortina, M.; Duran, A.; Alegret, S., et al. A sequential injection electronic tongue employing the transient response from potentiometric sensors for anion multidetermination. Anal. Bioanal. Chem., 2006, 385 (7): 1186-1194.
    [40] Ciosek, P.; Maminska, R.; Dybko, A., et al. Potentiometric electronic tongue based on integrated array of microelectrodes. Sensor. Actuat B-Chem., 2007, 127 (1): 8-14.
    [41] Lindner, E.; Buck, R. P. Microfabricated potentiometric electrodes and their in vivo applications. Anal. Chem., 2000, 72 (9): 336A-345A.
    [42] Stetter, J. R.; Jurs, P. C.; Rose, S. L. Detection of hazardous gases and vapors: pattern recognition analysis of data from an electrochemical sensor array. Anal. Chem., 1986, 58 (4): 860-866.
    [43] Wang, J.; Rayson, G. D.; Lu, Z., et al. Coated amperometric electrode arrays for multicomponent analysis. Anal. Chem., 1990, 62 (18): 1924-1927.
    [44] Do, J. S.; Chen, P. Amperometric sensor array for NOx, CO, O-2 and SO2 detection. Sensor. Actuat B-Chem., 2007, 122 (1): 165-173.
    [45] Lee, D. S.; Kim, Y. T.; Huh, J. S., et al. Fabrication and characteristics of SnO2 gas sensor array for volatile organic compounds recognition. Thin Solid Films, 2002, 416 (1-2): 271-278.
    [46] Stankova, M.; Ivanov, P.; Llobet, E., et al. Sputtered and screen-printed metal oxide-based integrated microsensor arrays for the quantitative analysis of gas mixtures. Sensor. Actuat B-Chem., 2004, 103 (1-2): 23-30.
    [47] Graf, M.; Barrettino, D.; Taschini, S., et al. Metal oxide-based monolithic complementary metal oxide semiconductor gas sensor microsystem. Anal. Chem., 2004, 76 (15): 4437-4445.
    [48] Tomchenko, A. A.; Harmer, G. P.; Marquis, B. T., et al. Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sensor. Actuat B-Chem., 2003, 93 (1-3): 126-134.
    [49] Tomchenko, A. A.; Harmer, G. P.; Marquis, B. T. Detection of chemical warfare agents using nanostructured metal oxide sensors. Sensor. Actuat B-Chem., 2005, 108 (1-2): 41-55.
    [50] Hammond, J.; Marquis, B.; Michaels, R., et al. A semiconducting metal-oxide array for monitoring fish freshness. Sensor. Actuat B-Chem., 2002, 84 (2-3): 113-122.
    [51] Partridge, A. C.; Jansen, M. L.; Arnold, W. M. Conducting polymer-based sensors. Mat. Sci. Eng. C-Bio. S., 2000, 12 (1-2): 37-42.
    [52] Gardner, J. W.; Pearce, T. C.; Friel, S., et al. A multisensor system for beer flavor monitoring using an array of conducting polymers and predictive classifiers. Sensor. Actuat B-Chem., 1994, 18 (1-3): 240-243.
    [53] Guadarrama, A.; Fernandez, J. A.; Iniguez, M., et al. Array of conducting polymer sensors for the characterisation of wines. Anal. Chim. Acta, 2000, 411 (1-2): 193-200.
    [54] Lonergan, M. C.; Severin, E. J.; Doleman, B. J., et al. Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem. Mater., 1996, 8 (9): 2298-2312.
    [55] Yu, J. B.; Byun, H. G.; So, M. S., et al. Analysis of diabetic patient's breath with conducting polymer sensor array. Sensor. Actuat B-Chem., 2005, 108 (1-2): 305-308.
    [56] Su, M.; Li, S. Y.; Dravid, V. P. Miniaturized chemical multiplexed sensor array. J. Am. Chem. Soc., 2003, 125 (33): 9930-9931.
    [57] Mimura, T.; Fukuta, M. Status of the gaas metal-oxide-semiconductor technology. IEEE T. Electron. Dev., 1980, 27 (6): 1147-1155.
    [58] Muller, R.; Lange, E. Multidimensional sensor for gas analysis. Sensor. Actuat B-Chem., 1986, 9: 39-48.
    [59] Sundgren, H.; Lundstrom, I.; Winquist, F., et al. Evaluation of a multiple gas-mixture with a simple mosfet gas sensor array and pattern-recognition. Sensor. Actuat B-Chem., 1990, 2 (2): 115-123.
    [60] McDonagh, C.; Burke, C. S.; MacCraith, B. D. Optical chemical sensors. Chem. Rev., 2008, 108 (2): 400-422.
    [61] Dickert, F. L.; Keppler, M. Self-organized phases combined with IDC devices - Switchable materials for solvent vapor detection. Adv. Mater., 1995, 7 (12): 1020-&.
    [62] Epstein, J. R.; Walt, D. R. Fluorescence-based fibre optic arrays: a universal platform for sensing. Chem. Soc. Rev., 2003, 32 (4): 203-214.
    [63] Seitz, W. R. Chemical sensors based on immobilized indicators and fiber optics. Crit. Rev. Anal. Chem., 1988, 19: 135.
    [64] Walt, D. R.; Dickinson, T.; White, J., et al. Optical sensor arrays for odor recognition. Biosens. Bioelectron., 1998, 13 (6): 697-699.
    [65] Johnson, S. R.; Sutter, J. M.; Engelhardt, H. L., et al. Identification of multiple analytes using an optical sensor array and pattern recognition neural networks. Anal. Chem., 1997, 69 (22): 4641-4648.
    [66] Levitsky, I.; Krivoshlykov, S. G.; Grate, J. W. Rational design of a Nile Red/polymer composite film for fluorescence sensing of organophosphonate vapors using hydrogen bond acidic polymers. Anal. Chem., 2001, 73 (14): 3441-3448.
    [67] Michael, K. L.; Taylor, L. C.; Schultz, S. L., et al. Randomly ordered addressable high-density optical sensor arrays. Anal. Chem., 1998, 70 (7): 1242-1248.
    [68] Dickinson, T. A.; Michael, K. L.; Kauer, J. S., et al. Convergent, self-encoded bead sensor arrays in the design of an artificial nose. Anal. Chem., 1999, 71 (11): 2192-2198.
    [69] Wang, Z.; Palacios, M. A.; Anzenbacher, P. Fluorescence sensor array for metal ion detection based on various coordination chemistries: General performance and potential application. Anal. Chem., 2008, 80 (19): 7451-7459.
    [70] Palacios, M. A.; Wang, Z.; Montes, V. A., et al. Rational design of a minimal size sensor array for metal ion detection. J. Am. Chem. Soc., 2008, 130 (31): 10307-10314.
    [71] Basabe-Desmonts, L.; Benito-Lopez, F.; Gardeniers, H., et al. Fluorescent sensor array in a microfluidic chip. Anal. Bioanal. Chem., 2008, 390 (1): 307-315.
    [72] You, C. C.; Miranda, O. R.; Gider, B., et al. Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors. Nat. Nanotechnol., 2007, 2 (5): 318-323.
    [73] Lin, J.; Liu, D. An optical pH sensor with a linear response over a broad range. Anal. Chim. Acta, 2000, 408 (1-2): 49-55.
    [74] Segawa, H.; Ohnishi, E.; Arai, Y., et al. Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye. Sensor. Actuat B-Chem., 2003, 94 (3): 276-281.
    [75] Safavi, A.; Maleki, N.; Rostamzadeh, A., et al. CCD camera full range pH sensor array. Talanta, 2007, 71 (1): 498-501.
    [76] He, H. Q.; Xu, G. X.; Ye, X. S., et al. A novel chemical image sensor consisting of integrated microsensor array chips and pattern recognition. Measurement Science & Technology, 2003, 14 (7): 1040-1046.
    [77] Lavigne, J. J.; Savoy, S.; Clevenger, M. B., et al. Solution-based analysis of multiple analytes by a sensor array: Toward the development of an "electronic tongue". J. Am. Chem. Soc., 1998, 120 (25): 6429-6430.
    [78] Tohda, K.; Gratzl, M. Micro-miniature autonomous optical sensor array for monitoring ions and metabolites 2: Color responses to pH, K+ and glucose. Anal. Sci., 2006, 22 (7):937-941.
    [79] Tohda, K.; Gratzl, M. Micro-miniature autonomous optical sensor array for monitoring ions and metabolites 1: Design, fabrication, and data analysis. Anal. Sci., 2006, 22 (3): 383-388.
    [80] Sen, A.; Albarella, J. D.; Carey, J. R., et al. Low-cost colorimetric sensor for the quantitative detection of gaseous hydrogen sulfide. Sensor. Actuat B-Chem., 2008, 134 (1): 234-237.
    [81] Buryak, A.; Severin, K. A chemosensor array for the colorimetric identification of 20 natural amino acids. J. Am. Chem. Soc., 2005, 127 (11): 3700-3701.
    [82] Sohn, Y. S.; Goodey, A.; Anslyn, E. V., et al. A micromachined fluidic structure for capillary-based sample introduction into a microbead array chemical sensor. Sensor Letters, 2004, 2 (1): 69-72.
    [83] Di Natale, C.; Salimbeni, D.; Paolesse, R., et al. Porphyrins-based opto-electronic nose for volatile compounds detection. Sensor. Actuat B-Chem., 2000, 65 (1-3): 220-226.
    [84] Biesaga, M.; Pyrzynska, K.; Trojanowicz, M. Porphyrins in analytical chemistry. A review. Talanta, 2000, 51 (2): 209-224.
    [85] Akrajas, M.; Mat Salleh, M.; Yahaya, M. Enriching the selectivity of metalloporphyrins chemical sensors by means of optical technique. Sensor. Actuat B-Chem., 2002, B85 (3): 191-6.
    [86] Janzen, M. C.; Ponder, J. B.; Bailey, D. P., et al. Colorimetric sensor Arrays for volatile organic compounds. Anal. Chem., 2006, 78 (11): 3591-3600.
    [87] Rakow, N. A.; Sen, A.; Janzen, M. C., et al. Molecular recognition and discrimination of amines with a colorimetric array. Angew. Chem. Int. Edit., 2005, 44 (29): 4528-4532.
    [88] Zhang, C.; Suslick, K. S. A colorimetric sensor array for organics in water. J. Am. Chem. Soc., 2005, 127 (33): 11548-11549.
    [89] Suslick, K. S.; Rakow, N. A.; Sen, A. Colorimetric sensor arrays for molecular recognition. Tetrahedron, 2004, 60 (49): 11133-11138.
    [90] Zhang, C.; Bailey, D. P.; Suslick, K. S. Colorimetric sensor arrays for the analysis of beers: A feasibility study. J. Agric. Food Chem., 2006, 54 (14): 4925-4931.
    [91] Zhang, C.; Suslick, K. S. Colorimetric sensor array for soft drink analysis. J. Agric. Food Chem., 2007, 55 (2): 237-242.
    [92] Lim, S. H.; Musto, C. J.; Park, E., et al. A colorimetric sensor array for detection and identification of sugars. Org. Lett., 2008, 10 (20): 4405-4408.
    [93] Nath, N.; Chilkoti, A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem., 2002, 74 (3): 504-509.
    [94] Wang, Y. L.; Li, D.; Ren, W., et al. Ultrasensitive colorimetric detection of protein byaptamer - Au nanoparticles conjugates based on a dot-blot assay. Chem. Commun., 2008, (22): 2520-2522.
    [95] Greene, N. T.; Shimizu, K. D. Colorimetric molecularly imprinted polymer sensor array using dye displacement. J. Am. Chem. Soc., 2005, 127 (15): 5695-5700.
    [96] James, D.; Scott, S. M.; Ali, Z., et al. Chemical sensors for electronic nose systems. Microchim. Acta, 2005, 149 (1-2): 1-17.
    [97] Leipert, D.; Rathgeb, F.; Herold, M., et al. Interaction between volatile organic compounds and cyclopeptides detected with reflectometric interference spectroscopy. Anal. Chim. Acta, 1999, 392 (2-3): 213-221.
    [98] Kraus, G.; Gauglitz, G. Optical reflectometric gas sensing: Classification of hydrocarbon vapours by pattern recognition applied to RIfS sensor signals. Chemometr. Intell. Lab., 1995, 30 (2): 211-221.
    [99] Yuan, L. B.; Jin, W.; Zhou, L. M., et al. Enhancement of multiplexing capability of low-coherence interferometric fiber sensor array by use of a loop topology. J. Lightwave Technol., 2003, 21 (5): 1313-1319.
    [100] Yuan, L. B.; Yang, J. Tunable Fabry-Perot-resonator-based fiber-optic white-light interferometric sensor array. Opt. Lett., 2008, 33 (16): 1780-1782.
    [101] Lezec, H. J.; McMahon, J. J.; Nalamasu, O., et al. Submicrometer dimple array based interference color field displays and sensors. Nano Lett., 2007, 7 (2): 329-333.
    [102] Carey, W. P.; Beebe, K. R.; Kowalski, B. R., et al. Selection of adsorbates for chemical sensor arrays by pattern recognition. Anal. Chem., 1986, 58 (1): 149-153.
    [103] Rose-Pehrsson, S. L.; Grate, J. W.; Ballantine, D. S., et al. Detection of hazardous vapors including mixtures using pattern recognition analysis of responses from surface acoustic wave devices. Anal. Chem., 1988, 60 (24): 2801-2811.
    [104] Mandelis, A.; Christofides, C., Physics, Chemistry, and Technology of Solid State Gas Sensor Devices Wiley-Interscience: 1993.
    [105] Jin, X. X.; Yu, L.; Garcia, D., et al. Ionic liquid high-temperature gas sensor array. Anal. Chem., 2006, 78 (19): 6980-6989.
    [106] Ozmen, A.; Tekce, F.; Ebeoglu, M. A., et al. Finding the composition of gas mixtures by a phthalocyanine-coated QCM sensor array and an artificial neural network. Sensor. Actuat B-Chem., 2006, 115 (1): 450-454.
    [107] Zampetti, E.; Pantalei, S.; Macagnano, A., et al. Use of a multiplexed oscillator in a miniaturized electronic nose based on a multichannel quartz crystal microbalance. Sensor. Actuat B-Chem., 2008, 131 (1): 159-166.
    [108] Ballantine, D. S.; Rose, S. L.; Grate, J. W., et al. Correlation of surface acoustic-wave device coating responses with solubility properties and chemical-structure usingpattern-recognition. Anal. Chem., 1986, 58 (14): 3058-3066.
    [109] Rapp, M.; Reibel, J.; Voigt, A., et al. New miniaturized SAW-sensor array for organic gas detection driven by multiplexed oscillators. Sensor. Actuat B-Chem., 2000, 65 (1-3): 169-172.
    [110] Bender, F.; Barie, N.; Romoudis, G., et al. Development of a preconcentration unit for a SAW sensor micro array and its use for indoor air quality monitoring. Sensor. Actuat B-Chem., 2003, 93 (1-3): 135-141.
    [111] Santos, J. P.; Fernandez, M. J.; Fontecha, J. L., et al. SAW sensor array for wine discrimination. Sensor. Actuat B-Chem., 2005, 107 (1): 291-295.
    [112] Lozano, J.; Fernandez, M. J.; Fontecha, J. L., et al. Wine classification with a zinc oxide SAW sensor array. Sensor. Actuat B-Chem., 2006, 120 (1): 166-171.
    [113] Joo, B. S.; Huh, J. S.; Lee, D. D. Fabrication of polymer SAW sensor array to classify chemical warfare agents. Sensor. Actuat B-Chem., 2007, 121 (1): 47-53.
    [114] Hagleitner, C.; Hierlemann, A.; Lange, D., et al. Smart single-chip gas sensor microsystem. Nature, 2001, 414 (6861): 293-296.
    [115] Kurzawski, P.; Hagleitner, C.; Hierlemann, A. Detection and discrimination capabilities of a multitransducer single-chip gas sensor system. Anal. Chem., 2006, 78 (19): 6910-6920.
    [116] Jin, C. G.; Kurzawski, P.; Hierlemann, A., et al. Evaluation of multitransducer arrays for the determination of organic vapor mixtures. Anal. Chem., 2008, 80 (1): 227-236.
    [117] Jin, C. G.; Zeellers, E. T. Limits of recognition for binary and ternary vapor mixtures determined with multitransducer arrays. Anal. Chem., 2008, 80 (19): 7283-7293.
    [118] Breysse, M.; Claudel, B.; Faure, L., et al. Chemiluminescence during the catalysis of carbon monoxide oxidation on a thoria surface. J. Catal., 1976, 45 (2): 137-144.
    [119] Utsunomiya, K.; Nakagawa, M.; Sanari, N., et al. Continuous determination and discrimination of mixed odor vapors by a new chemiluminescence-based sensor system. Sensor. Actuat B-Chem., 1995, 25 (1-3): 790-793.
    [120] Nakagawa, M.; Yamashita, N., Cataluminescence-based gas sensors. In Frontiers in Chemical Sensors: Novel Principles and Techniques, Springer-Verlag Berlin: Berlin, 2005; Vol. 3, pp 93-132.
    [121] Nakagawa, M.; Yamamoto, I.; Yamashita, N. Detection of organic molecules dissolved in water using a gamma-Al2O3 chemiluminescence-based sensor. Anal. Sci., 1998, 14 (1): 209-214.
    [122] Okabayashi, T.; Matsuo, N.; Yamamoto, I., et al. Temperature-programmed sensing for gas identification using the cataluminescence-based sensors. Sensor. Actuat B-Chem., 2005, 108 (1-2): 515-520.
    [123] Turner, M.; Golovko, V. B.; Vaughan, O. P. H., et al. Selective oxidation with dioxygen bygold nanoparticle catalysts derived from 55-atom clusters. Nature, 2008, 454 (7207): 981-983.
    [124] Wu, Y. Y.; Na, N.; Zhang, S., et al. Discrimination and identification of flavors with catalytic nanomaterial-based optical chemosensor array. Anal. Chem., 2009, 81 (3): 961-966.
    [125] Potyrailo, R. A. Analytical spectroscopic tools for high-throughput screening of combinatorial materials libraries. Trac-Trends Anal. Chem., 2003, 22 (6): 374-384.
    [126] Hughes, M. D.; Xu, Y. J.; Jenkins, P., et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature, 2005, 437 (7062): 1132-1135.
    [127] Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science, 2006, 313 (5785): 332-334.
    [128] Senkan, S. Combinatorial heterogeneous catalysis - A new path in an old field. Angew. Chem. Int. Edit., 2001, 40 (2): 312-329.
    [129] Trapp, O. Gas chromatographic high-throughput screening techniques in catalysis. J. Chromatogr. A, 2008, 1184 (1-2): 160-190.
    [130] Sajonz, P.; Schafer, W.; Gong, X. Y., et al. Multiparallel microfluidic high-performance liquid chromatography for high-throughput normal-phase chiral analysis. J. Chromatogr. A, 2007, 1145 (1-2): 149-154.
    [131] Lavastre, O.; Touzani, R.; Garbacia, S. Thin layer chromatography for the detection of unexpected reactions in organometallic combinatorial catalysis. Adv. Synth. Catal., 2003, 345 (8): 974-977.
    [132] Senkan, S. M. High-throughput screening of solid-state catalyst libraries. Nature, 1998, 394 (6691): 350-353.
    [133] Cong, P. J.; Doolen, R. D.; Fan, Q., et al. High-throughput synthesis and screening of combinatorial heterogeneous catalyst libraries. Angew. Chem. Int. Edit., 1999, 38 (4): 484-488.
    [134] Nayar, A.; Liu, R.; Allen, R. J., et al. Laser-activated membrane introduction mass spectrometry for high-throughput evaluation of bulk heterogeneous catalysts. Anal. Chem., 2002, 74 (9): 1933-1938.
    [135] Nayar, A.; Kim, Y. T.; Rodriguez, J., et al. High speed laser activated membrane introduction mass spectrometric evaluation of bulk methylcyclohexane dehydrogenation catalysts. Appl. Surf. Sci., 2004, 223 (1-3): 118-123.
    [136] Korytar, P.; Janssen, H. G.; Matisova, E., et al. Practical fast gas chromatography: methods, instrumentation and applications. Trac-Trends Anal. Chem., 2002, 21 (9-10): 558-572.
    [137] Dar, Y. L. High-throughput experimentation: A powerful enabling technology for the chemicals and materials industry. Macromol. Rapid. Comm., 2004, 25 (1): 34-47.
    [138] Takeuchi, I.; Lauterbach, J.; Fasolka, M. J. Combinatorial materials synthesis. Materials Today, 2005, 8 (10): 18-26.
    [139] Murphy, V.; Volpe, A. F.; Weinberg, W. H. High-throughput approaches to catalyst discovery. Curr. Opin. Chem. Biol., 2003, 7 (3): 427-433.
    [140] Holzwarth, A.; Schmidt, P. W.; Maier, W. E. Detection of catalytic activity in combinatorial libraries of heterogeneous catalysts by IR thermography. Angew. Chem. Int. Edit., 1998, 37 (19): 2644-2647.
    [141] Reetz, M. T.; Becker, M. H.; Liebl, M., et al. IR-thermographic screening of thermoneutral or endothermic transformations: The ring-closing olefin metathesis reaction. Angew. Chem. Int. Edit., 2000, 39 (7): 1236-+.
    [142] Wennemers, H. Combinatorial chemistry: A tool for the discovery of new catalysts. Comb. Chem. High Throughput Screen., 2001, 4 (3): 273-285.
    [143] Pescarmona, P. P.; van der Waal, J. C.; Maxwell, I. E., et al. Combinatorial chemistry, high-speed screening and catalysis. Catal. Lett., 1999, 63 (1-2): 1-11.
    [144] Reddington, E.; Sapienza, A.; Gurau, B., et al. Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998, 280 (5370): 1735-1737.
    [145] Su, H.; Yeung, E. S. High-throughput screening of heterogeneous catalysts by laser-induced fluorescence imaging. J. Am. Chem. Soc., 2000, 122 (30): 7422-7423.
    [146] Su, H.; Hou, Y. J.; Houk, R. S., et al. Combinatorial screening of heterogeneous catalysts in selective oxidation of naphthalene by laser-induced fluorescence imaging. Anal. Chem., 2001, 73 (18): 4434-4440.
    [147] Busch, O. M.; Hoffmann, C.; Johann, T. R. F., et al. Application of a new color detection based method for the fast parallel screening of DeNO(x) catalysts. J. Am. Chem. Soc., 2002, 124 (45): 13527-13532.
    [148] Cooper, A. C.; McAlexander, L. H.; Lee, D. H., et al. Reactive dyes as a method for rapid screening of homogeneous catalysts. J. Am. Chem. Soc., 1998, 120 (38): 9971-9972.
    [149] Lang, H. G.; Maldonado, S.; Stevenson, K. J., et al. Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles. J. Am. Chem. Soc., 2004, 126 (40): 12949-12956.
    [150] Zhou, S. G.; McIlwrath, K.; Jackson, G., et al. Enhanced CO tolerance for hydrogen activation in Au-Pt dendritic heteroaggregate nanostructures. J. Am. Chem. Soc., 2006, 128 (6): 1780-1781.
    [151] Comotti, M.; Li, W. C.; Spliethoff, B., et al. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc., 2006, 128 (3): 917-924.
    [152] White, B.; Yin, M.; Hall, A., et al. Complete CO oxidation over Cu2O nanoparticlessupported on silica gel. Nano Lett., 2006, 6 (9): 2095-2098.
    [153] Zheng, N. F.; Stucky, G. D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc., 2006, 128 (44): 14278-14280.
    [154] Glaspell, G.; Fuoco, L.; El-Shall, M. S. Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation. J. Phys. Chem. B, 2005, 109 (37): 17350-17355.
    [155] Jia, J. F.; Haraki, K.; Kondo, J. N., et al. Selective hydrogenation of acetylene over Au/Al2O3 catalyst. J. Phys. Chem. B, 2000, 104 (47): 11153-11156.
    [156] Zwijnenburg, A.; Goossens, A.; Sloof, W. G., et al. XPS and Mossbauer characterization of Au/TiO2 propene epoxidation catalysts. J. Phys. Chem. B, 2002, 106 (38): 9853-9862.
    [157] Sirinakis, G.; Siddique, R.; Manning, I., et al. Development and characterization of Au-YSZ surface plasmon resonance based sensing materials: High temperature detection of CO. J. Phys. Chem. B, 2006, 110 (27): 13508-13511.
    [158] Lin, H. Y.; Chen, Y. W. Low-temperature CO oxidation on Au/FexOy catalysts. Ind. Eng. Chem. Res., 2005, 44 (13): 4569-4576.
    [159] Porta, F.; Prati, L.; Rossi, M., et al. New Au(0) sols as precursors for heterogeneous liquid-phase oxidation catalysts. J. Catal., 2002, 211 (2): 464-469.
    [160] Han, Y. F.; Kahlich, M. J.; Kinne, M., et al. CO removal from realistic methanol reformate via preferential oxidation - performance of a Rh/MgO catalyst and comparison to Ru/gamma-Al2O3, and Pt/-gamma-Al2O3. Appl. Catal. B, 2004, 50 (4): 209-218.
    [161] Suh, D. J.; Kwak, C.; Kim, J. H., et al. Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts. J. Power Sources, 2005, 142 (1-2): 70-74.
    [162] Okumura, M.; Nakamura, S.; Tsubota, S., et al. Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2. Catal. Lett., 1998, 51 (1-2): 53-58.
    [163] Yan, W. F.; Chen, B.; Mahurin, S. M., et al. Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO. J. Phys. Chem. B, 2005, 109 (21): 10676-10685.
    [164] Budroni, G.; Corma, A. Gold-organic-inorganic high-surface-area materials as precursors of highly active catalysts. Angew. Chem.-Int. Edit., 2006, 45 (20): 3328-3331.
    [165] Herzing, A. A.; Carley, A. F.; Edwards, J. K., et al. Microstructural development and catalytic performance of Au-Pd nanoparticles on Al2O3 supports: The effect of heat treatment temperature and atmosphere. Chem. Mater., 2008, 20 (4): 1492-1501.
    [166] Qu, Z. P.; Cheng, M. J.; Dong, X. L., et al. CO selective oxidation in H2-rich gas over Ag nanoparticles - effect of oxygen treatment temperature on the activity of silver particles mechanically mixed with SiO2. Catal. Today, 2004, 93-5: 247-255.
    [167] Nakao, K.; Ito, S.; Tomishige, K., et al. Structure of activated complex of CO2 formation in a CO+O2 reaction on Pd(110) and Pd(111). J. Phys. Chem. B, 2005, 109 (37): 17553-17559.
    [168] Nakao, K.; Ito, S.; Tomishige, K., et al. IR chemiluminescence probe of the vibrational energy distribution of CO2 formed during steady-state CO oxidation on Pt(111) and Pt(110) surfaces. J. Phys. Chem. B, 2005, 109 (50): 24002-24007.
    [169] Antonov, V. S.; Letokhov, V. S.; Matveyets, Y. A., et al. Sputtering of Neutral Molecules and Molecular Ions From the Adenine Crystal Surface Induced by the UV Picosecond Laser Pulse. Laser Chem., 1982, 1 (1): 37-43.
    [170] Karas, M.; Bachmann, D.; Hillenkamp, F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem., 1985, 57 (14): 2935 - 2939.
    [171] Orschel, M.; Klein, J.; Schmidt, H. W., et al. Detection of reaction selectivity on catalyst libraries by spatially resolved mass spectrometry. Angew. Chem. Int. Edit., 1999, 38 (18): 2791-2794.
    [172] Hagemeyer, A.; Lesik, A.; Streukens, G., et al. Discovery of novel catalytic materials for emissions control using high throughput scanning mass spectrometry. Comb. Chem. High Throughput Screen., 2007, 10 (2): 135-147.
    [173] Laiko, V. V.; Baldwin, M. A.; Burlingame, A. L. Atmospheric pressure matrix assisted laser desorption/ionization mass spectrometry. Anal. Chem., 2000, 72 (4): 652-657.
    [174] O'Connor, P. B.; Costello, C. E. A high pressure matrix-assisted laser desorption/ionization Fourier transform mass spectrometry ion source for thermal stabilization of labile biomolecules. Rapid Commun. Mass Spectrom., 2001, 15 (19): 1862-1868.
    [175] Macfarlane, R. D.; Torgerson, D. F. Californium-252 Plasma Desorption Mass-Spectroscopy. Science, 1976, 191 (4230): 920-925.
    [176] Arberr, M.; Bordolri, O.; Dgiyick, D., et al. Fast Atom Bombardment of Solids (F.A.B.) : A New Ion Source for Mass Spectrometry. J. Chem. Soc., Chem. Commun., 1981: 325-327.
    [177] Tang, N.; Tornatore, P.; Weinberger, S. R. Current developments in SELDI affinity technology. Mass Spectrom. Rev., 2004, 23 (1): 34-44.
    [178] Werner, H. W. Theoretical and experimental aspects of secondary ion mass-spectrometry. Vacuum, 1974, 24 (10): 493-504.
    [179] Popov, I. A.; Chen, H.; Kharybin, O. N., et al. Detection of explosives on solid surfaces by thermal desorption and ambient ion/molecule reactions. Chem. Commun., 2005, (15): 1953-1955.
    [180] Sigman, M. E.; Ma, C. Y.; Ilgner, R. H. Performance evaluation of an in-injection port thermal desorption/gas chromatographic/negative ion chemical ionization massspectrometric method for trace explosive vapor analysis. Anal. Chem., 2001, 73 (4): 792-798.
    [181] McLuckey, S. A.; Goeringer, D. E.; Asano, K. G., et al. High explosives vapor detection by glow discharge ion trap mass spectrometry. Rapid Commun. Mass Spectrom., 1996, 10 (3): 287-298.
    [182] Newman, K.; Mason, R. S. Gas chromatography combined with fast flow glow discharge mass spectrometry (GC-FFGD-MS). J. Anal. Atom. Spectrom., 2004, 19 (9): 1134-1140.
    [183] Olson, L. K.; Belkin, M.; Caruso, J. A. Radiofrequency glow discharge mass spectrometry for gas chromatographic detection: A new departure for elemental speciation studies. J. Anal. Atom. Spectrom., 1996, 11 (7): 491-496.
    [184] Cody, R. B.; Laramee, J. A.; Durst, H. D. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem., 2005, 77 (8): 2297-2302.
    [185] McDonnell, L. A.; Heeren, R. M. A. Imaging mass spectrometry. Mass Spectrom. Rev., 2007, 26 (4): 606-643.
    [186] Hughes, I.; Hunter, D. Techniques for analysis and purification in high-throughput chemistry. Curr. Opin. Chem. Biol., 2001, 5 (3): 243-247.
    [187] Takats, Z.; Wiseman, J. M.; Gologan, B., et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 2004, 306 (5695): 471-473.
    [188] Wiseman, J. M.; Ifa, D. R.; Song, Q. Y., et al. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew. Chem. Int. Edit., 2006, 45 (43): 7188-7192.
    [189] Ford, M. J.; Van Berkel, G. J. An improved thin-layer chromatography/mass spectrometry coupling using a surface sampling probe electrospray ion trap system. Rapid Commun. Mass Spectrom., 2004, 18 (12): 1303-1309.
    [190] McEwen, C. N.; McKay, R. G.; Larsen, B. S. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal. Chem., 2005, 77 (23): 7826-7831.
    [191] Shiea, J.; Huang, M. Z.; Hsu, H. J., et al. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Spectrom., 2005, 19 (24): 3701-3704.
    [192] Takats, Z.; Cotte-Rodriguez, I.; Talaty, N., et al. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chem. Commun., 2005, (15): 1950-1952.
    [193] Zhu, Z. L.; Zhang, S. C.; Lv, Y., et al. Atomization of hydride with a low-temperature, atmospheric pressure dielectric barrier discharge and its application to arsenic speciation with atomic absorption spectrometry. Anal. Chem., 2006, 78 (3): 865-872.
    [194] Sonnenfeld, A.; Tun, T. M.; Zajickova, L., et al. Deposition process based on organosilicon precursors in dielectric barrier discharges at atmospheric pressure-a comparison. Plasmas and Polymers, 2001, 6 (4): 237-66.
    [195] Ling, Y. M. Probe diagnosis of electron temperature and electron energy distribution in low-pressure dielectric barrier discharge. Phys. Plasmas, 2005, 12 (11).
    [196] Kogelschatz, U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chem. Plasma P., 2003, 23 (1): 1-46.
    [197] Lee, D.; Park, J. M.; Hong, S. H., et al. Numerical simulation on mode transition of atmospheric dielectric barrier discharge in helium-oxygen mixture. IEEE T. Plasma Sci., 2005, 33 (2): 949-957.
    [198] Laroussi, M.; Lu, X.; Kolobov, V., et al. Power consideration in the pulsed dielectric barrier discharge at atmospheric pressure. J. Appl. Phys., 2004, 96 (5): 3028-3030.
    [199] McLuckey, S. A.; Glish, G. L.; Asano, K. G., et al. Atmospheric sampling glow discharge ionization source for the determination of trace organic compounds in ambient air. Anal. Chem., 1988, 60: 2220-2227.
    [200] Newman, K.; Mason, R. S. Organotin speciation using fast flow glow discharge mass spectrometry. J. Anal. Atom. Spectrom., 2005, 20 (9): 830-838.
    [201] Berkout, V. D. Fragmentation of protonated peptide ions via interaction with metastable atoms. Anal. Chem., 2006, 78 (9): 3055-3061.
    [202] Klassen, J. S.; Kebarle, P. Collision-induced dissociation threshold energies of protonated glycine, glycinamide, and some related small peptides and peptide amino amides. J. Am. Chem. Soc., 1997, 119 (28): 6552-6563.
    [203] Gillen, G.; Mahoney, C.; Wight, S., et al. Characterization of high explosive particles using cluster secondary ion mass spectrometry. Rapid Commun. Mass Spectrom., 2006, 20 (12): 1949-1953.
    [204] Schmidt, A. C.; Herzschuh, R.; Matysik, F. M., et al. Investigation of the ionisation and fragmentation behaviour of different nitroaromatic compounds occurring as polar metabolites of explosives using electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2006, 20 (15): 2293-2302.
    [205] Yinno, J. Mass spectral fragmentation pathways in some dinitroaromatic compounds studied by collision-induced dissociation and tandem mass spectrometry. Organic Mass Spectrometry, 1992, 27: 689.
    [206] Zheng, W. Y.; Rogers, E.; Coburn, M., et al. Mass spectral fragmentation pathways in 1,3,3-trinitroazetidine. J. Mass Spectrom., 1997, 32 (5): 525-532.
    [207] O'Hair, R. A. J.; Broughton, P. S.; Styles, M. L., et al. The fragmentation pathways of protonated glycine: A computational study. J. Am. Soc. Mass Spectrom., 2000, 11 (8):687-696.
    [208] Pan, X. P.; Zhang, B. H.; Cox, S. B., et al. Determination of N-nitroso derivatives of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soils by pressurized liquid extraction and liquid chromatography-electro spray ionization mass spectrometry. J. Chromatogr. A, 2006, 1107 (1-2): 2-8.
    [209] Evans, C. S.; Sleeman, R.; Luke, J., et al. A rapid and efficient mass spectrometric method for the analysis of explosives. Rapid Commun. Mass Spectrom., 2002, 16 (19): 1883-1891.
    [210] Fu, X. F.; Zhang, Y.; Shi, S. H., et al. Fragmentation study of hexanitrostilbene by ion trap multiple mass spectrometry and analysis by liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom., 2006, 20 (19): 2906-2914.
    [211] Zhao, X. M.; Yinon, J. Identification of nitrate ester explosives by liquid chromatography-electrospray ionization and atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A, 2002, 977 (1): 59-68.
    [212] Evans, E. H.; Pretorius, W.; Ebdon, L., et al. Low-Pressure Inductively-Coupled Plasma Ion-Source for Molecular and Atomic Mass-Spectrometry. Anal. Chem., 1994, 66 (20): 3400-3407.
    [213] Ewing, R. G.; Atkinson, D. A.; Eiceman, G. A., et al. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta, 2001, 54 (3): 515-529.
    [214] Nersisyan, G.; Graham, W. G. Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium. Plasma Sources Sci. T., 2004, 13 (4): 582-587.
    [215] Cooks, R. G.; Ouyang, Z.; Takats, Z., et al. Ambient mass spectrometry. Science, 2006, 311 (5767): 1566-1570.
    [216] Takats, Z.; Wiseman, J. M.; Cooks, R. G. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom., 2005, 40 (10): 1261-1275.
    [217] Langrock, T.; Czihal, P.; Hoffmann, R. Amino acid analysis by hydrophilic interaction chromatography coupled on-line to electrospray ionization mass spectrometry. Amino Acids, 2006, 30 (3): 291-297.
    [218] Yang, W. C.; Mirzaei, H.; Liu, X. P., et al. Enhancement of amino acid detection and quantification by electrospray ionization mass spectrometry. Anal. Chem., 2006, 78 (13): 4702-4708.
    [219] Khayamian, T.; Tabrizchi, M.; Jafari, M. T. Analysis of 2,4,6-trinitrotoluene, pentaerythritol tetranitrate and cyclo-1,3,5-trimethylene-2,4,6-trinitramine using negative corona discharge ion mobility spectrometry. Talanta, 2003, 59 (2): 327-333.
    [220] Ou, Y. X. The Theory of The Explosives. The Theory of The Explosives. Beijing Instituteof Technology Press: Beijing, 2006.
    [221] Iwama, T.; Hirose, M.; Yazawa, I., et al. Development of Sniffing Atmospheric Pressure Penning Ionization. J. Mass Spectrom. Soc. Jpn., 2006, 54: 227.
    [222] Tsuchiya, M.; Kuwabara, H. Liquid ionization mass spectrometry of nonvolatile organic compounds. Anal. Chem., 1984, 56 (1): 14-19.
    [223] Carazzato, D.; Bertrand, M. J. Characterization of a Glow-Discharge Ion-Source for the Mass-Spectrometric Analysis of Organic-Compounds. J. Am. Soc. Mass Spectrom., 1994, 5 (4): 305-315.
    [224] Hiraoka, K.; Fujimaki, S.; Kambara, S., et al. Atmospheric-pressure Penning ionization mass spectrometry. Rapid Commun. Mass Spectrom., 2004, 18 (19): 2323-2330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700