水平偶极子在涂敷单轴介质的高耗介质表面激励的场
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对电偶极子在三层介质中激起的电磁场的研究有很多实际意义,比如长波在有覆盖层的海面或地面上的传播,微带天线在导电基底的硅片上激起的电磁场等。但对这个问题的研究出现了不同的看法和分歧,King和Sandler认为:只要中间层的厚度不大,远区沿介质表面传播的波主要是侧面波,它将以ρ~(-2)规律衰减。而Wait在他的评论中却认为,在King和Sandler研究的情况下,远区场应该主要以吸附表面波为主,它将以ρ~(-1/2)规律衰减。后来,Mahmoud也对King的文章给出了评论。
     Collin、张红旗、李凯等人对这个问提进行了深入探讨。Collin给出了覆盖一层介质的地球表面上由赫兹偶极子激励的电磁场E_z分量的严格解。张给出了垂直偶极子在涂敷介质的理想和非理想导电基底上产生的场,以及水平偶极子在涂敷介质的理想导电基底上产生的场和埋入基底中的水平偶极子在基底一侧产生的场。在此基础上,李研究了水平偶极子在涂敷单轴各向异性介质层的理想导电基底上激励的场。
     在实际情况中,不仅要顾及涂敷层的各向异性特性,同时更一般的情况是有耗基底。针对更实际的情况,本文将研究水平电偶极子在涂敷单轴介质的高耗介质上激励的电磁场。利用张、李论文中所述的类似方法,本文首先给出了六个场分量的由三项组成的完整的积分表达式。前两项分别是直达波和理想反射波,最后一项表示由涂敷层带来的影响。由复变函数理论,把最后这一积分项的求解分解成求被积函数极点的留数和求沿支点形成的割缝的积分两部分。由极点留数得到的那项是吸附表面波,而由沿支点割缝积分得到的是侧面波。
     最后求得的这些解包括直达波,理想反射波,吸附表面波和侧面波。而且吸附表面波和侧面波也分别有电型(TM)和磁型(TE)两种。当涂敷层厚度ι满足nπ<(κ_T)/(κ_L)(κ_L~2-κ_0~2)~(1/2)·ι<(n+1)π,能激起n+1个模式的电型吸附表面波,其波数在κ_0和κ_L之间,当(n-(1/2))π<(κ_T~2-κ_0~2)~(1/2)·ι<(n+(1/2))π,能激起n个模式的磁型吸附表面波,其波数则在κ_0和κ_T之间。在垂直边界的方向上,吸附表面波随指数衰减。在ρ方向上,由于基底的损耗,吸附表面波有较大衰减。侧面波不管是电型还是磁型,其波数都是κ_0,并且受基底导电性的影响较小。
In the past many years, the electromagnetic field generated by a dipole source in the presence of three-layered regions has been visited by many investigators because of its wide useful applications, such as the propagation of the low frequency wave over the earth or sea covered by a layer, and the electromagnetic field generated by a microstrip antenna on the silicon chip with a conductive substrate.
    In early 1990's, R. W. P. King, et al. concluded that the dominant field in the far region generated by a electric dipole is the lateral-wave, which attenuates with ρ~(-2). In 1998, J. R. Wait has claimed that under the case addressed by King and Sandier, the main field in the far region is the trapped surface wave, which attenuates with ρ~(-1/2). Lately, Mahmoud also presented comments on King's works. The debates between King et al. and the commenters naturally rekindled the interest in the study on the old problem.
    Recently, Collin presented the exact field of a hertzian dipole in the air above a dielectric-coated lossy earth. From 2002 to 2005, Zhang et al. have investigated the electromagnetic field of vertical and horizontal electric dipoles in the three-layered medium. Along the researching line, Li has extended the investigation on the electromagnetic field in a three-layered region consisting of air, a uniaxial lay and a perfect conductor.
    Considering the actual situations, in which the substrate layer is always imperfect, it is needed to study the field from a horizontal electric dipole above a high lossy medium coated with a uniaxial layer. In this paper, the explicit formulas were derived for the six components of the electromagnetic field in air excited by a horizontal electric dipole over a planar high lossy dielectric coated with a uniaxial layer. Numerical results were also obtained.
    Similar to the perfect case addressed by Li, et al, the complete field in the present case is also composed of the direct wave, the ideal reflected wave, the trapped-surface wave, and the lateral wave. Both trapped-surface wave and
    lateral wave have two types - the electric type (TM) and the magnetic type (TE). The wave numbers in the ρ direction of the electric-type trapped surface wave, which are between k_0 and k_L, are different from those of the magnetic-type trapped surface wave, which are between k_0 and k_T. When the thickness l of the uniaxial layer satisfies nπ <[(k_T)/(K_L)]({k_L~2— k)0~2)~(1/2) ? l < (n + 1)π, there are n + 1 modes of the electric-type trapped surface waves. When the thickness l satisfies (n — (1/2))π < (k_T~2 — k_0~2)~(1/2) ? l < (n + (1/2))π, there are n modes of the magnetic-type trapped waves. The wave number of the lateral wave is k_0 no matter how thick the uniaxial layer is.
引文
[1] R. W. P. King, M. Owens, T. T. Wu: Lateral Electromagnetic Waves, Springer-Verlag, New York, (1992).
    [2] R. W. P. King and S. S. Sandler: The electromagnetic field of a vertical electric dipole in the presence of a three-layered region, Radio Sci., (1994), Vol.29, No.1, pp.97-113.
    [3] R. W. P. King: The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region, J. Appl. Phys.(1991), Vol.69, No.12, pp.7987-7995.
    [4] R. W. P. King: The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region: Supplement, J. Appl. Phys., (1993), Vol.74, No.8, pp.4845-4548.
    [5] J. R. Wait: Comment on "The electromagnetic field of a vertical electric dipole in the presence of a three-layered region" by Ronold, W. P. King and Sheldon S. Sandler, Radio Sci. (1998), Vol.33, No.2, pp.251-253.
    [6] R. W. P. King, S. S. Sandler: Reply, Radio Sci., (1998), Vol.33, No.2, pp.255-256.
    [7] S. F. Mahmoud: Remarks on "The electromagnetic field of a vertical electric dipole over the earth or sea". IEEE Trans. Antennas Propagat., (1999), Vol.46, No.12, pp. 1745-1946.
    [8] R. E. Collin: Some observations about the near zone electric field of a hertzian dipole above a lossy earth, IEEE Trans. Antennas Propagat., (2004), Vol.52, No.11, pp. 3133-3137.
    [9] H. Q. Zhang, W. Y. Pan: Electromagnetic field of a vertical electric dipole on a perfect conductor coated with a dielectric layer, Radio Sci., Vol.37, No.4, PP.13-1-13-7, 2002.
    [10] 张红旗,潘威炎,沈凯先:水平电偶极子在涂敷介质层的导电基底上激起的电磁场.《电波科学学报》,(2001),第16卷,第3期。
    [11] H. Q. Zhang, K. Li, and W. Y. Pan: The Electromagnetic Field of a Vertical Dipole on The Dielectric-Coated Imperfect Conductor, J. Electromagn. Waves and Appl.,Vol. 18, PP. 1305-1320, 2004.
    [12] H. Q. Zhang, et al.: Electromagnetic Field for a Horizontal Electric Dipole Buried inside a Dielectric Layer coated High Lossy Half Space, Progress in Electromagnetics Research, PIER 50, PP. 163-186, 2005.
    [13] K. Li and Y. Lu: Electromagnetic field generated by a horizontal electric dipole near the surface of a planar perfect conductor coated with a uniaxial layer, IEEE Trans. Antennas and Propagat., Vol.53, PP.3191-3200, 2005.
    [14] W. Y. Pan: Measurement of lateral waves along a three-layered medium, IEEE Transactions on Antennas and Propagation, (1986), Vol.AP-34, No.2, pp.267-277.
    [15] J. Zenneck: Propagation of plane electromagnetic waves along a plane conducting surface and its bearing on the theory of transmission in wireless telegraphy, Ann. Phys. (Leipzig), (1907), Vol.23, pp.846-866.
    [16] M. Kline: The Theory of Electromagnetic Waves, Dover, New York,(1965).
    [17] J. A. Kong: The Theory of Electromagnetic Waves, Wiley, New York,(1975).
    [18] J. R. Wait: Wave Propagation Theory, Pergamon Press, Elmsford, New York, (1981).
    [19] A. Banos, Jr.: Dipole Radiation in the Presence of a Conducting Half-Space, Oxford: Pergamon Press, (1966).
    [20] A. Sommerfeld: Propagation of waves in wireless telegraphy. Ann. Phys. (Leipzig). (1909), Vol.28, pp.665-737.
    [21] L. M. Brekhovskikh: Waves in Layered Media,(2nd Ed.) New York: Academic Press, (1980).
    [22] A. D. Boardman: Electromagnetic Surface Modes, New York, John Wiley and Sons, Inc., (1982).
    [23] A. Sommerfeld: Propagation of waves in wireless telegraphy, Ann. Phys. (Leipzig), (1926), Vol.81, pp.1135-1153.
    [24] A. Sommerfeld: In dia differential und integralgleichungen der meckanik und physik, Vol.Ⅱ. P. Frank, R. v. Mises (eds.). Braunschweig, Germany, F. Vieweg and Son, (1935), pp.932-933.
    [25] J. R. Wait: The electromagnetic fields of a horizontal dipole in the presence of a conducting half-space, Can. J. Phys., 1961, Vol.39, pp.1017-1027.
    [26] K. A. Norton: The propagation of radio waves over the surface of the earth and in the upper atmosphere, Proc. IRE, 1936, Vol.24, pt.1 pp.1367-1387.
    [27] K. A. Norton: The propagation of radio waves over the surface of the earth and in the upper atmosphere, Proc. IRE, 1937, Vol.25, pt.2, pp.1203-1236.
    [28] W. Y. Pan: Surface wave propagation along the boundary between sea water and one-dimensionally anisotropic rock, J. Appl. Phys., 1985, Vol.58, pp.3963-3974.
    [29] S. S. Attwood: Surface wave propagation over a coated plane conductor, J. Appl. Phys., (1951), Vol.22, pp.504-509.
    [30] H. M. Barlow and A. L. Cullen: Surface waves, Proc. IEE(London), (1953), 100, Part Ⅲ, pp.329-341.
    [31] M. F. Brown and R. W. P. King: Shallow sounding of crustal regions using electromagnetic surface waves. Radio Sci., (1986), Vol.21, pp.831-844.
    [32] J. R. Wait: Electromagnetic Wave Theory, Harper and Row, Publishers, Inc. (1985).
    [33] P. R. Bannister and R. L. Dube: Simple expressions for horizontal electric dipole quasi-static range subsurface-to-subsurface and subsurface-to-air propagation, Radio Sci., (1978), Vol.13, pp.501-507.
    [34] A., Jr. Banos and J. P. Wesley: The horizontal electric dipole in a conducting half-Space, Part I. Univ. Of Calif. Marine Phys. Lab., SIO Reference, (1953), pp.33-53.
    [35] A. Banos, Jr. and J. P. Wesley: The horizontal electric dipole in a conducting half-Space, Part I. Univ. Of Calif. Marine Phys. Lab., SIO Reference, (1954), pp.31-54.
    [36] P. R. Bannister: Subsurface to air and air to Subsurface propagation with dipole antennas, Conference on MF. LF. and VLF. Radio Propag. EE London, (1967).
    [37] M. F. Brown, R. Q. P. King, and T. T. Wu: Lateral wave studies in a model lithosphere. J. Appl. Phys.(1982), Vol.53, pp.3387-3396.
    [38] M. F. Brown, R. Q. P. King, and T. T. Wu: Experiments on the reflection of lateral electromagnetic waves. J. Appl. Phys., (1984), Vol.55, pp.3927-3933.
    [39] J. M. Dunn: Electromagnetic lateral waves in layered media, Ph.d Thesis, Harvard Univ. Cambridge, MA, (1984).
    [40] J. M. Dunn: Lateral wave propagation in a three-layered medium, Radio Sci. (1986), Vol.21, pp.787-796.
    [41] R. W. P. King: New formulas for the electromagnetic field of a vertical electric dipole in a dielectric or conducting half-space near its horizontal interface. J. Appl. Phys.(1982), Vol.53, pp.8476-8482.
    [42] R. W. P. King: On the reflection of lateral electromagnetic waves form perpendicular boundaries, J. Appl. Phys., (1984), Vol.55, pp.3916-3926.
    [43] R. W. P. King: Electromagnetic surface waves: New formulas and applications, IEEE Trans. Antennas Propag., (1985), AP-33, pp.1204-1212.
    [44] R. W. P. King: Properties of the lateral electromagnetic field of a vertical dipole and their application, IEEE Trans. Geosci. Remote Sensing, (1986), GE.24, pp.813-825.
    [45] R. W. P. King: Lateral electromagnetic pulses generated by a vertical dipole on a plane boundary dielectrics, J. Electrom. Waves Appl., (1988), Vol.2, pp.225-243.
    [46] R. W. P. King: The Propagation of signals along a three-layered region: Microstrip. IEEE Trans. Microwave Theory Tech., (1988), Vol.36, pp.1080-1086.
    [47] R. W. P. King: Lateral electromagnetic pulses generated on a plane boundary between dielectrics by vertical and horizontal dipole sources with Gaussian pulse excitation, J. Electrom. Waves Appl., (1989), Vol.3, pp.589-797.
    [48] R. W. P. King: Lateral electromagnetic waves from a horizontal antenna for remote sensing in the ocean, IEEE Trans. Antennas Propag., (1989), Vol.AP-37, pp. 1250-1255.
    [49] R. W. P. King: Lateral electromagnetic waves and pulses on a open microstrip, IEEE Trans. Microwave Theory Tech., (1990), Vol.37, pp.38-47.
    [50] R. W. P. King: Electromagnetic field of a vertical dipole over a imperfect conducting half-space, Radio Sci., (1990), Vol.25, pp.149-160.
    [51] R. W. P. King: Electromagnetic field of dipoles and patch antennas on microstrip, Radio Sci., (1992), Vol.27, pp.71-78.
    [52] R. W. P. King: Lateral electromagnetic waves along plane boundaries: A summarizing approach, Proc. IEEE, (1984), Vol.72, pp.595-611.
    [53] R. W. P. King, J. T. deBettencourt, and B. H. Sandier: Lateral-wave propagation of electromagnetic waves in the lithosphere, IEEE Trans. Geosci. Electron., (1979), GE-17, pp.86-92.
    [54] R. W. P. King, M. Owens, and T. T. Wu: Properties of lateral electromagnetic fields and their application, Radio Sci., (1986), Vol.21, pp.12-23.
    [55] R. W. P. King and S. Prasad: Fundamental Electromagnetic Theory and Application, Englewood Cliffs, N. J.: Prentice-Hall, Inc.,(1986).
    [56] R. W. P. King, B. H. Sandler: Subsurface communication between dipoles in general media, IEEE Trans. Antennas Propag., (1977), AP-25, pp.770-775.
    [57] R. W. P. King, B. H. Sandler, and L. C. Shen: A comprehensive study of subsurface propagation from horizontal electric dipoles, IEEE Trans. Geosci. Remote sensing.,(1980), Vol.GE-18, pp.225-233.
    [58] R. W. P. King and T. T. Wu: Lateral waves: Formulas for the magnetic field, J. Appl. Phys., (1983), Vol.54, pp.507-514.
    [59] R. W. P. King, T. T. Wu, and L. C. Shen: The horizontal wire antenna over a conducting or dielectric half-space: Current and admittance, Radio Sci., (1974), Vol.9, pp.701-709.
    [60] R. J. Lytle, E. K. Miller, and D. L. Lager: A physical explanation of electromagnetic surface wave formulas, Radio Sci., (1976), Vol.11, pp.235-243.
    [61] Y. Rahmat-Samii, R. Mittra, and P. Parhami: Evaluation of Sommerfeld integrals for lossy half-space problems, Electromagnetic, (1981), Vol.1, pp.1-28.
    [62] D. A. Hill and J. R. Wait: Excitation of Zenneck surface wave by a vertical aperture, Radio Sci., (1978), Vol.13, pp.969-977.
    [63] K. A. Norton: The calculations of ground-wave field intensity over a finitely conducting spherical earth, Proc. IRE, (1941), Vol.29, pp.623-639.
    [64] B. Vander Pol: Propagation of electromagnetic waves over the plane earth, Ann. Phys. (Leipzip), (1930), Vol.6, pp.273-295.
    [65] B. Vander Pol: On discontinuous electromagnetic waves and the occurrence of a surface wave, IRE Trans. Antennas Propag., (1956), AP-4, pp.288-293.
    [66] J. R. Wait: The electromagnetic fileds of a horizontal dipole in the presence of a conducting half-space, Can. J. Phys., (1961), Vol.39, pp.1017-1027.
    [67] G. N. Watson: A Treatise On the Theory of Bessel Function, (2nd ed.) London: Cambridge Unvi. Press, (1967).
    [68] J. R. Wait and D. A. Hill: Excitation of the HF surface wave by vertical and horizontal antennas, Radio Sci., (1979), Vol.14, pp.767-780.
    [69] J. R. Wait and D. A. Hill: Electromagnetic interaction between a conducting cylinder and a solenoid in relative motion, Journal of Applied physics, (1979), Vol.50, pp.5115-5119.
    [70] J. R. Wait: Electromagnetic response of an anisotropic conducting cylinder to an external source, Radio Sci., (1978), Vol.13, pp.798-792.
    [71] J. R. Wait and R. L. Cardner: Electromagnetic testing of cylindrically layered conductors, IEEE Transactions, (1979), Vol.IM-28, pp.159-161.
    [72] T. T. Wu, R. W. P. King: Lateral waves: A new formula and interference patterns, Radio Sci., (1982), Vol.17, pp.521-531.
    [73] J. R. Wait: Theories for radio ground wave transmission over a multisection path, Radio Sci.,(1980), Vol.15, pp.107-208.
    [74] T. T. Wu and R. W. P. King: Lateral waves: New formula for E_1 and E_(1z), Radio Sci.,(1982), Vol.17, pp.532-538; Correction, (1984), Vol.19, p.1422.
    [75] T. T. Wu and R. W. P. King: Lateral electromagnetic pulses generated by a vertical dipole on the boundary between two dielectrics, J. Appl. Phys., (1987), Vol.62, pp.4345-4355.
    [76] T. T. Wu, L. C. Shen, and R. W. P. King: The dipole antenna with eccentric coating in a relatively medium, IEEE Trans., (1975), Vol.AP-23, pp.57-62.
    [77] W. Y. Pan, Surface-wave propagation along the boundary between sea water and one-dimensionally anisotropic rock, J. Appl. Phys., Vol.58, PP.3963-3974, 1985.
    [78] D. M. Bubenik: A practical method for the numerical evaluation of Sommerfeld integrals, IEEE Trans. Antennas Propag., (1977), AP-25, pp.904—906.
    [79] I. S. Gradshteyn, I. M. Ryzhik: Table of Integrals, Series and Products, Academic Press, (1980).
    [80] 南京工学院数学教研组:《特殊函数简明教程》第二版,高等教育出版社,(1982)。
    [81] 钟玉泉:《复变函数论》,高等教育出版社,(1979)。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700