嘉陵江重庆段多环芳烃及溶解性有机质的污染特征及源解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(PAHs)是一类典型的持久性有机污染物,对生物有致癌、和致基因突变作用,其在环境中的分布和污染趋势近年来成为环境领域研究的热点。溶解性有机质(DOM)能与水体中的金属离子、化学农药和多环芳烃等相结合,进而影响到它们在水体的分布,降解及对水生生物的毒性,对水体生态系统和生物化学过程产生重要的影响。论文以嘉陵江重庆段为研究对象,主要针对嘉陵江重庆段PAHs和DOM的浓度分布、时空分布及来源解析等进行研究,这将有利于嘉陵江重庆段的水环境保护,并为嘉陵江重庆段乃至三峡库区的相关水环境保护政策的制定提供支持。
     对嘉陵江重庆段PAHs的研究:采集13个月(2009年7月~2010年7月)嘉陵江重庆段13个取样点的样品,包括:169个表层水样,13个悬浮颗粒样,169个表层沉积物样品。对水样采用固相萃取-柱净化及气相色谱-质谱(GC-MS)的方法来测定PAHs含量;对悬浮颗粒和沉积物样品采用:索氏提取-柱净化及气相色谱-质谱(GC-MS)的方法来测定PAHs含量。运用比值法及主成分析-多元线性回归(PCA-MLR)对PAHs进行来源解析,并对嘉陵江重庆段PAHs的生态风险进行评价,结果表明:
     ①表层水体13个取样点ΣPAHs的浓度范围为245.46ng/L~1074.4ng/L,PAHs组成以中低环PAHs(2~4)环为主,高环的PAHs(5~6)含量浓度很低;悬浮颗粒相ΣPAHs的浓度范围为495.14ng/g~1274.38ng/g,PAHs组成以中高环PAHs(4~5)环为主,高环(6环)及低环(2环)的PAHs含量浓度很低;表层沉积物ΣPAHs的浓度范围为764.8ng/g~2353.5ng/g, PAHs的组成为4环含量最高,其次是3环和5环,2环及6环的PAHs含量浓度较低。
     ②表层水体及沉积物中ΣPAHs的浓度在时间分布上呈现出相似的规律,均是枯水期的ΣPAHs浓度>丰水期的ΣPAHs浓度,季节差异比较明显。表层水体、悬浮颗粒及沉积物中的PAHs浓度在沿江的空间分布上都呈现出“升高-降低-升高-降低”的趋势。
     ③枯水期时,水体中DOC含量与ΣPAHs含量呈现明显的线性正相关(R=0.83);丰水期时,水体中DOC含量与ΣPAHs含量无明显的线性相关。丰水期时,悬浮颗粒中TOC含量与ΣPAHs含量呈现明显的线性正相关(R=0.86)。枯水期和丰水期时,沉积物中TOC含量与ΣPAHs含量均呈现明显的线性正相关,相关系数分别为(R枯水期=0.82、R丰水期=0.90)。
     ④嘉陵江重庆段水体16种PAHs生态风险处于较低水平,没有对生物造成较大的风险。通过暴露模型可知嘉陵江重庆段水体中PAHs污染可能引起人体健康风险,其风险度在可接受范围内。
     ⑤结合(Ant)/(Ant+Phen)、(Flu)/(Flu+Pyr)和(BaA)/(BaA+Chr)3种比值及主成分析-多元线性回归可知:汽油和柴油的发动机燃烧的交通源是嘉陵江重庆段PAHs的主要污染源,其他的污染源如石油源、煤和木材燃烧及外来源的污染也会对PAHs有一定的贡献率。
     对于嘉陵江重庆段DOM的研究:采集13个月(2009年7月~2010年7月)嘉陵江重庆段13个取样点的169个表层水样,采用紫外-可见光吸收光谱、荧光发射光谱和三维荧光光谱等分析方法,结合平行因子分析及聚类分析等统计方法对嘉陵江重庆段表层水体DOM的光谱学特性进行了研究,结果表明:
     ①嘉陵江重庆段表层水体DOM的污染在空间上的分布呈现“升高-降低-升高-降低”的趋势,荧光强度的分布趋势同嘉陵江沿岸的工业分布及外界的有机质输入密切相关,枯水期DOM的污染浓度高于丰水期。
     ②嘉陵江重庆段表层水体DOM的组成以陆源输入类腐殖类物质为主,內源产生的类蛋白物质为辅,而陆源输入类腐殖类物质又以富里酸为主,腐殖酸为辅。
     ③嘉陵江重庆段表层水体的DOM的三维荧光光谱由2类5个组分组成分别是:腐殖类组分C1(250,320nm/400nm)、C2(260,360nm/450nm)和C4(230nm/340,450nm);类蛋白质组分C3(260nm/380nm)和C5(280nm/330nm)。
Polycyclic aromatic hydrocarbons (PAHs) are typical persistent organic pollutantswidely exist in environment, which known for their teratogenic, carcinogenetic andmutagenic effects. The distribution and pollution trend of PAHs in the environment havebecome the focus research in recent years. Dissolved organic matter (DOM) can interactwith the pollutants in the water environment such as metal ions, chemical pesticides andPAHs, therefore affecting their distribution, degradation and toxicity to aquaticorganisms. So DOM has significant impact on the ecosystems and biochemicalprocesses of the water body. Jialing River of Chongqing section was taken as researchtarget to study the concentration, spatial and temporal distribution and sources analysisof PAHs and DOM in the water samples. This study can not only understand the waterenvironmental protection in Jialing River of Chongqing section, but also providesupport for the decision making of water environment protection policy in the ThreeGorges Reservoir.
     For the PAHs in the Jialing River of Chongqing section: samples of13months(from2007-07to2010-07) were collected from13sampling sites, including:169surface water samples,13suspended particles samples and169surface sedimentsamples. Solid phase extraction, column purification and gas chromatography-massspectrometry (GC-MS) were used to the determination the PAHs in surface watersamples; Soxhlet extraction, column purification and gas chromatography-massspectrometry (GC-MS) were used to the determination the PAHs in suspended particlesand sediment samples. Isotope ratio combing with principal componentanalysis-multiple linear regression were applied for source apportionment andecological risk evaluation of the PAHs in the Jialing River in Chongqing section, theresults showed that:
     ①The ΣPAHs concentration in surface water ranged from245.46ng/L to1074.4ng/L; The predominant PAHs were2-4ring PAHs, the5-6ring PAHs had lowproportion of the total PAHs. The ΣPAHs concentration in suspended particles rangedfrom495.14ng/g to1274.38ng/g; the predominant PAHs were4-5ring PAHs, the6ring and2ring PAHs accounted for low proportion of the total PAHs. The ΣPAHsconcentration in sediments ranged from764.8ng/g to2353.5ng/g with the predominant4ring PAHs, other contribution rate were followed by3ring,5ring,2ring and6ring PAHs.
     ②The PAHs concentration in the surface water and sediment showed similar rulein temporal distribution;PAHs concentration in the dry season was higher than thePAHs in the wet period; the spatial distribution of PAHs concentration in the surfacewater, suspended particles and sediment showed the same trend of” up-down-up-down”alone the river.
     ③DOC and ΣPAHs concentration showed significant positive linear correlation (R=0.83) in the surface water in dry season and no linear correlation in wet season; TOCand ΣPAHs concentration showed significant positive linear correlation (R=0.86) inthe suspended particles in dry season; TOC and ΣPAHs concentration also showedsignificant positive linear correlation in the sediments both in dry and wet season, thecorrelation coefficient were Rdry=0.82, Rwet=0.90respectively.
     ④The ecological risk of16PAHs in Jialing River of Chongqing section was atlow level and showed no great risk to biology in water body. From the exposure model,we knew that PAHs pollution may cause human health risk, but the degree of risk waswithin an acceptable range.
     ⑤The ratios of specific PAHs (Ant/Ant+Phe, Flu/Flu+Pyr and BaA/BaA+Chr) and principal component analysis-multiple linear regression marked that gasolineand diesel engine combustion source is the main PAHs pollution sources of the JialingRiver in Chongqing section, other sources such as petroleum, coal and woodcombustion and external sources were also contributed to the PAHs pollution.
     For the DOM in the Jialing River of Chongqing section:169surface water samplesof13months (from2007-07to2010-07) were collected from13sampling sites.UV-visible absorption spectroscopy, fluorescence emission spectra andthree-dimensional fluorescence spectra combing with the parallel factor analysis wereused to characterize spectrum characteristics of DOM in the surface water sample ofJialing River in Chongqing section, results showed that:
     ①The DOM fluorescence intensity in the surface sample showed the trend of“up-down-up-down-up-down” in spatial distribution, and the distribution fluorescenceintensity showed closely relationship with the industrial distribution along the JialingRiver and the outside organic matter input; The DOM fluorescence intensity in thesurface sample showed the trend of up-down in temporal distribution, and DOMconcentration in dry season was higher than that of the wet period.
     ②The DOM in the Jialing River of Chongqing section showed predominantly terrestrial origin (including a mayor fulic-like component and humic-like component),protein from Endogenous metabolism contributed little to the water DOM.
     ③Five separate fluorescent components in two categories were identified by thePARAFAC model, including three humic material components C1(250,320nm/400nm),C2(260,360nm/450nm) and C4(230nm/340,450nm); and two protein-likecomponents C3(260nm/380nm) and C5(280nm/330nm).
引文
[1]吴兴让,尹平河,赵玲,等.珠江广州段水体微表层与次表层中多环芳烃的分布与组成[J].环境科学学报,2010,30(4):868-873.
    [2]欧冬妮,刘敏,许世远,等.长江口滨岸水和沉积物中多环芳烃分布特征与生态风险评价[J].环境科学,2009,30(10):3043-3049.
    [3]汪祖丞,刘敏,杨毅,等.上海城区多环芳烃的多介质归趋模拟研究[J].中国环境科学,2011,31(6):984-990.
    [4]沈琼,王开颜,张巍,等.北京市通州区河流PAHs的源解析[J].农业环境科学学报,2007,26(3):904-909.
    [5]冯承莲,夏星辉,周追,等.长江武汉段水体中多环芳烃的分布及来源分析[J].环境科学学报,2007,27(11):1900-1908.
    [6]张枝焕,陶澍,沈伟然,等.天津地区主要河流沉积物中多环芳烃化合物的组成与分布特征[J].环境科学学报,2005,25(11):1508-1516.
    [7]郑曦.京杭大运河(苏北段)多环芳烃污染特征与释放动力学的研究[D].中国矿业大学,2010.
    [8] Douben P E T. PAHs: An Ecotoxicological Perspective[M]. John Wiley&Sons, Ltd,2003.
    [9]马万里.我国土壤和大气中多环芳烃分布特征和大尺度数值模拟[D].哈尔滨工业大学,2010.
    [10] Zhang C. Fundamentals of environmental sampling and analysis[M]. Wiley-Interscience,2007.
    [11] Dean J R. Methods for environmental trace analysis[M]. John Wiley&Sons Inc,2003.
    [12]唐银健.黄浦江水体中低环多环芳烃分布规律的研究[D].上海:同济大学,2007.
    [13] Kruger O, Christoph G, Kalbe U, et al. Comparison of stir bar sorptive extraction (SBSE) andliquid-liquid extraction (LLE) for the analysis of polycyclic aromatic hydrocarbons (PAH) incomplex aqueous matrices[J]. TALANTA,2011,85(3):1428-1434.
    [14] Tang B, Isacsson U. Analysis of Mono-and Polycyclic Aromatic Hydrocarbons UsingSolid-Phase Microextraction: State-of-the-Art[J]. Energy&Fuels,2008,22(3):1425-1438.
    [15] Pérez-Carrera E, León V M L, Parra A G, et al. Simultaneous determination of pesticides,polycyclic aromatic hydrocarbons and polychlorinated biphenyls in seawater and interstitialmarine water samples, using stir bar sorptive extraction-thermal desorption-gaschromatography-mass spectrometry[J]. Journal of Chromatography A,2007,1170(1-2):82-90.
    [16]杨蕾,王保兴,侯英,等.应用搅拌棒吸附萃取-热脱附-气相色谱/质谱法快速测定滇池水系中的16种多环芳烃[J].色谱,2007,25(5):747-752.
    [17]李庆玲,徐晓琴,黎先春,等.固相微萃取-气相色谱-质谱联用测定海水和沉积物间隙水中的痕量多环芳烃[J].中国科学(B辑:化学),2006,36(3):202-210.
    [18]郑海涛,刘菲,刘永刚.固相萃取-气相色谱法测定水中多环芳烃[J].岩矿测试,2004,23(2):148-152.
    [19]张茜,刘潇威,罗铭,等.快速溶剂(ASE)提取、凝胶渗透色谱(GPC)联合固相萃取(SPE)净化,高效液相色谱法测定土壤中的多环芳烃[J].环境化学,2011,30(4):771-777.
    [20]刘春娟,邹世春.超声-微波协同萃取分离、气相色谱-质谱联用测定土壤中多环芳烃[J].理化检验(化学分册),2008,(5):421-424.
    [21]冯志强.超临界流体萃取联用技术的应用[J].分析仪器,2005,(1):6-10.
    [22] Banjoo D R, Nelson P K. Improved ultrasonic extraction procedure for the determination ofpolycyclic aromatic hydrocarbons in sediments[J]. Journal of Chromatography A,2005,1066(1-2):9-18.
    [23] Olivella M. Trace analysis of polycyclic aromatic hydrocarbons in suspended particulatematter by accelerated solvent extraction followed by gas chromatography–massspectrometry[J]. Analytical and Bioanalytical Chemistry,2005,383(1):107-114.
    [24] Reddy G, Caldarelli S. Identification and quantification of EPA16priority polycyclicaromatic hydrocarbon pollutants by Maximum-Quantum NMR[J]. ANALYST,2012,137(3):741-746.
    [25] Peron O, Rinnert E, Toury T, et al. Quantitative SERS sensors for environmental analysis ofnaphthalene[J]. ANALYST,2011,136(5):1018-1022.
    [26] Wilson W B, Campiglia A D. Determination of polycyclic aromatic hydrocarbons withmolecular weight302in water samples by solid-phase nano-extraction and laser excitedtime-resolved shpol'skii spectroscopy[J]. ANALYST,2011,136(16):3366-3374.
    [27] Li A, Imasaka T, Uchimura T, et al. Analysis of pesticides by gas chromatography/multiphoton ionization/mass spectrometry using a femtosecond laser [J]. ANALYTICACHIMICA ACTA,2011,701(1):52-59.
    [28] Yang X, Shi B, Zhang Y, et al. Identification of polycyclic aromatic hydrocarbons (PAHs) insoil by constant energy synchronous fluorescence detection[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2008,69(2):400-406.
    [29] Amelin V G, Nikeshina T B, Tret'Yakov A V. Identification and Quantification of Pesticidesand Polycyclic Aromatic Hydrocarbons in Water and Food by Gas Chromatography-MassSpectrometry[J]. JOURNAL OF ANALYTICAL CHEMISTRY,2011,66(10):918-923.
    [30] Gosetti F, Chiuminatto U, Mazzucco E, et al. Simultaneous determination of thirteenpolycyclic aromatic hydrocarbons and twelve aldehydes in cooked food by an automatedon-line solid phase extraction ultra high performance liquid chromatography tandem massspectrometry[J]. JOURNAL OF CHROMATOGRAPHY A,2011,1218(37):6308-6318.
    [31] Jaffé R, Boyer J N, Lu X, et al. Source characterization of dissolved organic matter in asubtropical mangrove-dominated estuary by fluorescence analysis[J]. Marine Chemistry,2004,84(3-4):195-210.
    [32] Leenheer J A, Croué J. Peer Reviewed: Characterizing Aquatic Dissolved Organic Matter[J].Environmental Science&Technology,2003,37(1):18A-26A.
    [33]岳兰秀.红枫湖、百花湖水中溶解有机物分子量分布特征及环境地球化学意义[D].中国科学院研究生院(地球化学研究所),2004.
    [34] Fu P, Wu F, Liu C, et al. Fluorescence characterization of dissolved organic matter in anurban river and its complexation with Hg(II)[J]. Applied Geochemistry,2007,22(8):1668-1679.
    [35] Gueguen C, Clarisse O, Perroud A, et al. Chemical speciation and partitioning of trace metals(Cd, Co, Cu, Ni, Pb) in the lower Athabasca river and its tributaries (Alberta, Canada)[J].JOURNAL OF ENVIRONMENTAL MONITORING,2011,13(10):2865-2872.
    [36] Cornu J Y, Schneider A, Jezequel K, et al. Modelling the complexation of Cd in soil solutionat different temperatures using the UV-absorbance of dissolved organic matter[J].GEODERMA,2011,162(1-2):65-70.
    [37]傅平青.水环境中的溶解有机质及其与金属离子的相互作用—荧光光谱学研究[D].2004.
    [38]张孟孟,戴九兰,王仁卿.溶解性有机质对土壤中汞吸附迁移及生物有效性影响的研究进展[J].环境污染与防治,2011,33(5):95-99.
    [39] Neculita C M, Dudal Y, Zagury G J. Using fluorescence-based microplate assay to assessDOM-metal binding in reactive materials for treatment of acid mine drainage[J]. Journal ofEnvironmental Sciences,2011(6):891-896.
    [40] Bushaw K L, Zepp R G, Tarr M A, et al. Photochemical release of biologically availablenitrogen from aquatic dissolved organic matter[J]. Nature,1996,381(6581):404-407.
    [41] Fenoll J, Ruiz E, Flores P, et al. Use of farming and agro-industrial wastes as versatile barriersin reducing pesticide leaching through soil columns[J]. Journal of Hazardous Materials,2011,187(1–3):206-212.[42] Paatero P, Tapper U. Analysis of different modes of factor analysisas least squares fit problems[J]. Chemometrics and Intelligent Laboratory Systems,1993,18(2):183-194.
    [42] Benitez F J, Real F J, Acero J L, et al. Kinetics of the transformation of phenyl-ureaherbicides during ozonation of natural waters: Rate constants and model predictions[J]. WaterResearch,2007,41(18):4073-4084.
    [43] Amiri F, B rnick H, Worch E. Sorption of phenols onto sandy aquifer material: the effect ofdissolved organic matter (DOM)[J]. Water Research,2005,39(5):933-941.
    [44] Ertun T, Hartlieb N, Berns A, et al. Investigations on the binding mechanism of the herbicidesimazine to dissolved organic matter in leachates of compost[J]. Chemosphere,2002,49(6):597-604.
    [45] Li K, Xing B, Torello W A. Effect of organic fertilizers derived dissolved organic matter onpesticide sorption and leaching[J]. Environmental Pollution,2005,134(2):187-194.
    [46] Raber B, K gel-Knabner I, Stein C, et al. Partitioning of polycyclic aromatic hydrocarbons todissolved organic matter from different soils[J]. Chemosphere,1998,36(1):79-97.
    [47] Koelmans A A, Gillissen F, Makatita W, et al. Organic carbon normalisation of PCB, PAHand pesticide concentrations in suspended solids[J]. Water Research,1997,31(3):461-470.
    [48] Fan G T, Burnison B K, Solomon K R. The partitioning of fenvalerate to natural dissolvedorganic matter[J]. Water Research,1997,31(10):2429-2434.
    [49] Birdwell J E, Engel A S. Characterization of dissolved organic matter in cave and springwaters using UV-Vis absorbance and fluorescence spectroscopy[J]. Organic Geochemistry,2010,41(3):270-280.
    [50]岳兰秀,吴丰昌,刘丛强,等.红枫湖和百花湖天然溶解有机质的分子荧光特征与分子量分布的关系[J].科学通报,2005,50(24):2774-2780.
    [51]虞丹尼,周光明,吉芳英,等.三峡水库溶解有机质的三维荧光光谱研究[J].化学学报,2011,69(8):111-117.
    [52] Gao L, Fan D, Li D, et al. Fluorescence characteristics of chromophoric dissolved organicmatter in shallow water along the Zhejiang coasts, southeast China[J]. Marine EnvironmentalResearch,2010,69(3):187-197.
    [53]李猛,郭卫东,夏恩琴,等.厦门湾有色溶解有机物的光吸收特性研究[J].热带海洋学报,2006,25(1):9-14.
    [54] Willey J D, Atkinson L P. Natural fluorescence as a tracer for distinguishing betweenpiedmont and coastal plain river water in the nearshore waters of Georgia and NorthCarolina[J]. Estuarine, Coastal and Shelf Science,1982,14(1):49-59.
    [55]昝逢宇,霍守亮,席北斗,等.巢湖近代沉积物及其间隙水中营养物的分布特征[J].环境科学学报,2010,30(10):2088-2096.
    [56]王江涛,关哈斯高娃,赵卫红,等.东海海水中荧光溶解有机物质的三维荧光光谱特征[J].光谱学与光谱分析,2009,29(5):1345-1348.
    [57] Miller C, Gordon K G, Kieber R J, et al. Chemical characteristics of chromophoric dissolvedorganic matter in rainwater[J]. Atmospheric Environment,2009,43(15):2497-2502.
    [58] Wang L, Wu F, Zhang R, et al. Characterization of dissolved organic matter fractions fromLake Hongfeng, Southwestern China Plateau[J]. Journal of Environmental Sciences,2009,21(5):581-588.
    [59] Courdouan A, Christl I, Meylan S, et al. Characterization of dissolved organic matter inanoxic rock extracts and in situ pore water of the Opalinus Clay[J]. Applied Geochemistry,2007,22(12):2926-2939.
    [60] Guggenberger G, Kaiser K. Dissolved organic matter in soil: challenging the paradigm ofsorptive preservation[J]. Geoderma,2003,113(3-4):293-310.
    [61] Serkiz S M, Perdue E M. Isolation of dissolved organic matter from the suwannee river usingreverse osmosis[J]. Water Research,1990,24(7):911-916.
    [62] Benner R, Biddanda B, Black B, et al. Abundance, size distribution, and stable carbon andnitrogen isotopic compositions of marine organic matter isolated by tangential-flowultrafiltration[J]. Marine Chemistry,1997,57(3–4):243-263.
    [63] Afcharian A, Levi Y, Kiene L, et al. Fractionation of dissolved organic matter from surfacewaters using macroporous resins[J]. Water Research,1997,31(12):2989-2996.
    [64] Kim S, Simpson A J, Kujawinski E B, et al. High resolution electrospray ionization massspectrometry and2D solution NMR for the analysis of DOM extracted by C18solid phasedisk[J]. Organic Geochemistry,2003,34(9):1325-1335.
    [65] Lu X Q, Maie N, Hanna J V, et al. Molecular characterization of dissolved organic matter infreshwater wetlands of the Florida Everglades[J]. Water Research,2003,37(11):2599-2606.
    [66] Marhaba T F, Pu Y, Bengraine K. Modified dissolved organic matter fractionation techniquefor natural water[J]. Journal of Hazardous Materials,2003,101(1):43-53.
    [67] Peuravuori J, Monteiro A, Eglite L, et al. Comparative study for separation of aquatichumic-type organic constituents by DAX-8, PVP and DEAE sorbing solids and tangentialultrafiltration: elemental composition, size-exclusion chromatography, UV–vis and FT-IR[J].Talanta,2005,65(2):408-422.
    [68]张甲,曹军,陶澍.土壤水溶性有机物的紫外光谱特征及地域分异[J].土壤学报,2003,40(1):118-122.
    [69]蒋凤华,殷月芬,黎先春,等.胶州湾海泊河口水域水体的吸收、荧光特性与溶解有机碳的实验研究[J].海洋环境科学,2007,26(4):351-354.
    [70] Rostan J C, Cellot B. On the use of UV spectrophotometry to assess dissolved organic carbonorigin variations in the Upper Rh ne River[J]. Aquatic Sciences-Research Across Boundaries,1995,57(1):70-80.
    [71] Wang L Y, Wu F C, Zhang R Y, et al. Characterization of dissolved organic matter fractionsfrom Lake Hongfeng, Southwestern China Plateau[J]. Journal of EnvironmentalSciences-China,2009,21(5):581-588.
    [72]赵南京,刘文清,刘建国,等.不同水体中溶解有机物的荧光光谱特性研究[J].光谱学与光谱分析,2005,25(7):1077-1079.
    [73]赵南京,刘文清,崔志成,等.用特征光谱荧光标记技术分析水中溶解有机物特性[J].光学学报,2005,25(5):687-690.
    [74]魏群山,罗专溪,陈强,等.天然水体溶解性有机物(DOM)分级组分对典型城市源污染的荧光响应[J].环境科学研究,2010,23(10):1229-1235.
    [75] Foden J, Sivyer D B, Mills D K, et al. Spatial and temporal distribution of chromophoricdissolved organic matter (CDOM) fluorescence and its contribution to light attenuation in UKwaterbodies[J]. Estuarine, Coastal and Shelf Science,2008,79(4):707-717.
    [76] Zhang T, Lu J, Ma J, et al. Fluorescence spectroscopic characterization of DOM fractionsisolated from a filtered river water after ozonation and catalytic ozonation[J]. Chemosphere,2008,71(5):911-921.
    [77] Ferrari G M, Mingazzini M. Synchronous fluorescence spectra of dissolved organic matter(DOM) of algal origin in marine coastal waters[J]. MEPS,1995,125:305-315.
    [78]冯龙庆,刘明亮,张运林,等.夏季丰水期河流输入对太湖有色可溶性有机物的贡献[J].水科学进展,2011,22(1):104-111.
    [79] Guo W, Yang L, Hong H, et al. Assessing the dynamics of chromophoric dissolved organicmatter in a subtropical estuary using parallel factor analysis[J]. Marine Chemistry,2011,124(1-4):125-133.
    [80] Seredynska-Sobecka B, Stedmon C A, Boe-Hansen R, et al. Monitoring organic loading toswimming pools by fluorescence excitation-emission matrix with parallel factor analysis(PARAFAC)[J]. Water Research,2011,45(6):2306-2314.
    [81] Kowalczuk P, Cooper W J, Durako M J, et al. Characterization of dissolved organic matterfluorescence in the South Atlantic Bight with use of PARAFAC model: Relationships betweenfluorescence and its components, absorption coefficients and organic carbon concentrations[J].Marine Chemistry,2010,118(1-2):22-36.
    [82]郭卫东,黄建平,洪华生,等.河口区溶解有机物三维荧光光谱的平行因子分析及其示踪特性[J].环境科学,2010,31(6):1419-1427.
    [83]卓健富,郭卫东,邓荀,等.筼筜湖CDOM的三维荧光光谱及其污染示踪研究[J].光谱学与光谱分析,2010,30(6):1539-1544.
    [84] Zsolnay á. Dissolved organic matter: artefacts, definitions, and functions[J]. Geoderma,2003,113(3-4):187-209.
    [85] Baker A. Fluorescence properties of some farm wastes: implications for water qualitymonitoring[J]. Water Research,2002,36(1):189-195.
    [86] HJ478-2009,水质-多环芳烃的测定液液萃取和固相萃取高效液相色谱法[S].
    [87] U S Environmental Protection Agency Method525.2Revision2.0(1995), Determination oforganic compounds in drinking water by liquid-solid extraction and capillary column gaschromatography/mass spectrometry [S].
    [88]林峥,麦碧娴,张干,等.沉积物中多环芳烃和有机氯农药定量分析的质量保证和质量控制[J].环境化学,1999,18(2):115-121.
    [89] GB3838-2002,地表水环境质量标准[S].
    [90] U S Environmental Protection Agency National Recommended Water Quality Criteria,2009[S].
    [91] Mai B, Fu J, Sheng G, et al. Chlorinated and polycyclic aromatic hydrocarbons in riverine andestuarine sediments from Pearl River Delta, China[J]. Environmental Pollution,2002,117(3):457-474.
    [92] Fernandes M B, Sicre M A, Boireau A, et al. Polyaromatic hydrocarbon (PAH) distributionsin the Seine River and its estuary[J]. Marine Pollution Bulletin,1997,34(11):857-867.
    [93]童宝锋,刘玲花,刘晓茹,等.北京玉渊潭水相、悬浮物和沉积物中的多环芳烃[J].中国环境科学,2007,27(4):450-455.
    [94]杨玉霞,徐晓琳.黄河兰州段水环境中多环芳烃来源解析[J].地下水,2007,29(1):20-23.
    [95]郭伟,何孟常,杨志峰,等.大辽河水系表层水中多环芳烃的污染特征[J].应用生态学报,2007,18(7):1534-1538.
    [96]孙清芳,冯玉杰,高鹏,等.松花江水中多环芳烃(PAHs)的环境风险评价[J].哈尔滨工业大学学报,2010,42(4):568-572.
    [97]摆亚军,刘文新,陶澍,等.河北省地表水中多环芳烃的分布特征[J].环境科学学报,2007,27(8):1364-1369.
    [98]曹治国,刘静玲,栾芸,等.滦河流域多环芳烃的污染特征、风险评价与来源辨析[J].环境科学学报,2010,30(2):246-253.
    [99]杨清书,欧素英,谢萍,等.珠江虎门潮汐水道水体中多环芳烃的分布及季节变化[J].海洋学报(中文版),2004,26(6):37-48.
    [100] Chiou C T, Malcolm R L, Brinton T I, et al. Water solubility enhancement of some organicpollutants and pesticides by dissolved humic and fulvic acids[J]. Environmental Science&Technology,1986,20(5):502-508.
    [101] Zhang Z, Huang J, Yu G, et al. Occurrence of PAHs, PCBs and organochlorine pesticides inthe Tonghui River of Beijing, China[J]. Environmental Pollution,2004,130(2):249-261.
    [102] Liu G, Zhang G, Li J, et al. Spatial distribution and seasonal variations of polycyclicaromatic hydrocarbons (PAHs) using semi-permeable membrane devices (SPMD) and pineneedles in the Pearl River Delta, South China[J]. Atmospheric Environment,2006,40(17):3134-3143.
    [103]东宇云.钱塘江水体中多环芳烃的时空分布、污染来源及生物有效性[D].浙江大学,2008.
    [104]梁艳.长江嘉陵江重庆段多环芳烃污染状况及风险评价[D].重庆大学,2009.
    [105]欧冬妮,刘敏,程书波,等.河口滨岸悬浮颗粒物中多环芳烃分布与风险评价[J].长江流域资源与环境,2007,16(5):620-623.
    [106] Deng H, Peng P, Huang W, et al. Distribution and loadings of polycyclic aromatichydrocarbons in the Xijiang River in Guangdong, South China[J]. Chemosphere,2006,64(8):1401-1411.
    [107]王晓丽,李鱼,吴雨华,等.南湖水体多相介质中PAHs的分布特征及其来源分析[J].水土保持学报,2007,21(3):118-122.
    [108]李恭臣,夏星辉,王然,等.黄河中下游水体中多环芳烃的分布及来源[J].环境科学,2006,27(9):1738-1743.
    [109] Luo X, Chen S, Mai B, et al. Polycyclic aromatic hydrocarbons in suspended particulatematter and sediments from the Pearl River Estuary and adjacent coastal areas, China[J].Environmental Pollution,2006,139(1):9-20.
    [110]周岩梅,张琼,汤鸿霄.多环芳烃类有机物在腐殖酸上的吸附行为研究[J].环境科学学报,2010,30(8):1564-1571.
    [111]吴应琴,陈慧,王永莉,等.腐殖酸对蒽的增溶作用及其影响因素[J].环境化学,2009,28(4):515-518.
    [112]潘波,刘文新,林秀梅,等.水溶性有机碳对菲吸附系数测定的影响[J].环境科学,2005,26(3):162-166.
    [113] Hong L, Ghosh U, Mahajan T, et al. PAH sorption mechanism and partitioning behavior inlampblack-impacted soils from former oil-gas plant sites[J]. Environmental science&technology,2003,37(16):3625-3634.
    [114]周岩梅,刘瑞霞,汤鸿霄.溶解有机质在土壤及沉积物吸附多环芳烃类有机污染物过程中的作用研究[J].环境科学学报,2003,23(2):216-223.
    [115]胡雄星,周亚康,韩中豪,等.黄浦江表层沉积物中多环芳烃的分布特征及来源[J].环境化学,2005,24(6):74-77.
    [116]彭欢,杨毅,刘敏,等.淮南—蚌埠段淮河流域沉积物中PAHs的分布及来源辨析[J].环境科学,2010,31(5):1192-1197.
    [117] Jiang B, Zheng H, Huang G, et al. Characterization and distribution of polycyclic aromatichydrocarbon in sediments of Haihe River, Tianjin, China[J]. Journal of EnvironmentalSciences,2007,19(3):306-311.
    [118]杨敏,倪余文,苏凡,等.辽河沉积物中多环芳烃的污染水平与特征[J].环境化学,2007,26(2):217-220.
    [119]庄婉娥,汪厦霞,姚文松,等.泉州湾表层沉积物中多环芳烃的含量分布特征及污染来源[J].环境化学,2011,(5):928-934.
    [120] Yan W, Chi J, Wang Z, et al. Spatial and temporal distribution of polycyclic aromatichydrocarbons (PAHs) in sediments from Daya Bay, South China[J]. EnvironmentalPollution,2009,157(6):1823-1830.
    [121] Luo X, Chen S, Mai B, et al. Distribution, Source Apportionment, and Transport of PAHs inSediments from the Pearl River Delta and the Northern South China Sea[J]. Archives ofEnvironmental Contamination and Toxicology,2008,55(1):11-20.
    [122]刘俊文,解启来,王琰,等.扎龙湿地表层沉积物多环芳烃的污染特征研究[J].环境科学,2011,32(8):2450-2454.
    [123] Simpson C D, Mosi A A, Cullen W R, et al. Composition and distribution of polycyclicaromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor,Canada[J]. Science of The Total Environment,1996,181(3):265-278.
    [124] Yang G. Polycyclic aromatic hydrocarbons in the sediments of the South China Sea[J].Environmental Pollution,2000,108(2):163-171.
    [125] Ashley J T F, Baker J E. Hydrophobic organic contaminants in surficial sediments ofBaltimore Harbor: Inventories and sources[J]. Environmental Toxicology and Chemistry,1999,18(5):838-849.
    [126]冯承莲,雷炳莉,王子健.中国主要河流中多环芳烃生态风险的初步评价[J].中国环境科学,2009,29,(6):583-588.
    [127] Macdonald D D, Ingersoll C G, Berger T A. Development and evaluation ofconsensus-based sediment quality guidelines for freshwater ecosystems[J]. Archives ofEnvironmental Contamination and Toxicology,2000,39(1):20-31.
    [128] Smith S L, Macdonald D D, Keenleyside K A, et al. A preliminary evaluation of sedimentquality assessment values for freshwater ecosystems[J]. Journal of Great Lakes Research,1996,22(3):624-638.
    [129] Health N R C U. Risk assessment in the federal government: Managing the process[M].National Academy Pre,1983.
    [130] Long E R, Macdonald D D, Smith S L, et al. Incidence of adverse biological effects withinranges of chemical concentrations in marine and estuarine sediments[J]. Environmentalmanagement,1995,19(1):81-97.
    [131]汤智,廖海清,张亮,等.成渝经济区河流表层沉积物中多环芳烃的分布、来源及生态风险评价[J].环境科学,2011,32(9):2639-2644.
    [132]王连生.有机污染化学[M].高等教育出版社,2004.
    [133]许云竹,花修艺,董德明,等.地表水环境中PAHs源解析的方法比较及应用[J].吉林大学学报(理学版),2011,49(3):565-574.
    [134] Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: a criticalappraisal of PAH ratios as indicators of PAH source and composition[J]. OrganicGeochemistry,2002,33(4):489-515.
    [135] Men B, He M, Tan L, et al. Distributions of polycyclic aromatic hydrocarbons in the DaliaoRiver Estuary of Liaodong Bay, Bohai Sea (China)[J]. Marine Pollution Bulletin,2009,58(6):818-826.
    [136] Guo W, He M, Yang Z, et al. Distribution, partitioning and sources of polycyclic aromatichydrocarbons in Daliao River water system in dry season, China[J]. Journal of HazardousMaterials,2009,164(2-3):1379-1385.
    [137] Mai, Qi, Zeng E Y, et al. Distribution of Polycyclic Aromatic Hydrocarbons in the CoastalRegion off Macao, China: Assessment of Input Sources and Transport Pathways UsingCompositional Analysis[J]. Environmental Science&Technology,2003,37(21):4855-4863.
    [138] Wang H, Cheng Z, Liang P, et al. Characterization of PAHs in surface sediments ofaquaculture farms around the Pearl River Delta[J]. Ecotoxicology and Environmental Safety,2010,73(5):900-906.
    [139]杨清书,雷亚平,欧素英,等.珠江广州河段水环境中多环芳烃的组成及其垂直分布特征[J].海洋通报,2008,27(6):34-43.
    [140] Mackay D. Finding fugacity feasible[J]. Environmental Science&Technology,1979,13(10):1218-1223.
    [141] Mackay D, Hickie B. Mass balance model of source apportionment, transport and fate ofPAHs in Lac Saint Louis, Quebec[J]. Chemosphere,2000,41(5):681-692.
    [142] Paatero P, Tapper U. Analysis of different modes of factor analysis as least squares fitproblems[J]. Chemometrics and Intelligent Laboratory Systems,1993,18(2):183-194.
    [143]廖书林,郎印海,王延松,等.辽河口湿地表层土壤中PAHs的源解析研究[J].中国环境科学,2011,31(3):490-497.
    [144]刘春慧,田福林,陈景文,等.正定矩阵因子分解和非负约束因子分析用于大辽河沉积物中多环芳烃源解析的比较研究[J].科学通报,2009,54(24):3817-3822.
    [145] Wang Z, Chen J, Tian F, et al. Application of Factor Analysis with Nonnegative Constraintsfor Source Apportionment of Soil Polycyclic Aromatic Hydrocarbons (PAHs) in Liaoning,China[J]. Environmental Forensics,2010,11(1):161-167.
    [146] Bzdusek P A, Christensen E R, Li A, et al. Source Apportionment of Sediment PAHs inLake Calumet, Chicago: Application of Factor Analysis with Nonnegative Constraints[J].Environmental Science&Technology,2003,38(1):97-103.
    [147]刘颖.上海市土壤和水体沉积物中多环芳烃的测定方法、分布特征和源解析[D].同济大学,2008.
    [148] Li G, Xia X, Yang Z, et al. Distribution and sources of polycyclic aromatic hydrocarbons inthe middle and lower reaches of the Yellow River, China[J]. Environmental Pollution,2006,144(3):985-993.
    [149] Soclo H H, Garrigues P, Ewald M. Origin of Polycyclic Aromatic Hydrocarbons (PAHs) inCoastal Marine Sediments: Case Studies in Cotonou (Benin) and Aquitaine (France)Areas[J]. Marine Pollution Bulletin,2000,40(5):387-396.
    [150]刘颖.上海市土壤和水体沉积物中多环芳烃的测定方法、分布特征和源解析[D].同济大学,2008.
    [151] Hiller E, Sirotiak M, Jurkovic L, et al. Polycyclic Aromatic Hydrocarbons in BottomSediments from Three Water Reservoirs, Slovakia[J]. Bulletin of EnvironmentalContamination and Toxicology,2009,83(3):444-448.
    [152] Cao Z, Wang Y, Ma Y, et al. Occurrence and distribution of polycyclic aromatichydrocarbons in reclaimed water and surface water of Tianjin, China[J]. Journal ofHazardous Materials,2005,122(1-2):51-59.
    [153] Agarwal T, Khillare P S, Shridhar V, et al. Pattern, sources and toxic potential of PAHs inthe agricultural soils of Delhi, India[J]. Journal of Hazardous Materials,2009,163(2-3):1033-1039.
    [154] Harrison R M, Smith D, Luhana L. Source apportionment of atmospheric polycyclicaromatic hydrocarbons collected from an urban location in Birmingham, UK[J].Environmental Science&Technology,1996,30(3):825-832.
    [155] Wang K, Shen Y, Zhang S, et al. Application of spatial analysis and multivariate analysischniques in distribution and source study of polycyclic aromatic hydrocarbons in the topsoilof Beijing, China[J]. Environmental Geology,2009,56(6):1041-1050.
    [156] Zuo Q, Duan Y H, Yang Y, et al. Source apportionment of polycyclic aromatic hydrocarbonsin surface soil in Tianjin, China[J]. Environmental Pollution,2007,147(2):303-310.
    [157] Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (yellowsubstance) in the UV and visible domains[J]. Limnology and oceanography,1981:43-53.
    [158]赵巧华,秦伯强.太湖有色溶解有机质光谱吸收空间的分异特征[J].中国环境科学,2008,28(4):289-293.
    [159] Barreto S R G, Nozaki J, Barreto W J. Origin of dissolved organic carbon studied by UV-visspectroscopy[J]. Acta Hydrochimica et Hydrobiologica,2004,31(6):513-518.
    [160] Kukkonen J. Effects of lignin and chlorolignin in pulp mill effluents on the binding andbioavailability of hydrophobic organic pollutants[J]. Water Research,1992,26(11):1523-1532.
    [161] Mcknight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometric Characterization ofDissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity[J].Limnology and Oceanography,2001,46(1):38-48.
    [162] Battin T J. Dissolved organic matter and its optical properties in a blackwater tributary of theupper Orinoco river, Venezuela[J]. Organic Geochemistry,1998,28(9-10):561-569.
    [163] Coble P G, Del Castillo C E, Avril B. Distribution and optical properties of CDOM in theArabian Sea during the1995Southwest Monsoon[J]. Deep Sea Research Part II: TopicalStudies in Oceanography,1998,45(10-11):2195-2223.
    [164]黄昌春,李云梅,王桥,等.基于三维荧光和平行因子分析法的太湖水体CDOM组分光学特征[J].湖泊科学,2010,22(3):375-382.
    [165] Coble P G. Characterization of marine and terrestrial DOM in seawater usingexcitation-emission matrix spectroscopy[J]. Marine Chemistry,1996,51(4):325-346.
    [166]黎司,吉芳英,周光明,等.三峡库区水体溶解有机质的荧光光谱特性[J].分析化学,2009,37(9):1328-1332.
    [167] Baker A. Fluorescence Excitation Emission Matrix Characterization of SomeSewage-Impacted Rivers [J]. Environmental Science&Technology,2001,35(5):948-953.
    [168]傅平青,刘丛强,吴丰昌.溶解有机质的三维荧光光谱特征研究[J].光谱学与光谱分析,2005,25(12):2024-2028.
    [169]宋晓娜,于涛,张远,等.利用三维荧光技术分析太湖水体溶解性有机质的分布特征及来源[J].环境科学学报,2010,30(11):2321-2331.
    [170]吕桂才,赵卫红,王江涛.平行因子分析在赤潮藻滤液三维荧光光谱特征提取中的应用[J].分析化学,2010,38(8):1144-1150.
    [171] Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environmentsusing a new approach to fluorescence spectroscopy[J]. Marine Chemistry,2003,82(3-4):239-254.
    [172] Stedmon C A, Bro R. Characterizing dissolved organic matter fluorescence with parallelfactor analysis: a tutorial[J]. Limnology and Oceanography: Methods,2008,6:572-579.
    [173] Stedmon C A, Markager S. Tracing the Production and Degradation of AutochthonousFractions of Dissolved Organic Matter by Fluorescence Analysis[J]. Limnology andOceanography,2005,50(5):1415-1426.
    [174] Yamashita Y, Jaffé R, Maie N, et al. Assessing the dynamics of dissolved organicmatter(DOM) in coastal environments by excitation emission matrix fluorescence andparallel factor analysis(EEM-PARAFAC)[J]. Limnology and Oceanography,2008,53(4):1900-1908.
    [175]刘明亮,张运林,秦伯强.太湖入湖河口和开敞区CDOM吸收和三维荧光特征[J].湖泊科学,2009,21(2):234-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700