铀在地下水中化学形态及地球化学工程屏障研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文叙述了含铀极低放废物填埋处置的地球化学工程屏障研究。通过理论计算确定铀在地下水中的化学形式;针对地下水中铀(Ⅵ)的化学形态特点,开展了添加剂实验;利用土壤表面电荷特征,对土壤介质进行了筛选;分别进行了静态吸附实验和柱迁移实验。
     利用化学热力学平衡分析模式、地球化学条件及已知的热力学数据,完成了铀在地下水中存在形式和迁移形态的理论计算。结果表明场址地下水中U(Ⅵ)主要以络合物形态存在,主要有:UO_2(CO_3)_2~(2-)、UO_2(CO_3)_3~(4-)、UO_2CO_3~0、UO_2(HPO_4)_2~(2-)等,占绝对优势(>99%);其次为UO_2(OH)_2~0和UO_2(OH)~+、UO_2~(2+)等,但不足1%。
     添加剂实验结果表明大部分添加剂没有达到改善基础物料吸附性能的效果,甚至起到反效果;还原性添加剂Na_2S等难于实现铀(Ⅵ)→铀(Ⅳ)的还原沉积;唯有第Ⅲ号土样,即产生于场址的橙黄色砂质亚粘土,对铀的吸附力很强,实验表明,Ⅲ号土空白样的K_d值高达1228.4ml.g~(-1),综合其土粒结构、岩性、来源广泛性等因素,选定为地球化学屏障材料的首选,对其进行了进一步的实验研究。
     土样表面电荷测定结果表明:Ⅲ号土样的正电荷值高达9.60mmol/100g,居各样品之首,清楚地表现出K_d值与岩土正电荷值的正向相关性,反映了正电荷胶体对铀酰络合阴离子的强吸附机制。
     “Ⅲ号表层土样”与“Ⅲ号深层土样”的对照静态实验结果表明:“Ⅲ号表层土样”各粒径组与“Ⅲ号深层土样”的主要矿物组成及含量相同;表层土样随粒径减小其表面正电荷降低,而深层土样的表面正电荷几乎比前者高一倍;表层土样随粒径减小其对铀的吸附比降低,而深层土样基本没有变化;两类样品均随pH值的升高,吸附比增大;均随铀浓度的增大,吸附比先增大再缓慢下降;均随固液比的增大,吸附比增大;表层样品在常温下吸附比最大;两类样品均在14天左右达到吸附平衡;各个实验条件下,深层样品的吸附比均比表层样品相应的吸附比高数倍至一个数量级。实验结果表明:铀络合物离子在土样中的吸附滞留量正向相关于表面正电荷值,为静电吸附机制。
     深层土样加入Ca(OH)_2后大大改善了吸附能力,吸附比高达1.9×10~4ml.g~(-1);加入炭质砂岩后也改善了吸附能力,且吸附比与加入量基本成线性关系。
     动态柱迁移实验结果表明:实验条件下得出的吸附比比静态法得出的吸附比普遍小1个量级。主要是由于在实验条件下铀的吸附未达到平衡所至,但该条件类似于地下水流动时其所携带的铀离子被所流经土壤吸附滞留的状态,因此,动态柱迁移实验获得的吸附比具有实际参考价值。
The treatment of radioactive wastewater is one of the important concerns and must be seriously considered in the nuclear industry, whereas the geochemical engineering barrier is one of the basic and key issue for the buried disposal of radioactive waste.In this paper, study on geochemical engineering barrier for the buried disposal of very low-level radioactive waste containing uranium was performed. The chemical species of U in groundwater was analyzed by a theoretical calculation method, and the effect of the additives on the engineering barrier was investigated on the basis of the calculated chemical characteristic of U(Ⅵ)'s species. Then, the appropriate soil medium was selected according to the surface electric charge, and the adsorption of uranium on the soil was investigated in a static way while the migration of U was performed in column experiments.The theoretical calculation for the chemical species and migration behavior of uranium in groundwater were accomplished by combining the thermodynamics balance analysis mode, the geochemical condition and the known thermodynamics data. The results indicated that the overwhelming majority (more than 99%) of U(VI) in the groundwater exit as the complex species, such as UO_2(CO_3)_2~(2-), UO_2(CO_3)_3~(4-), UO_2CO_3~0 and UO_2(HPO_4)_2~(2-), while the other species as UO_2(OH)_2~0, UO_2(OH)~+ or UO_2~(2+), account for less than 1%.It can be shown by the additive experiment that most of the investigated additives can not remarkably improve the adsorption performance of the soil for uranium, whereas some additive have reverse effect. Also, it is very difficult for reductive sediment of U(Ⅵ) to U(Ⅳ)by adding some reduction additives, such as N_2S. Fortunately, the soil sample Ⅲ, a kind of arenaceous clay with orange yellow color from the disposal site, has very strong adsorption ability to uranium with a K_d value of up tol228. 4ml. g~(-1). It can be conclude that this soil should be the best candidate for the geochemical engineering barrier materials, if the granularity, lithology and commercial availability were comprehensively considered. Then the further experiment was performed.Surface electric charge of the soil was measured, and the result that the soil sample Ⅲ has the highest positive charge value of 9. 60mmol/100g among the investigated soil samples was noted. It is thus clear that the K_d value is direct ration to the positive charge of the soil, and the adsorption mechanism of uranium on soil should involve the strong adsorption of uranyl complex anion onto the positive charge colloid.
    The adsorption behavior of uranium onto the topsoil and deep soil from the soil sample III was evaluated. The topsoil with different granularity has same principle mineral components and contents as the deep soil. The surface positive charge of the topsoil declined with decrease of the granularity, and almost one time less than the topsoil sample. Also, the adsorption rate of the topsoil for uranium dropped along with decrease of the granularity, while no significant change was observed with the deep soil sample. However, the adsorption rate of the topsoil and deep soil both rose with the increasing of pH or ratio of solid to liquid, and increased first, then declined gradually with the increasing of uranium concentration. The adsorption equilibrium with the two samples was achieved within 14 days, while the maximal adsorption rate with the topsoil was observed at normal temperature. Moreover, it could be seen that the absorption rates of the deep soil sample were always several to ten times higher than that of the topsoil sample in each experimental conditions. Absorbed and retarded capacity of Uranyl complex ion direct ratio surface positive charge in soil, and the mechanism is static absorption.The absorption ability of the deep soil sample for uranium could been greatly improved by adding Ca(0H)2, leading to the adsorption rate up to 1. 9X 104ml. g"1. The similar result could be obtained by adding charry gritstone, and the adsorption rate and the quantity of the added charry gritstone was usually in keeping with linear correlation.It should also be paid much attention to that the adsorption rate resulted from dynamic column migration experiments was ten times less than that from static experiments. The main reason is that column migration experiments don' t attain equilibrium. Yet, this condition is similar to the groundwater flow and the Uranyl ion is retarded by the soil with the groundwater flow, so the results of column migration experiments have actual value.In summary, several factors related to the geochemical engineering barrier for the buried disposal of very low-level radioactive waste containing uranium, such as the chemical species and migration behavior of uranium in groundwater, the effect of the additives on the engineering barrier, and the adsorption behavior of uranium on the soil had been investigated in this paper, and enormous expeimrntal data summarized. It is indubitable that all these will be useful to disposition and safety assessment of radioactive waste containing uranium.
引文
1 潘自强.在辐射防护和安全中一些概念的转变[J].辐射防护,1994.14(1):1-9.
    2 INTERNATIONAL ATOMIC ENERGY AGENCY, Radioactive Waste Management Profiles: Data from the Waste Management Data Base, IAEA, Vienna (1994).
    3 GB14500—2002放射性废物管理,20.2.11条
    4 陈式.放射性废物管理和核设施退役中几个问题的讨论[J].辐射防护,2004.24(6):344
    5 李宽良.核废物处置地球化学工程屏障[M].第1版,北京:原子能出版社,2004.7:1
    6 INTERNATIONAL ATOMIC ENERGY AGENCY, Geochemistry of long lived transuranic actinides and fission products[J]. Technical Reports Series No. 253, IAEA, Vienna (1985).
    7 BAZOT, G., VOIZARD, P.,OSSENA, G., Rev. Gen. Nucl. (5) (1992) 394-401 (French).
    8 PRASAD, A. N., KUMRA, M. S.,MISRA, S. D., YABE, I., SUZUKI, A. Requirement for the safe management of radioactive waste[J], IAEA—TECDOC-853, Vienna (1995) 107-120
    9 Allarad B, Kipatsi H, Ryaberg J. KBS-TR-55/HDM, 1977.
    10 Gillnam R W, Robinl M J L, Dytynyshyn D J. Diffusive transport of strontium-85 in sand-bentonite mixtures[J]. AECL—6838, 1983.
    11 Torstenfelt B, Aiiarad B, Andersson K, etal. Radionuclide diffusion and mobilities in compacted bentonite[J]. SKBF—KBS—TR—83—34, 1983.
    12 Histanen R, Alaluusua M. YJT-83-17, 1983.
    13 叶明吕,徐国庆,陆誓俊,等.放射性铯在沸石中的吸附与迁移的研究[J].核科学与工程,1994.14(1):72-77.
    14 叶明吕,徐国庆,陆誓俊,等.放射性锶在沸石中的吸附与迁移的研究[J].核化学与放射化学,1994,6(4):199-204.
    15 谷存礼;黄雅文等.低放废物浅地层处置回填材料研究[J].辐射防护通讯,1990;6:23-32
    16 曾继述,夏迎德.~(237)Np,~(239)pu,.~(241)Am在膨润土和矿物上的吸附[J].核化学与放射化学,1992,14(10):49.
    17 J. Matsumoto. JAERI-No. 012, 1997.
    18 Shang-Jyh Liu, et al. Simulation of radionuclide chemistry and sorption characteristics in thegeosphere by artificial intelligence technique[J]. Radiochimica Acta44/45, 1988; 421-426
    19 T. Ohe, H-P. Hermansson, et al. The American Society of Mechanical Engineers[M]. Book No. 10354A-1993: 197-205
    20 Higgo JJW, Rees LVC. Eviron. Adsorption of actinides by marine sediments: effect of the sediment/sea water radio on the measured distribution ratio[J]. Sci. Technol, 1986, 20 (5):483-490
    21 夏德迎,曾继述.放射性锝在含锑矿物上吸附行为和机理的研究[J].核化学与放射化学,1993,15(2):94-97
    22 曾继述,夏德迎.器壁吸附对镅分配系数测定的影响[J].核化学与放射化学,1994,16(2):126-128
    23 Chung Kyun PAPK, Hun Hwee PARK, seong IHI WOO. Computer simulation study of transient dDiffusion of cesium through granite with unsteady-state diffusion model[J]. Journal of Nuclear science and Technology, 1992, 29 (8): 786-793
    24 苏锡光,龙会遵,朱振国,等.第二次全国环境放射化学学术讨论会议论文集.苏州.1995.4
    25 Yngve. Albinsson, Ingemar. Engkvist. Radioactive Waste Mana—gement and the Nuclear Fuel Cycle, 1991; 15 (4): 221-239
    26 Masaki. Tsukamoto, et al. Diffusion of Neptunium (Ⅴ) in loosely compacted sodium bentonite[J]. Radiochimica Acta 66/67, 1994; 397-403
    27 H. R. von Ounten & P. Partz speciation of radionuclides in the environment[J]. Benes, 1995, Radiochemica Acta 69, 1-29
    28 史维浚、李学礼、周文斌.地球化学模式及其在铀矿地质中的应用[J].华东地质学院学报,1995,18(2):118-127
    29 Parkhurst D L. Manual of PHREEQE. USGS, 1990
    30 Jerry D. Manual of MINTEQA2. EPA, 1991
    31 苏锐、李春江、王驹等.花岗岩体单裂隙中核素迁移数学模型Ⅲ[J].核化学与放射化学,2000,22 (2):80-86.
    32 李宽良.放射性地质(水文地球化学专辑)[J].1975(1):24-41
    33 辛存田、李冰、姜凌等.超铀元素化学形态研究现状[J].辐射防护通讯,2000.20(6):17-32.
    34 Geochemistry of long lived transuranic actinides fission product report of a co-ordinate research programme. 1987~1991. IAEA-TECDOC-637. 1992.
    35 Berthoud T. Determination of low levels of Uranium (Ⅵ) in water solutions by means of the laser-induced thermal lensing effect[J]. Amal. Chem. Acta. 1983: 153: 265-269
    36 Stumpe R. Appl. Phys.. 1984. B34 (4): 203
    37 Stumpe R. Report. RCM 20284. TU Munchen. 1984.
    38 Saito A. Amal. Separation of actinides in different states from neutral solutions by solvent extraction[J]. Chem. 1983. 55: 2454-2457
    39 H. Nitsche et al. Radiochim. Acta. 1985, 39(1): 23
    40 J. I. Kim et al. Scientific basis for nuclear waste management. Ⅶ, Ed. by G. L. Mcvay, NorthHolland, New York, 1982, p. 191
    41 B. Allard. Actinides in persective. Ed. by Norman M. Edelstein Pergamon Press, London, 1982, p. 553
    42 H. Nitsche. Solubility studies of transuranium elements for nuclear waste disposal: principles and overview[J]. Radiochim. Acta, 1991, 52/53: 3-8
    43 B. Allard et al. Environmental actinide chemistry[J]. Inorg. Chim. Acta, 1984, 94: 205
    44 Ch. Lierse et al. Radioanal. Nucl. Chem. Lett., 1984, 86: 37
    45 B. Allard et al. Expected species of Uranium, Neptunium and Plutonium in neutral awueous solution[J]. Inorg. & Nucl. Chem., 1980, 42: 1015
    46 J. I. Kim et al. Plutonium chemistry. Ed. by W. T. Carnall and G. R. Choppin, ACS Sym. Ser. 216, Am. Chem. Soc., Washington DC, 1983, p. 317
    47 M. Eiswirth et al. Radiochim. Acta, 1985, 38: 197
    48 L. Maya. Lnorg. Hydrolysis and carbonate complexation of dioxoneptunium (Ⅴ) in 1.0 M NaClO_4 at 25℃[J]. Chem., 1983, 22: 2093
    49 J. I. Kim. Handbook on the physics and chemistry of the actinides. ED. by A. J. Freeman and Keller, Elsevier Science Publishers B. V. 1986, p. 413
    50 V. Necket al. Optical absorption spectra of Pu (Ⅳ) in carbonate/bicarbonate media[J]. Eadiochim. Acta, 1985, 38: 197-201
    51 V. Moulin et al. Environmental behaviour of Americium (Ⅲ) in natural waters[J]. Radiochim. Acta, 1988, 44/45: 33
    52 L. Merli et al. Migration 93, Charleston, SC, USA, 1993, Abst. No. A2-9
    53 H. Morigama et al. Migration 93. Charleston, SC, USA, 1993, Abst. No. Pa2-14
    54 R. J. Silva et al. Migration 93. Charleston, SC, USA, 1993, Abst. No. Pa2-14
    55 G. W. Beall et al. Trans. Amer. Nucl. Soc.,1979, 32: 164
    56 B. Baas et al. J. Geolgy., 1960, 68 (3): 243
    57 G. R. Choppin.中国原子能科学研究院报告, 1985
    58 Chen Yaozhong et al. A kinetic study of the reduction of Np (Ⅵ) with humic acid[J]. Radiochim. Acta, 1993, 62: 199-201
    59 Tan Jianxin et al. Radiochim. Acta, 1993, 61: 73
    60 J. M. Cleveland et al. Neptunium and Americium speciation in selected basalt, granite, shale, and tuff ground waters [J]. Nucl. Technol., 1983, 62 (3): 298
    61 J. M. Cleveland et al. Plutonium, Americium, and Neptunium speciation in selected groundwaters[J]. Nucl. Technol., 1985, 69: 380
    62 J. M. Cleveland et al. Neptunium and Americium speciation in selected basalt, granite, shale, and tuff groundwaters[J]. Science, 1983, 221: 271
    63 J. M. Cleveland et al. Plutonium speciation in water from mono lake, california[J]. Science, 1983, 222: 1323
    64 T. F. Rees et al. The effect of composition of selected groundwaters from the basin and range province on plutonium, Neptunium, and Americium speclation[J]. Nucl. Technol., 1984, 65: 131
    65 T. W. Netwon et al. Scientific basis for nuclear waste management. Ⅶ, Ed. by G. L. McVay, NorthHolland, New York, 1984, p. 859
    66 S. Magirius et al. Radiolytic oxidatiom of Am (Ⅴ) in NaCl solutions[J]. Radiochim. Acta, 1985, 38: 29-32
    67 J. D. F. Ramsay. Migration 87, Munich, 1987, Abst. No. 120
    68 Liu Shifang et al. Toxicol Environ Chem, 1988, 65: 103-111
    69 Tao Zuyi et al. Radiochim Acta, 1996, 72: 51-54
    70 Tao Zuyi et al. Radiochim Acta, 1996, 73: 1-3
    71 Du Jinzhou et al. Determination of formation constants of Co~(2-), Ni~(2+), Cu~(2+), and Zn~(2+) complexes with humic and fulvic acids by potentiometric titration method[J]. Pedosphere, 1994, 4: 289-296
    72 U. Olofsson et al. Formation and properties of actinide colloids[J]. SKBF-KBS-TR-83-08 (1983)
    73 U. Olofsson et al. Scientific basis for nuclear waste management. V. Ed. by W. Lutxe, New York, NY. NorthHolland, 1982, p. 757
    74 U. Olofsson et al. Scientific basis for nuclear waste management. V. 1, Ed. by S. V. Topp, New York, Elserier Science Publishing Co. Inc., 1982, p. 191
    75 S. Nakayama et al. Behaviors of Americium in aqueous solutions containing iron [J]. Journal of Nuclear science and Technology, 1986, 23 (8): 731
    76 Relgea J F, Serne R T, Rai D. Methods for Determining Radionuclide Reterdation Factors. Quarter Report. PNL-3349, 1980
    77 史维浚.铀水文地球化学原理[M].第1版,北京:原子能出版社,1990.12:110
    78 李宽良.水文地球化学热力学[M].第1版,北京:原子能出版社,1993:76
    79 沈照理.水文地球化学基础[M].第1版,北京:地质出版社,1986:20,184
    80 于天仁等.土壤的电化学性质及其研究方法(修订本)[M],北京:科学出版社,1976
    81 熊毅等.土壤胶体(第二册)[M],北京:科学出版社,1985:390-411;498-514
    82 O.赫茨英格.环境化学手册(第三分册)[M],北京:中国环境科学出版社,1987:53-68
    83 南京土壤研究所.土壤理化分析[M],第1版,上海:上海科技出版社,1977:169-173
    84 杨雅秀等.中国粘土矿物[M],北京:地质出版社,1994:236
    85 任磊夫.粘土矿物与粘土岩[M],北京:地质出版社,1992:9
    86 Cheng Jiajun, Dai Jie, Xun Zhaoyi, et ul. Numerical modeling of radionuclide migration in porous media with nonequilibrium sorption[J]. Journal of Environmental Sciences, 1996. 8 (1): 86-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700