多菌灵对土壤酶和微生物的影响效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:多菌灵是一种广泛应用与蔬菜、作物等的广谱性杀菌剂,研究目的如下:(1)多菌灵在新疆干旱区灰漠土壤中的残留降解动态;(2)对土壤酶活性和微生物的影响。
     方法:大田试验中,用高效液相色谱法测定了多菌灵在加工番茄农田土壤中的残留降解动态,浓度为0,5,10,20,50, and 100 mg·kg-1;应用传统方法结合PCR-DGGE法,室内模拟试验和大田试验下,研究了多菌灵对土壤酶活性和微生物的影响。
     结果:(1)多菌灵在加工番茄农田土壤中的残留量与随着多菌灵浓度增加而增加,半衰期却随着多菌灵浓度的增加而减小,多菌灵土壤中的半衰期为6.48-10.27 d。
     (2)在室内模拟条件下,多菌灵显著促进土壤纤维素酶和脲酶活性,蔗糖酶活性有所降低,蛋白酶则表现为先抑制再促进,过氧化氢酶和碱性磷酸酶活性分别在多菌灵施40 d时显著降低,且与多菌灵浓度有较好的相关性,可考虑用过氧化氢酶和碱性磷酸酶活性作为多菌灵残留的生物学指标,多菌灵的EC25分别为6.8 mg·kg-1和5.94 mg·kg-1。大田条件下,多菌灵对土壤蔗糖酶和脲酶活性的影响表现为先激活后抑制,蛋白酶、过氧化氢酶和碱性磷酸酶活性则为先抑制后恢复。在28 d内,多菌灵对蛋白酶、过氧化氢酶和碱性磷酸酶活性的抑制作用随浓度的增加而增大。可考虑用蛋白酶、过氧化氢酶和碱性磷酸酶活性指示土壤中多菌灵残留状况,其EC25分别为8.74mg·kg-1、42.3 mg·kg-1和60 mg·kg-1。
     (3)土壤微生物量碳和量氮对多菌灵反映敏感,在整个培养期间(42 d),施用多菌灵处理的土壤微生物量碳和量氮随多菌灵浓度的增加显著降低。因此,可以用土壤微生物量碳和量氮来指示多菌灵对土壤的残留状况,其在室内培养和大田条件下的EC25分别为11.39、10.44 mg·kg-1和34.79.25.13 mg·kg1.
     (4).多菌灵对土壤细菌数量的影响表现为低浓度(5、10和20 mg·kg-1)促进,高浓度(50和100 mg·kg-1)抑制。土壤真菌数量随着多菌灵浓度的增加显著降低,土壤真菌数量变化可以用于指示土壤中多菌灵的残留状况,其在室内培养和大田条件下的EC50为分别为7.73mg kg=1和62.32 mg·kg-1。
     (5)室内模拟条件下,细菌群落的Shannon-Wiener指数在12d是下降幅度为:5.73%-26.75%;19 d时基本恢复。在大田条件下,细菌群落的Shannon-Wiener指数在14、28和42 d时降低,降低幅度为13.40-25.43%,8.10-14.17%,3.31-22.73%和40-56%,13.33-26.67%,5.89-52.94%。
     (6)大田条件下,5-50 mg·kg-1多菌灵处理的土壤真菌群落的Shannon-Wiener在7d时均降低,后逐渐恢复。
     结论:土壤微生物生物量碳、量氮和真菌数量对土壤多菌灵残留反应敏感,可以作为污染的诊断指标;过氧化氢酶活性、碱性磷酸酶活性,可作为指示多菌灵污染的辅助指标。室内培养条件下土壤酶和微生物对多菌灵的反应较大田更为敏感,其EC25或EC50明显的低
Object:The carbendazim is a broaden spectrum fungicide used for protection fruit, vagetable and crop from diseases. The object of this study is (1) the residue dynamic of carbendazim in grey desert soil of Xinjiang; (2) the effect of carbendazim on soil enzymes and microorganism..
     Methods:A field experiment was carried out for investigating the residue dynamic of carbendazim in grey desert soil. The concentrition of carbendazim were set as 0,5,10,20,50, and 100 mg-kg"'dry soil. The residue of carbendazim in soil was analyzed by using HPLC. Effects of carbendazim on soil enzymes and microorganism were studied with a greenhouse experiment and a field experiment. Soil enzymes, microbial biomass and diversities were tested with traditional methods and PCR-DGGE method.
     Results:(1) The residues of carbendazi in soil of processing tomato field were increased with carbendazim concentration increasing. The half-lives of carbendazim in grey desert soil were from 6.48 to 10.27 d in this study.
     (2) The cellulase activity and urease activity of soil were increased and sucrase activity was decreased by carbendazim added under greenhouse conditions. The protease activity was decreased initially and then increased subsequently. Catalase activity and alkaline phosphatase activity were inhibited significently after carbendazim application 26 day and 40 day, respctively. Catalase activity and alkaline phosphatase activity can be considered as the indicating index for carbendazim pollution in soil. The EC25 of carbendazim for soil catalase and alkaline phosphatase activity were 6.8 mg·kg-1 and 5.94 mg·kg-1, respectively. Under field condition, sucrase activity and urease activity of soil were increased initially and decreased subsequently in carbendazim trestments. Protase activity, catalase activiy and alkline phosphatase activity were inhibited significantly by carbendazim during the experiment earlier stage (0-28 d), but there are no significant difference among different treatments after carbendazim application 35 day. Those results suggest that protase activity, catalase activiy and alkline phosphatase activity can be used for indicatind the carbendazim pollution in soil at earlier stage. The EC25 of carbendazim for soil protase activity, catalase activiy and alkline phosphatase activity was 8.74,66.06 and 60 mg1kg-1, respectively.
     (3) The microorganism biomass carbon and biomass nitrogen of soil were decreased significently after treated with carbendazim, and the inhibited effect of carbendazim on microorganism biomass carbon and biomass nitrogen increased with the carbendazim concerntration increasing in soil under greenhouse and field conditions. The microorganism biomass carbon and biomass nitrogen used as the biological index to indicate carbendazim pollution of soil with EC25 11.39 and 10.44 mg·kg-1 for greenhouse condition and with EC2534.79 and 25.13 mg·kg-1 for field condition, respectively.
     (4) The amount of bacteria was increased by the lower carbendazim concerntration (2.5,5, 10 and 20 mg-kg-1)and decreased by the higher concerntration(50 and 100 mg·kg-1.The amount of fungi were decreased significantly with the carbendazim congcerntration increasing. The EC50 of carbendazim for soil fungi quantity were 7.73 mg·kg-1 for greenhouse condition and 62.32 mg·kg-1 for field condition, respectively.
     (5) With carbendazim concerntration increasing, Shannon-Wiener index and abundance index of bacteria were increased at 14th day, but decreased at 28th day. Shannon-Wiener index and abundance index of fungi were reduced by 13.40-25.43%,8.10-14.17%,3.31-22.73% and 40-56%, 13.33-26.67%,5.89-52.94% at 7th,14th and 28th days, respectively.
     Conclusion:In this study, the microbial biomass carbon, biomass nitrogen and the amount of fungi were sensitive to carbendazim residues in soil, so these can be used as diagnose indicators for indicating soil carbendazim pollution. The catalase activity, alkaline activity and protase activity could be considered as assossiate indicators for indicating carbendazim residue in soil. Effects of carbendazim on soil enzymes and microbial were more sensitive under field coditon. The EC25 or EC50 of carbendazim for soil enzymes and microbial were higher in field experiment than that of in greenhouse experiment.
引文
鲍士旦.土壤农化分析[M],中国农业出版社,2005.
    曹慧,崔中利,周育,等.甲基对硫磷对红壤地区土壤微生物数量的影[J].土壤,2004,366:654-657.
    曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    陈国峰,杨红.除草剂使它隆对土壤酶活性及呼吸强度的影响[J].生态环境,2008,17(3):1016-1020.
    陈红歌,胡元森,贾新成.垃圾填埋场细菌中群空间分布及组成多样性研究[J].环境科学学报,2005,25(6):809-815.
    陈怀满,郑春荣.关于土壤环境容量研究的商讨[J].土壤学报,1992,29:20-225.
    陈振祥,于鑫,夏明芳,等.磷脂脂肪酸分析方法在微生物生态学中的应用,生态学杂志.2005,24(7):828-832.
    陈中云,闵航,吴伟祥,等.农药污染对水稻田土壤反硝化细菌种群数量及其活性的影响[J].应用生态学报,2003,14(10):1765-1769.
    褚海燕,朱建国,谢祖彬.稀土元素镧对红壤脲酶、酸性磷酸酶活性的影响[J].农业环境保护,2002,19(4):193-195.
    崔淑华.戊唑醇及其混剂在小麦中的残留动态及对土壤微生物影响的研究[J].山东农业大学硕士学位论文,2005.
    邓晓,李勤奋,倪春燕,等.乐果对土壤微生物种群的影响[J].生态环境,2007,16(2):416420.
    杜宇峰,叶央芳.除草剂苯噻草胺对水稻田土壤微生物种群的影响应用与环境生物学报[J].2005,11(6):747-750.
    段学军,闵航.镉胁迫下稻田土壤微生物基因多样性的DGGE分子指纹分析[J].环境科学,2004,25(5):122-126.
    樊丹,甘小泽,卢耀英,等.多菌灵在茶叶中的残留动态研究[J].农业环境科学学报,2005,24:298-300.
    范昆,王开运,王东,等.1,3-二氯丙烯药剂对土壤微生物数量和酶活性的影响[J].生态学报.2008,28(2):695-701.
    范宁云,蔡兴,李彩霞.分光光度法测定蔬菜中多菌灵残留量新方法的研究[J].甘肃科技,2009,25(2):52-53.
    冯波,单敏,方华,等.百菌清对土壤微生物数量和酶活性的影响[J].农业环境科学学报.2006,25(3):674-677.
    冯慧敏,何红波,白震,等.乙草胺的微生物降解及其对土壤磷脂脂肪酸特性的影响[J].应用生态学报,2008,19(7):1585-1590.
    冯坚.英汉农药名称对照[M].北京:化学工业出版社,2003.
    冯燕燕,蔡继红,侯振安,等.多菌灵对新疆灰漠土壤中六种酶活性的影响[J].石河子大学 学报(自然科学版),2009,27(4):413-418.
    冯自力,朱何琴,宋晓轩,等.棉田常用杀菌剂对土壤微生物的影响[J].中国棉花.2007,34(12):16-18.
    高军,姜金华.异丙隆对土壤基础呼吸与微生物生物量的影响[J].安徽农业学.2006,34(23):6264-6265.
    高云超,朱文珊,陈文新.秸秆覆盖免耕土壤真菌群落结构与生态特征研究[J].生态学报,2002,1(10):1704-1707.
    关松荫,张德生,张志明.土壤酶及其研究法[M].北京:农业出版社.1986,274-338.
    关松荫.化学农药对土壤脲酶活性抑制作用的研究[J].土壤通报,1992,23(5):232-233.
    桂文君,黄雅丽,吴慧明,等.多菌灵在柑桔及土壤中的HPLC残留分析方法[J].现代农药,2004,3(3):25-28.
    郭兴华,乔玉辉,赵晶,等.土壤除草剂乙草胺污染的响应和指示[J].中国生态农业学报.2009,17(5):960-963.
    郝金芝.高效液相色谱法测定水果中的多菌灵[J].中国卫生检验杂志,2004,14(5):586.
    何斌.广西英罗港不同红树植物群落土壤理化性质与酶活性的研究[J].林业科学,2002,38(2):151-157.
    何强,孔祥虹,赵洁,等.固相萃取-离子交换色谱法测定浓缩苹果汁中残留的苯菌灵、多菌灵、噻菌灵[J].色谱,2008,26(5):563-567.
    和文祥,蒋新,余贵芬,等.杀虫双对土壤脲酶影响的研究[J].土壤与环境,2002,11(1):1-5.
    和文祥,蒋新,朱茂旭,等,酶修复土壤农药污染的研究进展[J].生态学杂志,2001,20(3):47-51.
    和文祥,蒋新,朱茂旭,等.杀虫双对土壤磷酸酶的毒性效应[J].应用与环境生物报,2002,8(6):658-661.
    和文祥,闵红,王娟,等.2,4-D对土壤酶活性的影响[J].农业环境科学学报,2006,25(1):224-228.
    胡晓,张敏.有机磷农药对土壤微生物群落的影响[J].西南农业学报.2008,21(2):383-389.
    黄智,李时银,刘新会,等.苯咪草胺对土壤中过氧化氢酶活性及呼吸作用的影响[J].环境化学.2002,21(5):481-484.
    金仁耀,桂文君,寿林飞,等.多菌灵在柑橘和土壤中的残留及降解动态研究[J].江苏农业科学,2005,(2):111-114.
    金士博.水环境数学模型[M].北京:中国建筑工业出版社,1987:100-101.
    李鹏,毕学军,汝少国.DNA提取方法对活性污泥微生物多样性PCR-DGGE检测的影响[J].安全与环境学报.2007,7(2):53-57.
    李时银,黄智,倪利晓,等.毒死蜱及代谢产物对土壤过氧化氢酶活性的影响[J].农业环境保护.2002,21(6):553-555.
    李霞,潘开文,高平,等.农药对土壤微生物和酶活性的影响[J].安徽农业科学,2007,35(21):6510-6512.
    李永红,高玉葆.土壤中单嘧磺隆对谷子生长及土壤微生物若干生化功能的影响[J].农业环境科学学报,2004,23(4):633-637.
    量程朴,唐慧敏,杨淑娴,等.应用液质联用仪测定番茄、黄瓜中多菌灵残留[J].现代农药,2009,8(3):36-37.
    林晓燕,王祎,赵宇华,等.苄嘧磺隆对淹水稻田土壤呼吸和酶活性的影响[J].浙江大学学报,2008,31(4):109-113.
    刘恩科,赵乘强,李秀英,等.不同施肥制度土壤微生物量碳变化及细菌群落16SrDNA V3片段PCR产物的DGGE分析[J].生态学报,2007,27(3):1079-1085.
    刘慧群,刘新刚,董丰收,等.超高效液相色谱-串联质谱测定蔬菜、水果和土壤中多菌灵的残留研究[J].农药科学与管理.2009,30(4):20-24.
    刘文杰,万英,庞新安,等.高效液相色谱法同时测定土壤中多菌灵、吡虫啉和甲基托布津的残留[J].分析测试学报,2007,26(1):133-135.
    鲁赫鸣,闫颖,王文思,等.农药对土壤过氧化氢酶活性的影响[J].东北师大学报自然科学版,2004,36(4):93-97.
    吕镇梅,闵航,叶央芳.除草剂二氯喹啉酸对水稻田土壤中微生物种群的影响[J].应用生态学报,2004,15(4):605-609.
    罗海峰,齐鸿雁,张洪勋.乙草胺对农田土壤细菌多样性的影响[J].微生物学报,2004,44(4):519-522.
    马爱军,何任红,蒋新宇,等.毒死蜱与乙草胺单—污染和复合污染对土壤酶活性及微生物生物量碳的影响[J].生态与农村环境学报,20011,24(2):57-60.
    马俊孝,季明杰,孔健PCR-DGGE技术在微生物物种多样性研究中的局限性及其解决措施.食品科学[J1].2008,29(5):493-497.
    马驿,陈杖榴,曾振灵.恩诺沙星对土壤微生物群落功能多样性的影响[J].生态学报,2007,27(8):3400-3406.
    彭勃.黄河流域水资源综合规划[R].郑州:黄河水资源保护局,2002:11-13.
    任天志,持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75.
    邵波.除草剂对土壤微生物活性的影响以及P450对酞胺类除草剂的降解行为的研究.浙江大学硕士论文,2003.
    孙波.土壤质量与持续环境III:土壤质量评价的生物学指标[J].土壤,1997(29):225-234.
    孙晓棠,姚青,刘琼光,等.利用DGGE评价不同培养基回收番茄根际细菌类群的能力[J].微生物学报,2006,45(3):482-486.
    滕应,骆永明,赵祥伟,等.重金属复合污染农田土壤DNA的快速提取及其PCR-DGGE分析[J].土壤学报.2004,41(3):343-346.
    王金花,朱鲁生,王军.除草剂阿特拉津对土壤脲酶活性的影响[J].应用生态学报,2003,14(12):2281-2285.
    王开运,干东,夏晓明,等.1,3-二氯丙烯药剂对土壤微生物数量和酶活性的影响[J].生态学报.2008,28(2):695-701.
    王秀丽.重金属复合污染对土壤环境微生物群落的影响机理研究.浙江大学硕士学位论文,2002.
    王岳坤,洪葵.红树林土壤细菌群落16S rDNA V3片段PCR产物的DGGE分析[J].微生物学报,2005,45(2):201-204.
    王中,侯宪文,邓晓,等.多菌灵在香草兰和土壤中的残留动态[J].生态环境学报,2009,18(2):535-539.
    闻新MATLAB神经网络应用设计[M].北京:科学出版社,2000:245-250.
    夏家淇.土壤环境质量标准详解[M].1996,北京:中国环境科学出版社.
    夏世钧,孙金秀,白喜耕,等.农药毒理学[M],北京:化学工业出版社,2008:144.
    夏增禄.土壤环境容量研究[M].北京:气象出版社,1986.
    向月琴.多菌灵在薏苡仁和土壤中的残留动态及其对土壤微生物的影响,浙江大学硕士论文,2007.
    向月琴,高春明,庞国辉,等.土壤中多菌灵的降解动态及其对土壤微生物群落多样性的影响[J].土壤学报,2008,45(4):699-704.
    辛承友,朱鲁生,王军,等.阿特拉津对不同肥力土壤蔗糖酶活性的影响[J].农业环境科学学报,2004,23(3):479-483.
    邢德峰,任南琪.应用PCR-DGGE研究微生物群落时的常见问题分析[J].微生物学报.2006,42(2):331-335.
    邢来君,李明春.普通真菌学[M],北京:高等教育出版社,2001:3-5.
    徐晓宇,闵航,刘和,等.土壤微生物总DNA提取方法的比较[J].农业生物技术学报,2005,13(3):377-381.
    许敬亮,王志春,王塑,等.多菌灵降解菌株dj1-6-2的分离、鉴定及降解特性[J].中国环境科学,2006,26(3):307-310.
    闫颖.五种农药对土壤酶活性影响的研究.东北师范大学硕士学位论文.2004.
    燕嗣皇,陆德清,杨玉环.三种杀菌剂对木霉和整齐小核菌及土壤主要微生物类群的影响[J],中国生物防,1996,12(1):29-32.
    杨秀敏,陈永艳,胡彦学,等.固相微萃取-高效液相色谱-荧光检测法分析苹果汁中的多菌灵和噻菌灵[J].中国食品学报,2007,(5):122-127.
    杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志,2002(2):23-25.
    姚斌,徐建民,尚鹤,等.阿特拉津除草剂对土壤微生物生态特征的影响[J].水土保持学报,2005,19(3):46-49.
    姚斌,徐建民,尚鹤,等.甲磺隆污染土壤的微生物生态效应[J].农业环境科学学报,2005,24(3):557-561.
    姚斌,张超兰.除草剂对土壤微生物生物量碳氮及呼吸的影响[J],生态环境,2008,17(2):580-583.
    姚槐应,黄昌勇,等,土壤微生物生态学及其实验技术[M].北京:科学出版社,2008,58.
    姚健,杨永华,沈晓蓉,等.农用化学品污染对土壤微生物群落DNA序列多样性影响研究[J].生态学报,2000,20(6):1021-1027.
    姚晓华,闵航,袁海平.啶虫脒污染下土壤微生物多样性[Jl.生态学报,2006,26:3074-3080.
    姚晓华,闵航,袁海平.杀虫剂啶虫脒对旱地土壤酶活性及呼吸强度的影响[J].土壤学报,2005,42(6):1012-1016
    叶央芳,闵航,周湘池.苯噻草胺对水田土壤呼吸强度和酶活性的影响[J].土壤学报,2004,41(1):93-96.
    游子涵,陈智东,柳训才,等.油菜植株及其土壤中多菌灵残留检测及动态[J].农药,2006,45(8):552-553.
    曾路生,廖敏,黄昌勇,等.镉污染对水稻土微生物量、酶活性及水稻生理指标的影响[J].应用生态学报,2005,16(11):2162-216.
    张超兰,徐建民.添加莠去津的土壤中微生物生物量碳、氮、磷对外源有机无机物质的动态响应[J].水土保持学报,2004,18(4):57-61.
    张桂山.多菌灵呋喃丹对湖南红壤士壤微生物和酶活性的效应及多菌灵降解细菌的分离鉴定与降解性研究.浙江大学硕士学位论文,2005.
    张浩,王岩,刘冬华,等.大豆植株及土壤中多菌灵残留分析方法的研究[J].吉林农业大学学报,2004,26(5):535-537.
    张浩,王岩,逯忠斌.40%多菌灵SC在大豆和土壤中的残留动态[J].农药,2006,45(10):695-696.
    张浩,张祥辉,逯忠斌,等.高效液相色谱法同时测定食用菌中的多菌灵和噻菌灵残留量[J].农药,2008,47(7):517-518.
    张利,刘红玉,张慧,等.湖南东部地区稻田土壤中有机氯农药残留及分布[J].环境科学研究,2008,21(1):118-123.
    张琦,董慧茹,黄丽丽.固相萃取-高效液相色谱法测定河水中的多菌灵含量[J].环境化学,2008,27(1):119-120.
    张瑞福,崔中利,李顺鹏.土壤微生物群落结构研究方法进展[J].土壤,2004,36(5):476-480.
    张新宇,向本春,黄家风.新疆加工番茄病毒病害的调查[J].安徽农业科学,2007,35(18):5477--5478.
    张玉婷,郭永泽,刘磊,等.50%多菌灵WP在小麦和土壤中残留动态研究[J].天津农业科学,2007,13(4):52-54.
    赵祥伟,骆永明,滕应,等.重金属复合污染农田土壤的微生物群落遗传多样性研究[J].环境科学学报,2005,25(2):186-191.
    郑巍,刘惠君,刘维屏.毗虫啉及代谢产物对土壤过氧化氢酶活性的影响[J].中国环境科学.2000,20(6):524-527.
    钟文辉,蔡祖聪,尹力初,等.用PCR-DGGE研究长期施用无机肥对种稻红壤微生物群落多样性的影响[J].生态学报,2007,27(10):4012-4019.
    周安文.三唑酮在十壤中的吸附迁移及对土壤酶活性影响研究.湖南农业大学硕士学位论文, 2004.
    周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性.2007,15(3):306-311.
    周礼恺.土壤酶学[M].科学出版社,1987,116.
    朱鲁生,王军,林爱军,等.二甲戊乐灵的土壤微生物生态效应[J].环境科学,2002,23(3):88-91.
    Amann R I, Ludwig W, Schleifer K-H. Phylogenetic identification and in situ detection of individ-al microbial cells without cultivation[J]. Microbiological Reviews,1995,59(1):143-169.
    Bassam B J, Caetano-Anolles G. Fast and sensitive sliver staining of DNA in polyacrylamide gels[J]. Annual Biochemistry,1991,196:80-83.
    Beck T. Z.P flanzenernahr. Dung.Bodenkd.1971,130,68.
    Bridge P, Spooner B. Soil fungi:Diversity and detection[J]. Plant Soil,2001,232:147-154.
    Brock T D. The study of microorganisms in situ progress and problems[J]. symp, Soc.Gene Microbiol,1987,1-17.
    Burns R G, El-Sayed M H, McLaren A D. Extraction of an urease-active organo complex from soil[J]. Soil Biology Biochemistry,1972,4:107-108.
    Carmine C C, Antonio G, Robert A, etal. Functional and molecular responses of soil microbial communities under differing soil management practices[J]. Soil Biology& Biochemistry, 2004,36(11):1873-1883.
    Clapp G P, Young P W, Filtter A H, Ribosomal small subunit varation within spores of an arbuscular mycorrhizal fungus[J]. Molecular Ecology,1998,8:915-921.
    Dick R P, Pankhurst C. Soil enzyme activities as integrative indications of soil health[J]. Biological Indicators of Soil Health. New York:CAB International,1997:121-156.
    Engelen B, Meinken K, Wintzingerode F, et al. Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures [J]. Applied and Environmental Microbiology,1998,64: 2814-2821.
    Fantroussi S, Verschuere L. Verstraete W. et al. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles[J]. Applied and Environmental of Microbiology,1999.65(3):982-988.
    Garcia C, Cecanti B, Masciandaro G, et al. Phosphatase and β-glucosidase activities in humic substances from animal wastes[J]. Bioresource Technology.1995,53(1):79-87.
    Garland J L. Analysis and interpretation of community-level physiological profiles inmicrobial ecology[J]. Microbiology Ecology,1997,24:289-300.
    Harter R.D, Stotzky G. Soil Sci Soc[M]. Am Proc.1973.37,116.
    Henrot J. Vegetation removal in two soils of the hum id tropics:Effect in microbial biomass[J]. Soil Biol. Biochem.1994,26(1):111-116.
    Julia R D, Elipth A Y, Kaare, et al. Impact of DNA extraction method on bacterial community
    composition measured by denaturing gradient gel electrophoresis[J]. Soil Biology& Biochemistry, 2004,36(10):1607-1614.
    Kennedy N, Brodie E, Connolly J, Clipson N. Impact of lime,nitrogen and plant species on bacterial community structure in grassland microcosms[J]. Environmental microbiology,2004, 6(10):1070-1080.
    Muller A K, Wester gaardk, Christensens,etal.The diversity and function of soil microbial communities exposed to different disturbances[J]. Microbial Ecol,2002,44:49-58.
    Muyzer G, Wall E D, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Applied and Environmental Microbiology,1993,59:695-700.
    Nannipier I P, Bollag J M. Use of enzyme to detoxify pesticidecontaminated soils and watersfJ]. Journal of Environmental Quality,1991,20:510-517.
    Omar S A, Abdel-Sater M A. Microbial population and enzyme activities in soil treated treates with pesticides[J]. Water, Air, and Soil Pollution,2001,127:49-63.
    Parkhust C E, Bioindicators Of soil health and United Kingdon [M]. Oxon: CAB international, 1997.
    Rogers H T. Soil Sci[M].1942,54,439.
    Saeki M, Toyota K. Effect of bensulfuron-methyl a sulfonylurea herbicide on the soil bacterial community of a paddy soil microcosm. [M]. Biology and Fertility of Soils,2004, 40:110-118.
    Sangita T, Ravi B, Mathur RP. Degradation of organophosphorus and carbamate pesticides in soils-HPLC determination [J]. Biomedical Chromatography,1995,9:18-22.
    Schmidt IK, Ruess L, Baath E, et al. Soil Biology&Biochemistry[M],2002,32:709-720.
    Seghers D, Verth O K, Reheul D, et al. Efect of longtem herbicide applications on the bacterial community structure and function in an agrleuhural soil[J]. FEMS Microbiology Ecalogy. 2003,46:139-146.
    Sigler W V, Miniaci V, Zeyer J. Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment of bacterial community structure[J]. Microbe Methods,2004, 57:17-22.
    Sigler W V, Truco RF. The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis[J]. Appl Soil Ecol,2002,21: 107-118.
    Singh B K, Walker A W, Fight D J. Persistence of chlorpyrifos fenami DhOS. chlorothalonil, and pendimethalin in soil and their effects on soil microbial characteristis[J]. Bull Environ Contam Toxical,2002,69:181-188.
    Sousa J P, Rodrigues J M, Loureiro S, et al. Ring-testing and field-validation of a terrestrial model ecosystem (TME)-an instrument for testing potentially harmful substances:Effects of carbendazim on soil microbial parameters[J]. Ecotoxicology,2004,13:43-60.
    Sparling G P, et al. Changes in soil organic C, microbial C and aggregate stability under continuous maize and cereal cropping and after restoration to pasture in soil from them anawalu region[J]. Soil and Tillage Research,1992,24:225-241.
    Stephen J R, ChangY, Macnaughton S J, et al. Effect of toxic metals on indigenous soil β-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal resistant bacteria[J]. Applied and Environmental Microbiology, 1999,65(1):95-101.
    Suzuki M T, Giovannini G J. Bias caused by template annealing in the application mixtures of 16S rRNA genes by PCR[J]. Appl Environ Microbiol,1996,62:625-630.
    Taylor J P,Wilson B, Mills M S, et al. Comparison of microbial numbers and enzymatic activities in surfacesoils and subsoils using various techniques, Soil Biology and Biochemistry.2002,34 (3):387-401.
    Thirupl, Johnsenk, Torsvik V, etal.Effects of fenpropimorph on bacteria and fungi during decomposition of barley roots [J]. Soil Biol Biochem,2001,33:1517-1524.
    Warde D A, Parkinson D. Relative importance of the effect of 2,4-D,glyphosate and environmental variables on the soil microbialbiomass[J]. Plant and Soil,1991,134(2):209-219.
    Warde D A, Parkinson D. Influence of the herbicides 2,4-D and glyphosate on soil microbial biomass and activity:a field experiment[J]. Soil Biology and Biochemistry,1992,24(2): 185-186.
    Weisburg W W, Barns S M, Pelletler D A, etal.16S DNA amliplication for phylogenetic study[J]. Journal of Bacteriology,1991,173:697-703.
    Wester G K, Muller A K, Christensen S, etal. Effects of tylosinas a disturbance on the soil micro-bial community [J]. Soil Biol Biochem,2001,33:2061-2071.
    WHO. Environmental health criteria:Carbendazim G[M]. World Health Organization,1993.149
    Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:a review[J]. Biol Fertil Soil,1999,29:111-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700