黄河泥沙沉积物的理化性质及其对磷的吸附行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河是高含沙河流,其所含大量的泥沙对水体中的污染物具有一定的吸附作用。本研究选择鹊山水库沉沙条渠6个不同断面的泥沙沉积物为研究对象,分析其理化性质,揭示各特征参数间的内在相互关系;通过吸附-解吸实验(以沉积物B1和B2为例),分析泥沙沉积物吸附磷的动力学过程、吸附等温线、吸附影响因素、吸附可逆性及吸附前后的结构特征变化,并结合表面分析技术,探讨吸附磷的作用机理。研究结果表明:
     泥沙沉积物属于中性偏碱、低有机质含量、表面带有负电荷、絮凝能力较小且以粘粒、粉砂和细砂粒为主的颗粒,其理化参数间存在较好的相关性。颗粒的表面形貌复杂多样,孔尺寸分布不均一,表面孔隙主要处于中孔范围,属于具有较高填充能力的分形孔隙,其孔表面分形维数(Ds)约为2.67-2.89,且孔分布对Ds具有一定的贡献。此外,颗粒的复杂形貌对各元素的面分布有较强的影响,并导致了表面吸附位分布不均匀。
     泥沙沉积物对磷的吸附可以分为快速的物理、物化吸附(0-3h)和缓慢的化学吸附2个阶段,吸附过程符合准-二级动力学过程。吸附等温线不经过坐标原点,而是在浓度轴上存在一个交点使整个吸附等温线分为两部分——吸附段和解吸段,对应的吸附-解吸平衡磷浓度(EPC0)为0.038~0.049mg·L-1; Langmuir交叉吸附等温式比其它模型更适合描述黄河泥沙沉积物吸附磷的特征。该吸附过程为吸热过程,存在“固体浓度效应”,且颗粒粒度、溶液的pH、盐度、有机质含量等因素对该过程具有重要的影响。此外,泥沙沉积物对磷的吸附具有可逆性,所吸附的磷在一定条件下可以发生解吸。
     吸附磷后,颗粒的比表面积、孔体积、孔表面分形维数(Ds)均略有下降,而平均孔径略有增加,其中,孔隙体积在孔径1.5-30nm范围内变化较大。表面吸附磷的关键元素(Al、Fe、Ca)的分布存在异质性,导致磷主要吸附在颗粒表面的边脊、凹陷和突鞍等部位,占总量的96%以上
As a high-silt river, a large number of silt particles in the Yellow River played an important role in the adsorption of water pollutants. In this thesis, the sediment samples were collected from 6 cross-sections through the desilting basin of Queshan reservoir, and the relationship among the characteristic parameters of their physicochemical properties was determined. The adsorption and desorption process of phosphate on sediment (B1 and B2) was conducted to analyze the corresponding dynamic process, isotherms, influence factors, reversibility and structural variation. Moreover, the adsorption mechanism was identified with some specific surface analysis techniques. The results listed as following:
     The neutral or slight alkaline sediment particles were mainly composed of clay, silt and fine sand, with very low content of organic matters and some negative charges on their surface, then low flocculating ability was observed among these sediment particles. There were good correlations existed among these physicochemical parameters characterizing these sediments. The surface of sediment particles showed complex morphology and heterogeneous pore size distribution, being mainly composed of mesopore. The pore surface fractal dimensions (Ds) of these sediment particles were 2.67-2.89, which implied a highly filling capability on the surface of these particles. The pore-size distribution also presented certain contribution to above Ds values. In addition, the complex surface morphology of these particles had strong influence on the surface element distribution, which could lead to the heterogeneity of surface adsorption sites.
     The adsorption process could be divided into two stages:a high-speed physical adsorption and physicochemical adsorption (0-3h) stage, slow-speed chemical sorption. A pseudo second-order reaction kinetic equation fitted above dynamic process. The curves of adsorption isotherms did not pass the origin of coordinates which was divided into two parts by the zero equilibrium P concentration (0.038-0.049mg-L-1). The Langmuir cross-axis-type adsorption model showed much better fitting results for above mentioned phosphate adsorption curves than other adsorption models. Moreover, phosphate adsorption onto sediment particles was an endothermic process, and showed a solid concentration effect, particle size of sediments, pH value, salinity and organic matter content of adsorption solution matrix had important influences on the above mentioned adsorption process. In addition, phosphate adsorption onto sediment particles had reversibility, and phosphate desorption could occurr under some specific conditions.
     Once phosphate was absorbed onto the sediment particles, their specific surface area, pore volume and pore distribution were slightly decreased, but average pore diameter was slightly increased. The change in pore volume within pore size of 1.5-30nm was significant. It was observed that lots of phosphate absorbed on the sediment surface of ridge, concave and saddle areas, which occupied more than 96% adsorption capacity. In addition, it can be deduced that Al, Fe, Ca hydrous oxides were a main component in phosphate adsorption.
引文
[1]安敏,文威,孙淑娟,等.pH和盐度对海河干流表层沉积物吸附解吸磷(P)的影响[J].环境科学学报,2009,29(12):2616-2622.
    [2]安文超,李小明.南四湖及主要入湖河流表层沉积物对磷酸盐的吸附特征[J].环境科学,2008,29(5):1295-1302.
    [3]陈静生主编.水环境化学[M].北京:高等教育出版社,1987:3021.
    [4]陈明洪.泥沙颗粒吸附磷的规律及微观形貌变化的研究[D].北京:清华大学,2008,92-94.
    [5]陈天虎,汪嘉源,束松林,等.改性凹凸棒石黏土对低浓度磷的吸附热力学[J].硅酸盐学报,2010,38(9):1816-1819.
    [6]陈志和.泥沙吸附重金属铜离子后表面形貌及结构特征研究[D].北京:清华大学,2008,108-110.
    [7]杜青.水体颗粒物多组分模拟体系的表面络合模式[J].北京:中国科学院生态环境研究中心,1997.
    [8]范成新,秦伯强,孙越.梅梁湖和五里湖水-沉积物界面的物质交换[J].湖泊科学,1998,10(1):73-78.
    [9]方红卫,陈明红,陈志和.环境泥沙的表面特性与模型[M].北京:科学出版社,2009:42-43.
    [10]高丽,史衍玺,孙卫明,等.荣成天鹅湖湿地沉积物对磷的吸附特征及影响因子分析[J].水土保持学报,2009,23(5):162-166.
    [11]郭长城,王国祥,喻国华.天然泥沙对富营养化水体中磷的吸附特性研究[J].中国给水排水,2006,22(9):10-13.
    [12]韩凤朋,张兴昌,郑纪勇,等.黄河中游土壤有机质与氮磷相关性分析[J].人民黄河,2007,29(4):57-58.
    [13]何洁,刘长发,吴钰.三种载体上生物膜硝化作用动力学初步研究[J].应用与环境生物学报,2003,9(5):546-548.
    [14]何燧源,金云云.环境化学[M].上海:华东化工学院出版社,1989:13-21.
    [15]和瑞莉,李静,张石娃.黄河流域泥沙密度试验研究[J].人民黄河,1999,21(3):5-9.
    [16]胡国华,赵沛伦,肖翔群.黄河泥沙特性及对水环境的影响[J].水利水电技术,2004,35(8):17-20.
    [17]胡康博,王毅力,李春荣,等.改性蒙脱土颗粒吸附直接染料的分形特征[J].环境科学学报,2010a,30(11):2174-2183.
    [18]胡康博,王毅力,桂萍,等.基于多元统计的引黄水库沉沙条渠泥沙与水质的变异分析[C].中国水环境污染控制与生态修复技术高级研讨会,2010b,南昌:100-106.
    [19]胡俊,刘永定,刘剑彤.滇池沉积物间隙水中氮、磷形态及相关性的研究[J].环境科学学报,2005,25(10):1391-1396.
    [20]胡绳,刘云,董元华,等.改性长石对磷的吸附热力学和动力学研究[J].环境工程学报,2009,3(11):2100-2104.
    [21]胡智锼,孙红文,谭媛.湖泊沉积物对N和P的吸附特性及影响因素研究[J].农业环境科学学报,2004,23(6):1212-1216.
    [22]黄岁樑.泥沙运动在重金属污染物迁移转化中的作用[D].北京:水利水电科学研究院,1993.
    [23]黄文典.河流悬移质对污染物吸附及生物降解影响试验研究[D].四川:四川大学,2005.
    [24]贾晓凤,应一梅,李悦,等.黄河泥沙与重金属污染物相互作用研究现状[J].人民黄河,2010,32(8):50-51.
    [25]姜福欣,刘征涛,冯流,等.黄河河口区域有机污染物的特征分析[J].环境科学研究,2006,19(2):6-10.
    [26]金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响[J].中国环境科学,2004,24(6):707-711.
    [27]金相灿,王圣瑞,赵海超等.五里湖和贡湖不同粒径沉积物吸附磷实验研究[J].环境科学研究,2004,17(增刊):6-9.
    [28]金相灿.黄河中游悬浮物对铜、铅和锌的吸附与释放的研究[J].中国环境科学,1984(4):54-57.
    [29]近藤精一,石川达雄,安部郁大.吸附科学[M].北京:化学工业出版社,2005.
    [30]李楠,单保庆,张洪,等.北运河下游典型灌渠沉积物有机磷形态分布特征[J].环境科学,2010,31(12):2911-2916.
    [31]林春野,周豫湘,呼丽娟,等.松花江水体沉积物汞污染及其生态风险[J].环境科学学报,2007,27(3):466-473.
    [32]刘东生.黄河中游黄土[M].北京:科学出版社,1964.
    [33]刘静宜,汪安璞,彭安,等.环境化学[M].北京:中国环境科学出版社,1987.
    [34]刘敏,候立军,许世远,等.长江河口潮滩表层沉积物对磷酸盐的吸附特性[J].地理学报,2002,57(4):397-406.
    [35]刘衍君,曹建荣,张宪涛.河山东段水环境现状及可持续利用对策[J].聊城大学学报(自然科学版),2006,19(4):64-66.
    [36]罗道成,易平贵,陈安国.多孔质沸石颗粒对矿井水中Pb2+、Cu2+、Zn2+吸附性能的研究[J].水处理技术,2003,29(6):338-340.
    [37]马正飞,金叶玲,刘艳梅等.分形BET吸附模型[J].高校化学工程学报,1994,8(3):288-297.
    [38]潘纲.亚稳平衡态吸附(MEA)理论——传统热力学理论面临的挑战与发展[J].环境科学学报,2003,23(2):156-173.
    [39]庞燕,金相灿,王圣瑞,等.长江中下游浅水湖沉积物对磷的吸附特征——吸附等温线和吸附/解吸平衡质量浓度[J].环境科学研究,2004,17(增刊):18-23.
    [40]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1986.
    [41]石晓勇,史致丽.黄河口磷酸盐缓冲机制的探讨Ⅲ.磷酸盐交义缓冲图及“稳定pH范围”[J].海洋与湖沼,2000,31(4):441-447.
    [42]司毅铭,张军献,赵山峰,等.黄河流域水污染状况及对策[J].人民黄河,2005,27(12):53-54.
    [43]孙剑辉,刘群,冯精兰,等.黄河中下游表层沉积物中汞和砷的污染研究[J].人民黄河,2009,2:55-6.
    [44]孙莉英,倪晋仁,孙卫玲.不同粒径黄河沉积物中可提取腐殖质的含量分布及光谱特性[J].环境科学,2007,28(6):1324-1331.
    [45]汤鸿霄,钱易,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理(上卷水体颗粒物)[M].北京:中国环境科学出版社,2000.
    [46]汤鸿霄.微界面水质过程的理论与模式应用[J].环境科学学报,2000,20(1):1-9.
    [47]田忠志,邢友华,姜瑞雪等.东平湖表层沉积物中磷的形态分布特征研究[J].长江流域资源与环境,2010,19(6):719-723.
    [48]王菲,王连军,李健生,等.大孔螯合树脂对Pb2+的吸附行为及机理[J].过程工程学报,2008,8(3):466-471.
    [49]王飞越,陈静生.中国东部河流沉积物样品表面性质的初步研究[J].环境科学学报,2000,20(6):682-687.
    [50]王光谦.河流泥沙研究进展[J].泥沙研究,2007,2(4):64-73.
    [51]王里奥,钟山,刘元元,等.方解石去除废水中高浓度磷酸盐机理与影响因素[J].土木建筑与环境工程,2009,31(4):107-111.
    [52]王沛芳,邹丽敏,王超,等.玄武湖沉积物中重金属的垂直分布[J].长江流域资源与环境,2010, 19(5):547-553.
    [53]王圣瑞,金相灿,庞燕.不同营养水平沉积物在不同pH下对磷酸盐的等温吸附特征[J].环境科学学报,2005,18(1):53-58.
    [54]王圣瑞,金相灿,庞燕.湖泊沉积物对磷的吸附特征及其吸附热力学参数[J].地理研究,2006,25(1):19-26.
    [55]王世亮,王志刚,王萍,等.大辽河水系沉积物剖面磷的形态和分布特征[J].环境科学,2009,30(12):3495-3501.
    [56]王淑兰.物理化学(第3版)[M].北京:冶金工业出版社,2007:278.
    [57]王晓丽,包华影,郭博书.黄河沉积物对磷的吸附行为[J].生态环境学报,2009,18(6):2076-2080.
    [58]王晓丽,包华影.黄河上中游表层沉积物磷的赋存形态特征[J].生态环境学报,2010,19(6):1358-1362.
    [59]王晓丽,潘纲,包华影,等.黄河中下游沉积物对磷酸盐的吸附特征[J].环境科学,2008,29(8):2137-2142.
    [60]王晓燕,王一峋,王晓峰,等.密云水库小流域土地利用方式与氮磷流失规律[J].环境科学研究,2003,16(1):30-33.
    [61]王毅力,刘杰,杜白雨,等.颗粒物表面酸碱特性与孔表面分形的研究[J].环境科学学报,2007,27(1):106-113.
    [62]王毅力,于富玲,王东升,等.颗粒活性炭吸附染料的分形动力学特征的研究[J].环境科学学报,2005,25(5):643-649.
    [63]王颖,沈珍瑶,呼丽娟,等.三峡水库主要支流沉积物的磷吸附/释放特性[J].环境科学学报,2008,28(8):1654-1661.
    [64]王兆印,王文龙,田世民.黄河流域泥沙矿物成分与分布规律[J].泥沙研究,2007,(5):1-8.
    [65]魏俊峰,陈洪涛,刘鹏霞,等.长江悬浮颗粒物中磷的赋存形态[J].水科学进展,2010,21(1):107-111.
    [66]魏荣菲,庄舜尧,杨浩,等.苏州河网区河道沉积物磷的吸附释放特征研究[J].水土保持学报,2010,24(3):232-237.
    [67]文湘华,杜青,汤鸿霄.乐安江沉积物对重金属吸附模式的研究—表面络合模式在天然沉积物研究中的应用[J].环境科学学报,1996,16(1):13-22.
    [68]武玫玲.土壤对铜离子的专性吸附及其特征的研究[J].土壤学报,1989,26(1):31-40.
    [69]席家治.黄河水资源[M].郑州:黄河水利出版社,1997:10.
    [70]夏星辉,余晖,陈立.黄河水体颗粒物对几种多环芳烃生物降解过程的影响[J].环境科学学报,2005,25(9):1226-1231.
    [71]夏星辉,张菊,沙玉娟.邻苯二甲酸酯在河流沉积物上的不可逆吸附行为[J].环境科学,2010,31(4):969-975.
    [72]夏星辉,周劲松,余晖,等.黄河水体颗粒物对石油类污染物生物降解过程的影响研究[J].环境科学学报,2003,23(5):603-607.
    [73]谢云霞.多重分形表面的吸附模型[J].四川理工学院学报(自然科学版),2006,19(3):107-110.
    [74]邢友华,董洁,李晓晨,等.东平湖表层沉积物中磷的吸附容量及潜在释放风险分析[J].农业环境科学学报,2010,29(4):746-751.
    [75]严子春,何强,龙腾锐,等.多孔富铁填料曝气过滤除磷机理研究[J].环境工程学报,2010,4(6):1305-1308.
    [76]杨宏伟,郭博书,邰朝鲁门,等.黄河入河沙漠颗粒物对磷酸盐的吸附特征[J].环境科学,2010, 31(8):1890-1896.
    [77]杨铁笙,熊祥忠,詹秀玲,等.粘性细颗粒泥沙絮凝研究概述[J].水利水运工程学报,2003,2:65-77.
    [78]尹艳华,徐文国.黄河泥沙对硝基氯苯的吸附机理研究[J].水科学进展,2005,16(2):164-167.
    [79]余晖,张学青,夏星辉,等.黄河水体颗粒物对硝化过程的影响研究[J].环境科学学报,2004,24(4):601-606.
    [80]袁和忠,沈吉,刘恩峰,等.太湖水体及表层沉积物磷空间分布特征及差异性分析[J].环境科学,2010,31(4):954-960.
    [81]岳维忠,黄小平,孙翠慈.珠江口表层沉积物中氮、磷的形态分布特征及污染评价[J].海洋与湖沼,2007,38(2):111-117.
    [82]张斌亮,张昱,杨敏,等.长江中下游平原三个湖泊表层沉积物对磷的吸附特征[J].环境科学学报,2004,24(4):595-600.
    [83]张雷燕,李柯,刘正文.太湖不同污染程度底泥对磷滞留能力的比较[J].农业环境科学学报,2010,29(3):546-550.
    [84]张龙军,夏斌,桂祖胜,等.2005年夏季环渤海16条主要入海河流的污染状[J].环境科学,2007,28(11):2409-2415.
    [85]张宪伟,潘纲,陈灏,等.黄河沉积物磷形态沿程分布特征[J].环境科学学报,2009,29(1):191-198.
    [86]张宪伟,潘纲,王晓丽,等.内蒙古段黄河沉积物对磷的吸附特征研究[J].环境科学,2009,30(1):172-177.
    [87]张学青,夏星辉,杨志峰.水体颗粒物对有机氮转化的影响[J].环境科学,2007,28(9):1954-1959.
    [88]张学青,杨志峰,夏星辉.黄河水体硝化过程的模拟实验研究[J].环境化学,2005,24(3):245-249.
    [89]赵桂瑜,周琪.钢渣吸附除磷机理研究[J].水处理技术,2009,35(11):45-47.
    [90]赵旭,王毅力,郭瑾珑,等.颗粒物微界面吸附模型的分形修正-朗格缪尔(Langmuir)、弗伦德利希(Freundlich)和表面络合模型[J].环境利学学报,2005,25(1):52-57.
    [91]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005:54-313.
    [92]郑洪领,王龙,耿玉秀.黄河水质现状分析及提高水质对策建议[J].中国农村水利水电,2010,5:21-24.
    [93]郑乐平,刘玉梅,钱显文,等.太湖、巢湖沉积物中重金属污染的总量特征及其区域性差异[J].环境化学,2009,28(6):883-888.
    [94]郑雅芹,王毅力,卢佳,等.粘土颗粒吸附直接染料的分形特征[J].环境科学学报,2008,28(4):634-646.
    [95]郑雅芹.粘土及其改性颗粒吸附直接染料的分形分析[D].北京:北京林业大学,2008.
    [96]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978:282-283.
    [97]周爱民,王东升,汤鸿霄.磷(P)在天然沉积物-水界面上的吸附[J].环境科学学报,2005,25(1):64-69
    [98]周爱民.生源要素磷(P)在天然沉积物-水界面上的吸附与分配[D].北京:中国科学院生态中心,2005:80-81.
    [99]朱广伟,秦伯强,高光,等.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系[J].环境科学学报,2004,24(3):381-388.
    [100]Aminot A, Andrieux F. Concept and determination of exchangeable phosphate in aquatic sediments [J]. Water Research,1996,30:2805-2811.
    [101]Antelo J, Avena M, Fiol S, et al. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface[J].Journal of Colloid and Interface Science,2005,2850 (2):476-486.
    [102]Avnir D, Frin D, Pfeifer P. Molecular fractal surface[J]. Nature,1984,308(15):261-263.
    [103]Baddi G A, Hafidi M, Cegarra J, et al. Characterization of fulvic acids by elemental and spectroscopic (FTIR and 13C-NMR) analyses during composting of olive mill wastes plus straw[J].Bioresource Technology,2004,93(2):285-290.
    [104]Beaudoin A. A comparison of two methods for estimating the organic matter content of sediments [J]Journal of Paleolimnology,2003,29:387-390.
    [105]Berner K, Berner R A. The global water cycle[M].Englewood:Prentice-Hall Press,1987:231-240.
    [106]Capilla X, Schwatz C, Bedell J P, et al. Physicochemical and biological characterisation of different dredged sediment deposit sites in France [J]. Environmental Pollution,2006,143(1):106-116.
    [107]Chang S C, Jackson M L. Fractionation of soil phosphorus[J].Soil Science,1957,84:133-144.
    [108]Ditoro D M, Mahony J D, Kirchgraber P R, et al. Effects of nonreversibility,particle concentration, and ionic-strength on heavy metal sorption[J]. Environment Science &Technology,1986,20(1)55-61.
    [109]El Shafei G M S, Philip C A, Moussa N A. Fractal analysis of hydroxyapatite from nitrogen isotherms[J]. Journal of Colloid and Interface Science,2004,277(2):410-416.
    [110]Feder J. Fractals [M]. NewYork:Plenum Press.1988:278-315.
    [111]Filius A, Streck T, Richer J. Cadmium sorption and desorption in limed topsoil as influenced by pH: isotherms and simulated leaching[J]. Journal of Environmental Quality,1998,27(1):12-18.
    [112]Folk R L, Ward W C. Brazos River Bar:A study in the significance of grain sizeparameters[J]. Journal of Sedimentary Petrology,1957,27:3-27.
    [113]Fripiat J J, Catineou L, Van D H. Multilayer physical adsorption on fractal surfaces[J]. Langmuir,1986,2:562-567.
    [114]Golterman H L. Fractionation of sediment phosphate with chelating compounds:a simplification and comparison with other methods[J]. Hydrobiologia,1996,364(1):99-104.
    [115]Gschwend P M, Wu S C. On the constancy of sediment water partition-coefficients of hydrophobic organic pollutants[J]. Environment Science & Technology,1985,19(1):90-96.
    [116]Hansen A M, Maya P. Adsorption-desorption behaviors of Pb and Cd in Lake Chapala, Mexico[J]. Environment International,1997,23(4):554-564.
    [117]Hansen J, Reitzel K, Jensen H S, et al. Effects of aluminum, iron, oxygen and nitrate additions on phosphorous release from the sediment of a Danish soft water Lake[J]. Hydrobiologia,2003, 492(10):139-149.
    [118]Hieltjes A H, Lijklema L. Fractionation of inorganic phosphorus in calcareous sediments[J]. Journal of Environmental Quality,1980,8:130-132.
    [119]Hiemstra T, Van R W H. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (Hydr)oxides[J].Journal of Colloid and Interface Science,1999,210(1):182-193.
    [120]Hiemstra T, Van Riemsdijk W H. A surface structural approach to ion adsorption:the charge distribution (CD) model[J]. Journal of Colloid and Interface Science,1996,179(2):488-508.
    [121]Hirano T, Ishida T, Oh K, et al. Biodegradation of chlordane and hexachlorobenzenes in river sediment [J]. Chemosphere,2007,67(3):428-434.
    [122]Ho Y S, McKay G. Pseudo-second-order model for sorption processes [J]. Process Biochemistry, 1999,34(5):451-465.
    [123]Ho Y S, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat[J]. Water Research,2000,34(3):735-742.
    [124]Ho Y S. Second-order kinetic model for the sorption of cadmium onto tree from:A comparison of linear and non-linear methods[J]. Water Research,2006,40(3):119-125.
    [125]Ho Y S, Wang C C. Pseudo-isotherms for the sorption of cadmium ion onto tree fern [J].Process Biochemistry,2004,39(6):759-763.
    [126]Hochella M F, Eggleston C M, Elings V B, et al. Mineralogy in two dimensions:scanning tunneling microscopy of semiconducting minerals with implications for geochemical reactivity[J]. American Mineralogist,1989,74(5):1233-1246.
    [127]Honeyman B D, Santschi P H. Metals in aquatic systems[J].Environment Science & Technology, 1988,22(8):862-871.
    [128]Jeanine S G, Hiemstra T, Van Riemsdijk W H. Competitive interaction between phosphate and citrate on goethite[J].Environment Science & Technology,1998,32:2119-2123.
    [129]Jugsujinda A, Krairapanona A, Patrick W H, et al. Influence of extractable iron, aluminum, and manganese of P sorption in flooded acid sulfate soils[J].Biology and Fertility of Soil,1995,20:118-124.
    [130]Jozefaciuk G, Muranyi A, Szatanik-Klo A, et al. Changes of surface, fine pore and variable charge properties of a brown forest soil under various tillage practices[J].Soil & Tillage Research,2001, 59:127-135.
    [131]Kinniburgh D G. General purpose adsorption isotherms [J]. Environment Science & Technology, 1986,20 (9):895-904.
    [132]Kinoshita M, Harada M, Sato Y, et al. Fractal-like behavior of a mass transport process[J].Aiche Journal,1997,43(9):2187-2193.
    [133]Kopelman R. Fractal reaction kinetics[J].Science,1998,241:1620-1625.
    [134]Lopez P, Llunch X, Vidal M, et al. Adsorption of phosphorus on sediments on sediments of the Balearic Islands (Spain) related to their composition[J].Estuarine, Coastal and Shelf Science,1996, 42:185-196.
    [135]MacKinley J P, Jenne EA. Experimental investigation and review of the solids concentration effect in adsorption studies[J]. Environment Science &Technology,1991,25(12):2082-2087.
    [136]Malecki L M, White J R, Reddy K R. Nitrogen and phosphorus flux rates from sediment in the lower St. Johns River Estuary [J]. Environmental Quality,2004,33(4):1545-1555.
    [137]Mandelbrot B B. The fractal geometry of nature[M].New York:W.H.Freeman and company,1982.
    [138]Meczislaw H, Ludmila K, Yakov P. Soil pore surface properties in managed grasslands [J]. Soil and Tillage Research,2000,55(5):63-70.
    [139]Morgan J W, Forster C F, Evison L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges[J]. Water Research,1990,24(6):743-750
    [140]Millero F, Huang F, Zhu X R, et al. Adsorption and desorption of phosphate on calcite and aragonite in see water[J].Aquatic Geochemistry,2001,7:33-56.
    [141]Mouvet C, Bourg A C M. Speciation of copper, lead, nickel and zinc in the Mouse River[J]. Water Research,1983,17:641-645.
    [142]Naoml E D, Patrick L B. Phosphorus sorption by sediments from a soft-water seepage lake.1. An evaluation of Kinetic and Equilibrium Models [J].Environment Science & Technology,1991,25(3): 395-403.
    [143]Nemeth Z, Gancs L, Gemes G, et al. pH dependence of phosphate sorption on aluminum[J]. Corrosion Science,1998,40:2023-2027.
    [144]Novak J M, Watts D W. Phosphorus sorption by sediments in a southeastern coastal plain in-stream wetland[J]. Environmental Quality,2006,35(2):1975-1982.
    [145]Pan G, Krom M D, Herut B. Adsorption-desorption of phosphate onto airborne dust and river borne particulates in East Mediterranean seawater[J]. Environment Science & Technology,2002,36(16): 3519-3524.
    [146]Pan G, Liss P S. Metastable-equilibrium adsorption theory Ⅱ.Experimental[J]. Journal of colloid and interface science,1998,201:77-85.
    [147]Phillips E J P, Lovley D R. Determination of Fe(Ⅲ) and Fe(Ⅱ) in oxalate extracts of sediment [J]. Soil Science Society of America Journal,1987,51:938-941.
    [148]Pfeifer P, Avnir D. Chemistry in noninteger dimensions between two and three Ⅰ:fractal theory of heterogeneous surfaces[J]. Journal of Chemical Physics,1983,79:3558-3565.
    [149]Qiu S, Mcomb A J. Interrelatations between iron extractability and phosption in reflooded air-dried sediments[J]. Hydrobiologia,2001,472:39-44.
    [150]Rietra R P, Hiemstra T, Van Riemsdijk W H. Comparison of selenate and sulfate adsorption on goethite[J]. Journal of Colloid and Interface Science,2001,230(2):384-390.
    [151]Rinker K R, Powell R T. Dissolved organic phosphorus in the Mississippi River plume during spring and fall 2002[J]. Marine Chemistry,2006,102:170-179.
    [152]Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J].Limnology and Oceanography,1992,37(7):1460-1482.
    [153]Rydin E. Potentially mobile phosphorus in lake Erire sediment.[J].Water Reseach,2000,34(7): 2037-2042.
    [154]Sahouli B, Blacher S, Brouers F, et al. Surface morphology and chemistry of commercial carbon black and carbon black from vacuum pyrolysis of used tyres [J].Fuel,1996,75(10):1244-1250.
    [155]Santisteban J I, Mediavilla R A, Lopz P E, et al. Loss on ignition:a qualitative or quantitative method for organic matter and carbonate mineral content in sediments[J].Journal of Paleolimnology,2004,32: 287-299.
    [156]Shindler P W, Gamsjger H. Acid-base reactions of the TiO2 (anatase)-water interface and the point of zero charge of TiO2 suspensions [J]. Kolloid-Z. Z. Polym,1970,250:759-763.
    [157]Sokolowska Z, Sokolowski S. Influence of humic.acid on surface fractal dimension of kaolin: Analysis of mercury porosimetry and water vapor adsorption data [J]. Developments in Soil Science, 2000,27(1):143-159.
    [158]Stadler M, Schindler P W. Modeling of H+ and Cu2+ adsorption on calcium-montmorillonite.[J]. Clays and Clay Minerals,1993,41:556-559.
    [159]Stone M, English E C. Geochemical composition, phosphorus speciation and mass transport of fine-grained sediment in two lake Erire tributaries[J]. Hydrobiologia,1993,253:17-29.
    [160]Strauss E A, Mitchell N L, Lamberti G A. Factors regulating nitrification in aquatic sediments:effects of organic carbon, nitrogen availability, and pH[J]. Canadian Journal of Fisheries and Aquatic Sciences,2002,59(3):554-563.
    [161]Stumm W. Chemistry of the solid-water interface[M].New York:John Wiley and Sons, Inc,1992.
    [162]Stumm W. Huang C P, Jenkins S R. Specific chemical interaction affecting the stability of dispersed systems[J].Croatica Chemica Acta,1970,42:223-224.
    [163]Torrent J, Schwertmnn U, Barron V. Fast and slow phosphorus sorption by goethite-rich natural materials[J]. Clays and Clay Minerals,1992,40(l):14-21.
    [164]Toth T, Jozefaciuk G. Physicochemical properties of a solonetzic toposequence[J].Geoderma, 2002,106:137-159.
    [165]Turner A, Rawling M C. Sorption of Benzo[a] pyrene to sediment contaminated by acid mine drainage:contrasting particle concentration dependencies in river water and seawater[J]. Water Reserch,2002,36(8):2011-2019.
    [166]Verburg K, Baveye P. Hysteresis in binary exchange of cations on 2:1 clay minerals:A critical review [J]. Clays Clay Miner,1994,42:207-220.
    [167]Wadell H. Volume, Shape and Roundness of Rock Particles [J].Journal of Geology,1932,40:443-451.
    [168]Wang C C, Juang L C, Hsu T C, et al. Adsorption of basic dyes onto montmorillonite [J]. Journal of Colloid and Interface Science,2004,280:27-35.
    [169]Wang J T, Hu J, Zhang S W. Studies on the sorption of tetracycline onto clays and marine sediment from seawater[J].Journal of Colloid and Interface Science,2010,349(2):578-582.
    [170]Wang Y L, Du B Y, Dou X M, et al. Study on the pore surface fractal dimension and surface acid-base properties of natural particles around Guanting reservoir [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,307(1):16-27.
    [171]Wang Y L, Lu J, DuBY, ea tl. Fractal analysis of polyferric chloride-humic acid (PFC-HA) flocs in different topological spaces[J]. Journal of Environmental Sciences,2009,21(1):41-48.
    [172]Warren L A, Zimmerman A P. The influence of temperature and NaCl on cadmium, copper and zinc partitioning among suspended particulate and dissolved phases in an urban river[J]. Water Research,1994,28(9):1921-1931.
    [173]Wettimuny R, Penumadu D. Application of Fourier Analysis to Digital Imaging for Particle shape Analysis [J].Journal of Computing in Civil Engineering,2004,18(1):2-9.
    [174]Xue Y J, Hou H B, Zhu S J. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag[J].J.Hazard. Mater.,2009,162(2/3):973-980.
    [175]Zhao H S, Stanforth R. Competitive adsorption of phosphate and arsenate on goethite[J]. Environment Science & Technology,2001,35:4753-4757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700