三峡库区消落带水—沉积物界面磷干湿交替分布特征及转化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡水库消落带被认为是长江沿线生态最为脆弱的地带,区别于任何现有消落带或人工湿地。在综合三峡库区消落带磷研究现状的基础上,论文基于2008年秋三峡水库首次蓄水至172.5米的契机,以三峡库区消落带首次逆季节干湿交替为线索,以沿江13个典型新生消落带为对象,结合水库“蓄清排浊”完整调蓄周期,研究得到了首次干湿交替消落带表层土壤/沉积物中内源磷的赋存形态、时空分布特征,揭示了磷在水-土壤/沉积物界面的源汇转化规律,及吸附、释放、转化、累积机理,为三峡库区消落带生态系统逐步形成演化过程中持续研究消落带沉积物磷迁移转化积累背景参考数据,为库区新生消落带内源磷控制提供理论数据参考,为三峡库区库岸水体富营养化污染控制提供科学依据。结果表明:
     ①三峡库区消落带上覆水总磷含量11月<5月<8月,覆水水位越高,库区上下游总磷含量波动越小,趋于平稳,出露期消落带上覆水总磷沿程分布呈现上游(滩涝至万州段)至下游(云阳至秭归段)含量逐渐降低,沿程波动逐渐减小的趋势。成库初期消落带逆季节干湿交替特征对上覆水总磷季节变化影响不明显。
     ②消落带出露期沉积物总磷呈现以下规律,5月沉积物总磷(716.40mg/kg)>8月沉积物总磷(658.65mg/kg),且覆水沉积物总磷>落干沉积物总磷,表明夏季水库开闸放水排沙,且消落带夏季出露期降雨资源丰富,致使出露消落带表层沉积物被冲刷排除,反映出三峡水库逆季节干湿交替调蓄模式有利于消落带表层沉积物内源磷素的排出,相对于本底土壤(TP 1006.26mg/kg)来说,从总磷水平上降低了沉积物再次覆水时潜在释磷风险,对控制消落带沉积物内源磷释放和防治库岸水体富营养化起到促进作用。
     ③消落带逆季节干湿交替有利于相对稳定的闭蓄态磷、钙磷排出,有利于沉积物中活性较高的活性磷、有机磷累积,且累积量接近本底土壤中活性磷、有机磷含量水平,一定程度上增大了消落带再次覆水沉积物潜在释磷风险。
     ④消落带本底土壤在2008年秋首次蓄水时,表现为以释放磷为主,覆水至11月则表现为吸附磷为主,表明成库初期,土壤主要呈现出由源到汇的转变。
     ⑤原始沉积物、去除轻组有机质沉积物以及沉积物矿物质最大磷吸附量(Qm)随着有机质的逐步去除,逐渐降低,且干湿交替沉积物矿物质及本底土壤矿物质的Qm值(338.81mg/kg)基本处于一致水平,表明沉积物有机质特别是轻组有机质,控制着磷在表层沉积物上的释放。覆水沉积物、落干沉积物及本底土壤,除去轻组有机质后,Qm一致呈现出降低,且沉积物表现更为明显,表明干湿交替消落带表层沉积物固磷能力较本底土壤相比受轻组有机质影响更大,易解吸磷(RDP)随轻组有机质去除均呈现出升高的态势,表明沉积物轻组有机质去除对磷释放起促进作用。
     ⑥模拟实验发现由于干湿交替过程中落干期有机磷、活性磷的累积,导致再次覆水时磷释放现象更为明显,且本底土壤较沉积物释放量更大。
The water level fluctuating zone in Three Gorges Reservoir Area (TGRA) is considered to be the most fragile ecological zones along the Yangtze River belt, different from the any other existing fluctuating zone or artificial wetlands. Based on Phosphorus Research of TGRA and opportunity when water level reaches 172.5m for the very first time in 2008, this paper studies 13 newly typical fluctuating zones according to anti-seasonal wet-dry alternation. Furthermore, combined with entire cycle of "storing the clean and dredging the muddy", this research shows existing forms and distribution features of endogenesis phosphorous in the upper layer of soil /sediments of the first wet-dry alternation. This reveals source-sink law of phosphorous in water soil/sediment, complemented with mechanism of adsorption, release, transformation and accumulation, which accumulates reference data for continual research on phosphorous transformation and transfer and endogenesis phosphorous control during the gradual formation of TGRA eco-system. Finally, this article provides reference scientific basis for pollution control of eutrophication in TGRA. The results showed that:
     ①The total phosphorus (TP) in overlying water in TGRA presents a climbing trend following as: November     ②In exposed period, TP in sediments in TGRA presents the following patterns: TP (716.40mg/kg) sediment in May > TP (658.65mg/kg) sediment in August and TP in submerged sediment > TP in exposed sediment. It indicates the upper layer of exposed sediments were eroded because of abundant rainfall and water and sand discharge in summer, which presents anti-seasonal wet-dry alternation cycle is conductive to releasing endogenesis phosphorous. Compared with soils (TP 1006.26mg/kg), this reduces TP potential release risk on the next submerging and has a promoting effect on controlling endogenesis phosphorous and preventing and curing eutrophication.
     ③Anti-seasonal wet-dry alternation is helpful to discharging relatively stable occlude phosphorus (O-P) and calcium bounded phosphorus (Ca-P) and promotes the accumulation of active phosphorus (Ac-P) and organic phosphorus (Or-P) in sediments which is close to Ac-P, Or-P in soils respectively. It increases the potential release risk in sediments on second submerging.
     ④During 2008 fall, the first submerging, soils in TGRA presents a dominant release trend, whereas till November, this trend switches to absorbing, revealing soils transformed from source to sink in the initial phase.
     ⑤The max adsorption quantity of phosphorus (Qm) in sediments, sediments with light fraction organic matter removal and sediments minerals all drop gradually with the removing of organic matter. Besides Qm (338.81mg/kg) in sediments minerals and soils minerals during wet-dry alternation stay in the same level, suggesting organic matter particularly light fraction organic matter controls the phosphorus release in the upper layer of sediments. After removing light fraction organic matter, Qm in submerged sediments, exposed sediments and soils all present a decreasing mode, especially obvious in sediments, which indicates the phosphorus stabilizing in upper layer in sediments were more affected by light fraction organic matter than that in soils. Readily desorbed phosphorus (RDP) in the same soils sample increases with the removal of light fraction organic matter, signifying light fraction organic matter removal stimulates the release of phosphorous.
     ⑥Lab simulation experiment reveals that the wet-dry cycle can accelerate the phosphorus release on second submerging due to the accumulation of Or-P and Ac-P, additionally, release in soils are more in sediments.
引文
[1]肖文发.长江三峡库区陆生动植物生态[M].重庆:西南师范大学出版社, 2000:1-88.
    [2]牛志明.三峡库区水库消落带水土资源开发利用的前期思考[J].科技导报, 1998,4:61-62.
    [3]韩勇.三峡库区消落带污染特性及水环境影响研究[D].重庆:重庆大学, 2007:14-18.
    [4]袁辉.三峡库区消落带对水环境影响分析及利用模式研究[D].重庆:重庆大学, 2006:17-18.
    [5]钟成华.三峡水库对长江嘉陵江重庆段水质影响初探[J].重庆环境科学,1994,16(4):35-39.
    [6]刁承泰.三峡水库水位涨落带土地资源的初步研究[J].长江流域资源与环境,1997,8:75-80.
    [7]许川.三峡库区消落带富营养化及其危害的预测和防治[J].长江流域资源与环境, 2005, 14(4):54-58.
    [8]胡勇.三峡库区磷污染现状、来源及控制对策的初步分析[J].安徽农业科学, 2008, 36(3): 1161-1164.
    [9]杨钢.三峡库区水体中磷的特征分析[J].人民长江,2007,38(2):14-15.
    [10]刘鹏霞.三峡水库蓄水至135米后库区和长江干流各形态磷的分布特征研究[D]青岛:中国海洋大学,2007.
    [11]张晟.三峡水库成库初期氮磷分布特征[J].水土保持学报,2005,19(4):123-126.
    [12]张晟.三峡水库支流回水区营养状态季节变化[J].环境科学,2009,30(1):64-69.
    [13]朱俊.长江三峡库区干流水体主要污染负荷来源及贡献[J].水科学进展,2006,17(5):709-713.
    [14]陈永灿.三峡水库水环境承载能力的评价和分析[J].水科学进展,2005,16(5):715-719.
    [15]马志敏.三峡库区消落带土壤无机磷组分的变化及其对有效磷的影响[J].水土保持学报,2009,23(3):107-111.
    [16]王里奥.三峡库区消落带淹水-落干过程土壤磷吸附-解吸及释放研究[J].长江流域资源与环境, 2006,15(5):593-597.
    [17]马利民.三峡库区消落带周期性干湿交替环境对土壤磷释放的影响[J].环境科学, 2008, 29(4):1035-1039.
    [18]石孝洪.三峡水库消落带土壤磷释放特征及环境风险[D].重庆:西南农业大学,2004.
    [19]胡刚.三峡库区消落带下部区域土壤氮磷释放规律模拟实验研究[J].长江流域资源与环境, 2008,17(5):780-784.
    [20]徐德星.三峡入库河流大宁河回水区沉积物和消落带土壤磷形态及其分布特征研究[J].环境科学,2009,30(5):1337-1344.
    [21]马志敏.三峡库区紫色土磷吸附及解吸特性研究[J].人民长江,2009,40(7):24-26.
    [22]贾海燕.三峡水库水位消落带典型土壤磷释放特征及其环境效应[J].水科学进展,2007,18(3):433-438.
    [23]王颖.三峡水库主要支流沉积物的磷吸附-释放特性[J].环境科学学报,2008,28(8): 1654-1661.
    [24]付长营.三峡水库香溪河库湾沉积物对磷的吸附特征研究[J].水生生物学报,2006,30(1): 31-36.
    [25]李静.库区消落带紫色土与水稻土磷吸附解吸特征[J].西南农业大学学报,2005,27(4): 459-463.
    [26]石孝洪.三峡水库消落带土壤磷吸附特征[J].西南农业大学学报,2004,26(3):331-335.
    [27]付春平.pH与三峡库区底泥氮磷释放关系的试验[J].重庆大学学报,2004,27(10):125-127.
    [28]孙刚.湖泊富营养化治理的生态工程[J].应用生态学报,2001,12(4):590-592.
    [29] Torrent J. Fast and slow phosphorus sorption by goethite-rich natural materials [J]. Clays and Clay Minerals,1992,40(1):14-21.
    [30] Khoshmanesh A. Investigation of biotic uptake and release of phosphorus by a sediment [J]. Agricultural Water Management,2003,63(2):109-123.
    [31] Aazam K A. Luxury uptake of phosphorus by sediment bacteria [J]. Water Research, 2002,36: 774-778.
    [32]付永清.沉积物磷形态的分级分离及其生态学意义[J].湖泊科学,1999,11(4):376-381.
    [33]翁焕新.河流沉积物中磷的结合状态及其环境地球化学意义[J].科学通报,1993,38(13): 1219-1222.
    [34]朱光伟.沉积物中磷形态的化学连续提取法应用研究[J].农业环境科学学报, 2003,22(33): 349-352.
    [35] Sondergaard M. Phosphorus fractions and profiles in the sediment of shallow Danish lakes as related to phosphorus load, sediment composition and lake chemistry [J]. Wat.Res., 1996,30: 992-1002
    [36] Chang S C. Fractionation of soil phosphorus [J]. Soil Science,1957,84:133-144.
    [37]蒋柏藩.土壤无机磷分级的研究[J].土壤学进展,1990,18(l):1-8.
    [38] Patrick W H. Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils [J]. Advamces in Agronomy,1968,20:323-359.
    [39] Peters R H. Phosphorus availability in lake Memphremagog and its tributaries [J]. Limnol Oceanogr,1981,26: 1150-1161.
    [40] Dorioz J M.Physico-chemical properties and bioavailability of particulate phosphorus of various origin in a watershed of lake Geneva(France)[J].Water Research,1998,32(2):275-286.
    [41] Reynolds C S.Sources and bioavailabitity of phosphorus fractions in freshwaters: a British perspective [J]. Biological Reviews, 2001,76(1): 27-64
    [42] Zhou Q X.Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK [J]. Chemosphere, 2001,42:221-225
    [43] Ekholm P. Determining algal-available phosphorus of differing origin: route phosphorus analyses versus algal assays [J]. Hydrobiologia, 2003,(1-3): 29-42
    [44] Bostrom, B. Bioavailability of different phosphorus forms in freshwater systems [J]. Hydrobiologia, 1988, 170: 133-155.
    [45] Lehtola M J. A new sensitive bioassay for determination of microbially available phosphorus in water [J].Appl. Environ. Microbiol., 1999, 65(5): 2032-2034.
    [46] Gonsiorczyk T. Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake diatriot (Germany) [J]. Water Science & Teohnolog, 1998, 37(3): 51-58
    [47] Golterman H L. Sediments as a source of phosphorus for algal growth. In:H L Golterman ed. Interaction between sediments and fresh [J].The Hague: Dr W Junk, 1977.286-293
    [48] Rydin E. Potentially mobile phosphorus in Lake Erken sediment [J]. Water Research, 2000, 34:2037-2042.
    [49] Gachter R. Ten years of artificial mixing and oxygenation: no effect on the internal phosphorous loading of two eutrophic lakes [J].Environ. Sci. Technol,1998,32(3):3659-3665.
    [50] Lucotte M. Processes controlling phosphate adsorption by iron hydroxides in estuaries [J]. Chemical Geology, 1988, 67(1): 75-83
    [51] Sharpley A N. An innovative approach to estimate bioavailable phosphorus in agricultural runoff using iron oxide impregnated paper [J]. Journal of Environmental Quality. 1993,22(3): 597-601
    [52] Sharpley A N. The measurement of bioavailable phosphorus in agricultural runoff [J]. Environ. Qual., 1991, 20(1): 235-238
    [53] Auer M T. Phosphorus bioavailability and P-cycling in Cannonsville Reservoir [J]. Lake and Reservoir Management, 1998, 14(2-3): 278-289.
    [54] Logan T J. Phosphate characteristics and bioavailability of suspended sediments from streams draining into Lake Erie [J]. Great Lakes. Res., 1979, 5:112-123.
    [55] Dorich R A. Algal availability of sediment phosphorus in drainage water of the Black Creek watershed [J]. Environ. Qual., 1980, 9: 557-563.
    [56] Dils R M. Development of an iron oxide-impregnated paper strip technique for the determination of bioavailable phosphorus in runoff [J]. Water Research, 1998,32(5): 1429- 1436.
    [57]李文朝.关于湖泊沉积物磷释放及其测定方法的雏议[J].湖泊科学,1999, 11 (4):296-330
    [58] Robinson J S. Development of a method to determine bioavailable phosphorus loss in agricultural runoff [J]. Agriculture Ecosystems & Environment, 1994, 47(4): 287-297.
    [59] Sharpley A N. Bioavailable phosphorus dynamicsin agricultural soils and effects on water quality [J]. Geoderma, 1995, 67(1-2): 1-15.
    [60]张树生.氧化铁试纸法测定土壤有效磷的条件探索[J].浙江大学学报(农业与生命科学版),2003, 29(3): 253-256.
    [61]金相灿.中国湖泊水库环境调查研究(1980-1985)[M].北京:中国环境科学出版社,1990.
    [62]江永春.磷的沉积物-水界面反应[J].环境技术,2003,增刊:16-19.
    [63] Shapiro R E.Relative release and retentiveness of soil phosphates [J]. Soil Sci. Soc. Amer. Proc., 1959,23:195-198.
    [64]庞燕.五大湖沉积物磷形态及其磷吸附特征研究[D].北京:中国环境研究研究院,2004.
    [65] Koop K W. Sediment-water oxygen and nutrient exchanges along a depth gradient in the Baltic Sea[J].Mar.Ecol.Prog.Ser.1990,63:65-77.
    [66] Sndergaard M, Jensen J P, Jeppesen E. Retention and internal loading of phosphorus in shallow, eutrophic lakes[J].The Scientific World,2001,1(1):427–442.
    [67]李军.长江中下游地区浅水湖泊生源要素的生物地球化学循环[D].贵州:中国科学院地球化学研究所,2005.
    [68] Mortimer C H. The exchange of dissolved substances between mud and water in lakes [J]. J. Ecol.,1941-1942,29:280-329.
    [69]朱广伟.浅水湖泊沉积物中磷的地球化学特征[J].水科学进展,2003,14(6):714-719.
    [70] Nguyen L. Phosphorus fractions and retention in drainage ditch sediments receiving surface runoff and subsurface drainage from agricultural catchments in the North Island, New Zealand [J]. Agriculture, Ecosystems and Environment,2002,92:49-69.
    [71] Pempkowiak J. Factors influencing fluffy layer suspended matter (FLSM) properties in the Odra River-Pomeranian Bay-Arkona Deep System (Baltic Sea) as derived by principal components analysis (PCA), and cluster analysis (CA) [J].Hydrology and Earth System Sciences,2005,9(1-2):67-80.
    [72] Slomp C P.The role of adsorption in sediment water exchange of phosphate in North sea continental margin sediments [J]. Limnology and Oceanography,1998,43:832-846.
    [73] Darke A K.Al and Fe biogeochemistry in a floodplain forest: Implications for P retention [J]. Biogeochemistry, 2000,51(1):1-32.
    [74] Brinkman A.A double-layer model for ion adsorption onto metal oxides, applied to experimental data and to natural sediments of Lake Velume, The Netherlands [J].Hydrobiologia, 1993,253:31-45.
    [75] Hielties A.Fractionation of inorganic phosphates in calcareous sediments [J]. Journal of Environmental Quality,1980,9:405-407.
    [76] Richardson C J. Controlling phosphorus retention capacity in freshwater wetlands [J], Scienc., 1985,228:1424-1427.
    [77] Borggaard O K. Influence of organic matter on phosphate adsorption by aluminum and iron oxides in Sandy Soils [J]. J. Sci.,1990,41:443-449.
    [78]刘敏.长江河口潮滩表层沉积物对磷酸盐的吸附特征[J].地理学报,2002,57(4):397-406.
    [79]林荣根.黄河口沉积物中无机磷酸盐的存在形态[J].海洋与湖沼,1992,23(4):387-395.
    [80] Hartikainen H.Phosphorus and its reactions in terrestrial soils and lake sediments [J]. J Sci Agric Soc Finl,1979,51:537-624.
    [81] Niskanen R.Sorption capacity of phosphate in mineral soilsⅡ.Dependence of sorption capacity on soil properties [J]. J Agric Sci Finl,1990,62:9-15.
    [82] D’anglo E M. Diagenesis of organic matter in a wetland receiving hypereutrophic lake water: I. distribution of dissolved nutrients in the soil and water column [J]. J. Environ. Qual, 1994, 23(5): 928-936.
    [83] Mach D L. Organic phosphorus and carbon in marine sediments [J]. American J. of Sci.,1989,278:411-429.
    [84]杨春霞.轻组有机质对太湖沉积物氮、磷矿化的影响[J].环境科学研究, 2009,22(9): 1001-1006.
    [85] James L P. The Role of Nutrient Loading and Eutrophication in Estuarine Ecology [J]. Environmental Health Perspectives.2001,109:699-706.
    [86] Janzen H H.Light fraction organic matter in soils from long-term crop rotations[J].Soil Science Society of American Journal.1992,56:1799-1806.
    [87] Morris J T. A mechanistic, numerical model of sedimentation, mineralization, and decomposition for marsh sediments [J]. Soil Society of America Journal,1986,50(1):96-105.
    [88] Gachter R. Ten years of artificial mixing and oxygenation: no effect on the internal phosphorous loading of two eutrophic lakes [J].Environ. Sci. Technol,1998,32(3):3659-3665.
    [89]王圣瑞.湖泊沉积物种水溶性有机质对吸附磷的影响[J].土壤学报,2005,42(5):805-811
    [90] Kastelan M.The role of fulvic acids in phosphorus sorption and release from mineral particles [J].Wat.Sci.Tech,1996,34(7/8):259-265
    [91] Ozimek T. Can macrophytes be useful biomanipulation of lakes? The lake Zwemuhist example [J].Hydrobiologia,1990,200/201:399-409.
    [92] Henning S J. Importance of temperature, nitrate, and pH for phosphorus release from aerobicsediments of four shallow, eutrophic lakes [J].Limnology Oceanography,1992, 37(3):557-589.
    [93] Kim L H. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments [J].Chemosphere.2003,50:53-61.
    [94] Ingall E. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters [J]. Geochimica et Cosmochimica Acta,1994,58(11):2571-2575.
    [95] D’anglo E M. Diagenesis of organic matter in a wetland receiving hypereutrophic lake water: II. Role of inorganic electron acceptors in nutrient release [J].J.Environ.Qual.,1994,23:937-943.
    [96] Sommer U. The PEG-model of seasonal succession of planktonic events in freshwater [J]. Arch. Hydrobiol., 1986, 106: 433-471.
    [97] Liikanen A. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake [J]. Biogeochetnistry,2002, 59(3): 269- 286.
    [98] Gonsiorczyk T. Mechanism of phosphorus release from the bottom sediment of the oligotrophic Lake Stechlin: importance pf permanently oxic sediment surface [J]. Archiv fur Hydrobiologie, 2001,151:203-219.
    [99]高丽.湖泊沉积物中磷释放的研究进展[J].土壤,2004,36(l):12-15.
    [100] Carrick H J. Wind influences phytoplankton biomass and composition in a shallow, productive lake [J]. Limnol. Oceanogr., 1993, 38: 1179-1192.
    [101] Sondergaard M. Phosphorus release from resuspended sediment in the shallow and wind- exposed Lake Arreso, Denmark [J]. Hydrobiologia, 1992, 228: 91-99.
    [102] Anu K. Sediment phosphorus release in phytoplankton dominated versus macrophyte dominated shallow lakes: importance of oxygen conditions [J]. Hydrobiologia, 2003, 506- 509:129-133.
    [103] Khoshmanesh A. Luxury of phosphorus by sediment bacteria [J]. Wat. Res.,2002, 36: 774-778.
    [104] McComb A J. Spatial and temporal heterogeneity of sediment phosphorus in the Peel-Harvey Estuarine System [J]. Estuarine, Coastal and Shelf Science,1998,47:561-577.
    [105]侯立军.长江口滨岸潮滩营养盐环境地球化学过程及生态效应[D].上海:华东师范大学, 2004.
    [106]欧冬妮.长江口潮滩“干湿交替”模式下磷的迁移过程与机制[D].上海:华东师范大学,2004.
    [107] Jacoby J M. Internal loading of a shallow eutrophic lake [J]. Water Res.,1982,16:911-919.
    [108]赵纯勇.三峡重庆库区消落带生态环境基本特征与开发利用对策探讨[J].中国发展, 2004,4: 19-23.
    [109]张文菊.三江平原典型湿地剖面有机碳分布特征与积累现状[J].地球科学进展, 2004,19(4): 558-563.
    [110]沈珍瑶.长江上游非点源污染特征及其变化规律[M].北京:科学出版社,2008,230-231.
    [111]冯孝杰.三峡库区农业面源污染环境经济分析[D].重庆:西南大学,2005.
    [112]杜军.三峡库区重庆段富营养化物质氮磷污染负荷比较研究[J].重庆交通学院学报, 2004, 23(1):121-125.
    [113]石孝洪.三峡水库消落带土壤磷素释放与富营养化[J].土壤肥料,2004,1:40-44.
    [114]胡兴娥.三峡水库135m运行阶段永久船闸下引航道泥沙淤积分析[J].水科学进展, 2008, 19(1):1-7.
    [115]林彰文.热带典型水库沉积物磷与硅藻的空间分布[D].广东:暨南大学,2006.
    [116]贾陈忠.荆州市地表水沉积物中磷的形态分析[J].环境科学与管理,2008,33(1):46-52.
    [117]李江.太湖不同营养水平湖区沉积物理化性质和磷的垂向变化[J].环境科学研究,2007,20(4):64-69.
    [118]林悦涓.东湖沉积物及上覆水氮磷形态分布特征[D].武汉:武汉大学,2005:5-7.
    [119]孟凡德.长江中下游湖泊沉积物理化性质研究[J].环境科学研究. 2004,17:24-29
    [120]李北罡.黄河中游表层沉积物中无机磷的化学形态研究[J].农业环境科学学报, 2006, 25(6):1607-1610
    [121]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2007,25-26.
    [122]高超.农田土壤中的磷向水体释放的风险[J].环境科学学报,2001,21(3):344-348.
    [123] Indiati R. Soil phosphorus sorption and simulated runoff parameters as affected by fertilizer addition and soil properties [J]. Commun Soil Sci Plant Anal,1995,26(15-16):2319-2321.
    [124]刘冬梅.太湖水-沉积物界面磷交换的微宇宙研究[D].吉林:吉林大学,2007:34-36.
    [125]倪进志.土壤轻组有机质[J].环境污染治理技术与设备,2000,1(2):58-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700