木材—橡胶复合材料及其在静音地板中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材-橡胶复合材料是近年来才被提出来的一类功能型复合材料,具有良好的防水、防腐、防蛀、防静电、隔音吸音、阻尼减震、隔热保温等性能,可以用作室内装修装饰材料、隔音吸音材料、阻尼减震材料、隔热保温材料,综合体现了木材的高效利用、废旧轮胎的无污染循环利用和提高林产品附加值等方面的价值,发展前景非常广阔。但目前关于木材-橡胶复合材料的研究还处于起步阶段,尚未形成工业化产品。
     为了对木材-橡胶复合材料进行深入研究,通过查阅大量的文献,完成了其软木仿生结构的设计,以人工林木材、木制品加工剩余物和废旧轮胎颗粒为原料,制备了木材-橡胶复合材料并对影响其性能的主要因子进行了研究;用实验模态分析的方法揭示了木材-橡胶复合材料的静音机理,对其在静音地板中的应用进行了探索性研究。对地板制备工艺和性能、经济效益进行了分析,并对地板静音性能测试方法做了初步研究。
     本研究得出以下主要研究结论:
     1)在木材-橡胶复合材料的软木仿生结构中,木材相当于软木细胞壁物质,起到支撑、填充作用,主要提供物理力学性能,是结构中的强度单元;橡胶相当于软木细胞腔中的密闭气体,起到类似弹簧的作用,是结构中的减震单元;胶粘剂一定程度上相当于软木细胞壁中的软木脂,主要起到结构单元之间的胶接作用。
     2)制备工艺对木材-橡胶复合材料性能的影响规律主要有:
     木/橡胶质量比对材料性能影响极显著。随着木/橡胶质量比的减小,橡胶颗粒用量增大,材料的耐吸水膨胀性能增强,内结合强度减小,静曲强度和弹性模量降低,固有频率下降,阻尼比升高,撞击声减小,撞击声改善值增大。
     木材形态对材料影响显著。使用扁平刨花和纤维可以获得较好的物理力学性能,C型刨花制备的材料具有较低的固有频率和撞击声、较高的阻尼比和撞击声改善值。施胶量对木材-橡胶复合材料物理力学性能的影响极显著(2 h吸水厚度膨胀率除外),对振动及声学性能的影响不显著。
     密度对物理力学性能、振动及声学性能的影响都非常显著。木材-橡胶复合材料的目标密度在0.8~1.0 g/cm3范围内可获得较好的综合性能。
     木/橡胶质量比和施胶量之间、密度和加压时间之间的交互作用对物理力学性能、振动及声学性能都有很大影响。因此,在调整工艺参数时,应将交互作用考虑在内。
     3)具有良好减震降噪性能的较佳工艺参数:木材形态:C型刨花;废旧轮胎颗粒粒径:2~3 mm;木/橡胶质量比:40/60;施胶量:6%;目标密度:0.8 g/cm3;加压时间:4 min;压板温度:140℃。采用该优化工艺制备的木材-橡胶复合材料的主要性能如下:密度:0.78 g/cm3;2 h吸水厚度膨胀率:3.12%;内结合强度:1.1 MPa;静曲强度:3.8 MPa;弹性模量:342 MPa;固有频率:17.4 Hz;阻尼比:0.15;撞击声:76.5 dB(A);撞击声改善值:15.5 dB(A)。
     4)木材-橡胶复合材料的静音机理:大量橡胶颗粒的存在,使得木材-橡胶复合材料具有较低的固有频率和较高的阻尼比。在冲击载荷作用下,由于木材-橡胶复合材料各阶频率间距较小,容易产生共振,使得材料中的橡胶颗粒减震吸能的功能得到充分发挥,材料整体的减震降噪功能提高;同时,较高的阻尼比可以加快振动的衰减,能量在传递过程中耗散较大,降低了以声能形式耗散的能量,起到减震降噪作用。
     5)采用撞击声和撞击声改善值两个参数指标对地板静音性能进行评价,提出了一种地板静音性能测试方法——自由落球撞击法,设计并制作了一套相应的测试系统。实验证明,自由落球撞击法可以对不同静音性能的地板做出精确的定量评价,具有所需试件少、测试快速简便、结果准确的特点。
     6)以木材-橡胶复合材料为基材的新型静音地板(WRC静音地板),通过不同的结构设计,可以获得良好的静音性能和物理力学性能;在外部载荷作用下,WRC静音地板的弯曲破坏类型有2种。
Wood-rubber composite (WRC) is a new kind of functional composite which comes up in recent years. It has many good performances, for example, waterproof, antiseptic, mothproof, antistatic, soundproof and sound absorption, vibration damping, heat insulation, and so on. Therefore, it can be widely used as indoor decoration materials for sound insulation, vibration damping and heat insulation. The development of WRC will show high-efficient utilization of wood, pollution-free recycled utilization of waste tyre and high-added value of forest products. Therefore, this composite has broad prospects. However, as the research work is just in a beginning stage, the industrialized production of WRC has not been realized yet.
     In order to gain a deep study on WRC, a lot of correlative literature was consulted, and the bionic design of WRC is obtained based on cork microstructure. According to the structure model, WRC was made of plantation wood, woodwork remainder and waste tyre particles. The main factors which affect the performances of WRC were studied in this paper. In addition, the soundproof mechanism of WRC was disclosed through experimental modal analysis. At the same time, the application of WRC in manufacturing wood-based soundproof flooring was experimentally studied, and the manufacturing process, performances and economic benefit were analyzed. The testing method of soundproof property was also studied.
     The main research results are as follows:
     1) In the bionic structure of WRC based on cork microstructure, wood particle is just like the cell wall, playing the role of supporting and filling. In WRC, wood particle is the strength element, which shows physical and mechanical properties; The rubber, just like the gas enclosed in cork cell lumen, plays an important role like spring in vibration damping; And adhesive is in some degree like the suberin with the function of connection.
     2) The main relationships of process and performance are as follows:
     The mass ratio of wood to rubber has a significant effect on the performances of WRC. With the reduction of the ratio, the amount of rubber particles increases, which makes the water absorption and swelling resistance of WRC increase, and makes the internal bond strength, modulus of rupture, modulus of elasticity, natural frequency and impact sound decrease; But, on the contrary, the damping ratio and improvement of impact sound insulation increase.
     The configuration of wood particles has a significant effect on the performances of the composite. Better physical and mechanical properties can be gained using flat wood particles and fibre. C-type wood particles can make WRC with lower natural frequency and impact sound, higher damping ratio and improvement of impact sound insulation.
     The resin content has a significant effect on the physical and mechanical performances (except thickness swelling rate of water absorption within two hours), but it does not have obvious effect on vibration and acoustic performances according to the results of experiment.
     The density of the composite has a significant effect on physical and mechanical, vibration and acoustic performances. WRC with the target density from 0.8 g/cm3 to 1.0 g/cm3 has better comprehensive performances.
     The interaction of the mass ratio of wood to rubber with the resin content, and that of the density with pressing time have some significant influence on the performances. Therefore, the interaction should be taken into account when process parameters are adjusted.
     3) In order to obtain better vibration and acoustic performances, the better process parameters are as follows: C-type wood particles, 2-3 mm waste tyre particles, the mass ratio of wood and rubber 40/60, the resin content 6%, the target density 0.8 g/cm3, the pressing time 4 min and the hot pressing temperature 140℃. By adopting the optimized process, the main performances of WRC are as follows: density 0.78 g/cm3, thickness swelling rate of water absorption within two hours 3.12%, internal bond strength 1.1 MPa, modulus of rupture 3.8 MPa, modulus of elasticity 342 MPa, natural frequency 17.4 Hz, damping ratio 0.15, impact sound 76.5 dB(A) and the improvement of impact sound insulation 15.5 dB(A).
     4) The mechanism of soundproof of WRC: Low natural frequency and high damping ratio due to the existence of large amount of rubber particles in the structure. Under the load of impacting, it is easy to generate sympathetic vibration because of the narrow space between different order frequency, and then the rubber particles’function of vibration damping and power absorption can be fully realized. At the same time, higher damping ratio can attenuate vibration. More energy dissipated in the course of transmission can reduce energy dissipation in the form of sound, thus vibration and noise are also decreased.
     5) The soundproof property can be evaluated with two parameters: impact sound and improvement of impact sound insulation. A new method called free-dropping-ball impacting method was put forward for testing soundproof property, and a set of testing system was designed and prepared. The feature of this testing method is: a few samples, easy and quick test and precise evaluation. This research will offer a new idea for drafting and developing testing method standards of wood-based soundproof flooring in future.
     6) The better soundproof and physical mechanical performances can be achieved through changing the structure of WRC-based soundproof flooring; Under exterior load, three kinds of forces are acted on WRC layers (tension, extrusion and shearing). There are two types of bending failure for WRC-based soundproof flooring.
引文
[1]胡景初.改革开放三十年与中国家具产业[J].家具与室内装饰,2008,(9):16-17
    [2]张文玲.把脉中国木地板[J].中国林业产业,2007,(4):16-20
    [3]于大波.中国木地板企业何以在美败诉[J].企业世界,2007,(5):44-44
    [4]于大波.中国木地板企业在美败诉后果严重[J].中国林业产业,2007,(4):32-33
    [5]傅峰.功能人造板的新概念[J].建筑人造板,1994,(2):19-23
    [6]傅峰.我国近期木基复合材料的研究概况[J].中国农业科技导报,2003,5(3):10-13
    [7]华毓坤.2l世纪人造板工业发展趋势[J].南京林业大学学报,2001,25(1):6-8
    [8]张齐生.面向2l世纪的木材工业[J].南京林业大学学报,2001,25(3):l-4
    [9]陈志林,傅峰,叶克林.我国木材资源利用现状和木材回收利用技术措施[J].中国人造板,2007,14(5):1-3
    [10] FAO.Global Forest Resources Assessment 2005.2006
    [11]黄玉梅,张健,杨万勤等.我国人工林的近自然经营[J].林业资源管理,2007,(5):33-36
    [12]国家林业局森林资源管理司.第六次全国森林资源清查及森林资源状况[J].绿色中国:理论版,2005,(01M):10-12
    [13]罗小荷.人工林与中国林业可持续发展[J].福建林业科技,2002,29(2):69-71
    [14]吴盛富.我国杨木资源与胶合板工业的发展[J].中国人造板,2008,15(3):24-28
    [15]鲍甫成,吕建雄.中国木材资源结构变化与木材科学研究对策[J].世界林业研究,1999,12(6):42-47
    [16]张久荣.森林—人工林—可持续发展[J].中国林业产业,2005,(2):16-18
    [17]孙建.中国木材工业发展现状、趋势和政策取向[J].中国林业产业,2004,(6):29-30
    [18]鲍甫成,江泽慧,姜笑梅,等.中国主要人工林树种幼龄材与成熟材及人工林与天然林木材性质比较研究[J].林业科学,1998,34(2):63-76,T001
    [19]刘君良,江泽慧,许忠允,等.人工林软质木材表明密实化新技术[J].木材工业,2002,16(1)20-22,28
    [20]海燕.世界废旧轮胎综合利用纵览[J].中国橡胶,2002,18(23):25-27,29
    [21]陈占勋.废旧高分子材料资源及综合利用[M],北京:化学工业出版社,2001
    [22]钱伯章.美国废旧轮胎回收利用现状[J].橡塑资源利用,2007,(5):34-35
    [23]宗利.加拿大废旧轮胎回收利用情况[J].中国橡胶,2005,21(13):10-11
    [24]郑咸雅.国外废旧轮胎利用概况一瞥[J].中国资源综合利用,2004,(7):18-24
    [25]朱永康.欧洲废轮胎回收率超过91%[J].中国轮胎资源综合利用,2008,(11):7
    [26]姜治云.我国废旧轮胎资源循环利用的现状及其发展前景[J].中国轮胎资源综合利用(CTRR),2005,(6):6-8
    [27]钱伯章.废旧轮胎是可再利用的资源[J].橡胶资源利用,2007,3:36-37
    [28]陈云信.国内外废旧轮胎的回收利用现状[J].轮胎工业,2006,26(12):715-717
    [29]曾黎明编著.功能复合材料及其应用[M].北京:化学工业出版社,2007
    [30] C.Nakason,A.Kaesman,S.Homsin et al.Rheological,thermal and morphological properties of maleated natural rubber and its reactive blending with poly(methyl methacrylate) [J].J.Appl.Polym.Sci.,2001,81:2803
    [31] M.N.Ichazo,C.Albanob,J.González,et al.Polypropylene/wood flour composites:treatments and properties[J].Composite Structures,2001,54(2-3):207-214
    [32] J.K.Sameni,S.H.Ahmad,S.Zakaria.Effect of MAPE on the mechanical properties of rubber wood fiber/thermoplastic natural rubber composites[J].Advances in polymer technology.2004,23(1):18-23
    [33]赵君,王向明,常建民.影响木质-橡胶环保复合材料甲醛释放量的因子分析[J].西北农林科技大学学报(自然科学版),2008,36(2):104-110
    [34] Zhao Jun,Wang Xiang-ming,Chang Jian-min,Zheng Kai.Optimization of processing variables in wood-rubber composite panel manufacturing technology[J].Bioresource Technology,2008,99:2384-2391
    [35] T.G.Vladkova,P.D.Dineff,D.N.Gospodinova.Wood flour:a new filler for the rubber processing industry.Ⅲ.Cure characteristics and mechanical properties of nitrile butadiene rubber compounds filled by wood flour in the presence of phenol formaldehyde resin[J].Journal of Applied Polymer Science,2004,92:95-101
    [36] T.G.Vladkova,P.D.Dineff,D.N.Gospodinova,et al.Wood flour:a new filler for the rubber processing industry.Ⅳ.Cure characteristics and mechanical properties of natural rubber compounds filled by non-modified or corona treated wood flour[J].Journal of Applied Polymer Science,2006,101:651-658
    [37] Hanafi Ismail,Jaffri R.M.,Rozman H.D..Oil palm wood four filled natural rubber composites:fatigue and hysteresis behaviour[J].Polymer International,2000,49:618-622
    [38] Hanafi Ismail,Jaffri R.M.,Rozman H.D..Oil palm wood flour filled natural rubber composites: The effects of various bonding agents[J].International Journal of Polymeric Materials,2001,49:311-322
    [39] Hanafi Ismail,H.P.S.Abdul Khalil.The effects of partial replacement of oil palm wood flour by silica and silane coupling agent on properties of natural rubber compounds[J].Polymer Testing,2001,20:33-41
    [40] Hanafi Ismail,R.M.Jaffri.Physico-mechanical properties of oil palm wood flour filled natural rubber composites[J].Polymer Testing,1999,18:381-388
    [41] Miren Nekane Ichazo,Marianela Hernández,Carmen Albano,Jeanette González.Curing and physical properties of natural rubber/wood flour composites[J].Macromolecular Symposium,2006,239:192-200
    [42] Han-seung Yang,Dae-Jun Kim,Young-Kyu Lee.Possibility of using waste tire composites reinforced with rice straw as construction materials[J].Bioresource Technology,2004,95:61-65
    [43] Song X. M.,Hwang J-Y.A study of the microscopic characteristics of fracture surface of MDI bonded wood fiber-recycled tire rubber composites using scanning electron microscopy[J].Wood and Fiber Science,1997,29(2):131-141
    [44] Song X M,Hwang J-Y.Mechanical properties of composites made with wood fiber and recycled tire rubber[J].Forest Prod.J.2001,51(5):45-51
    [45]孙伟圣,傅峰,吴盛富等.我国木基静音地板发展现状分析[J].木材工业,2008,22(5):21-23
    [46]曾新德.我国软木工业的现状及发展策略[J].林业科技管理,200l,(4):46-51
    [47]日尧.软木及软木地板[J].吉林建材,2004,(5):58-59
    [48]赵戈,段新芳,官恬,等.世界软木加工利用现状和我国软木工业发展对策[J].世界林业研究,2004,17(5):25-28
    [49]雷天泉,郑林义.软木复合地板生产工艺及其发展前景[J].西北林学院学报,1996,11(3):66-69
    [50]杨国辉.超静音木地板:中华人民共和国,ZL 200620018983.2[P].2007-07-25
    [51]孙秀芳.静音木地板:中华人民共和国,ZL 200620073778.6[P].2007-06-13
    [52]邓金华,张治宇,黄国亮.木地板工程中地板响声的初步研究[J].中国人造板,2007,14(3):26-28
    [53] Uchiyama MFG.Cork floor material.日本,JP8300316[P].1996-11-19
    [54] Yamakichikk,Takahashimamoru.Method of manufacturing sound insulating plywood.日本,WO9914042[P].1999-3-25
    [55] Matsushita electric works LTD.Soundproof floor material and manufacturing method thereof.日本,JP2007138575.2007-6-7
    [56] Daiken trade industry.Wood sheathing for sound-insulating floor.日本,JP2007132155.2007-5-31
    [57] Ruhdorfer Herbert . Panel with a sound insulation layer and production method .美国,US2004255538[P].2004-12-23
    [58] Matsushita electric works LTD.Wood–based soundproof floor material and its manufacturing method.日本,JP2001239512[P].2001-9-4
    [59] Furuichi Sunao,Suda Kenta.Woody soundproof flooring material.日本,JP2007107338.2007-4-26
    [60] Vil Gel M Ehgle.Wood member consisting of wood layers.欧洲,RU2143970.2000-1-10
    [61] Kie-sun Han,Chungcheongbuk-do,Seong-Chan Park,et al..Back grooved wood flooring composed of HPL,waterproof plywood and soundproof layer,and method of manufacturing the same.美国,US2006177633[P].2006-5-25
    [62] Lgchemical LTD.,Hankie-Sun, Kimbyeong-Hoe,et al.. Wood flooring composed of WPL, base and soundproof layer.世界知识产权组织,WO2004098881[P].2004-11-18
    [63] Matsushita electric works LTD.Wooden soundproof floor material.日本,JP2007106074[P].2007-4-26
    [64] Asahi wood technology corporation.Wooden flooring material and manufacture of wooden plate for flooring material.日本,JP9150406[P].1997-6-10
    [65] H.pereira,Lisboa,Portugal.Chemical composition and variability of cork from Quercus suber L.[J].Wood science and technology,1988,22:211-218
    [66]曾黎明编著.功能复合材料及其应用[M].北京:化学工业出版社,2007
    [67] http://www.nationmaster.com/encyclopedia/Jack-E.Steele
    [68]王玉庆,周本濂,师昌绪.仿生材料学——门新型的交叉学科[J].材料导报,1995,9(4):1-4
    [69]葛明桥.材料学科研究的新领域——仿生材料[J].南通工学院学报,2000,16(2):1-2
    [70]陈洪渊.仿生材料与微系统[J].科学中国人,2004,(4):28
    [71] Louloudi M.,Deligiannakis Y.,Hadjiliadis N..Design and synthesis of new biomimetic materials [J].Jou rnal of Inorganic Biochemistry,2000,79(1-4):93-96
    [72]贾贤.天然生物材料及其仿生工程材料.北京:化学工业出版社,2007:4
    [73]胡巧玲,李晓东,沈家骢.仿生结构材料的研究进展[J].材料研究学报,2003,17(4):337-344
    [74]李恒德,冯庆玲,崔福斋.贝壳珍珠层及仿生制备研究[J].清华大学学报自然科学版,2001,41(4-5):41-47,62
    [75]赵建民,麦康森,张文兵.贝壳珍珠层及其仿生应用[J].高技术通讯,2003,13(11):94-98
    [76]李秀华,袁启明,杨正方.贝壳结构及陶瓷的仿生研究[J].硅酸盐通报,2003,(2):53-56
    [77] Zhou Benlian.Some progress in the biomimetic study of composite materials[J].Materials Chemistry and Physics,1996,45(2):114-119
    [78]白朔,成会明,苏革,等.哑铃形碳化硅晶须的制备与表征[J].材料研究学报,1999,13(3):239-243
    [79]白朔,成会明,苏革,等.哑铃形碳化硅晶须增强聚氯乙烯(PVC)复合材料的制备和性能[J].材料研究学报,2002,16(2):121-125
    [80] Li S.H..Advanced Structural Materials[J].Elsevier,Amsterdam,1991,12(3):87
    [81] Zhang K..Biomimetic Study on Helical Fiber Composites[J].Journal of Material Science and Technology,1997,13:1-4;
    [82]杜子伟编.软木制品及应用[M].北京:中国林业出版社,1987:1-26
    [83]舒一众,胡一民.材皮双绝——栓皮栎[J].中国木材,1998,(6):36-37
    [84] Antonia Caritat,Emilia Gutiérrez,Marisa Molinasi.Influence of weather on cork-ring width[J].Tree Physiology,2000,20:893-900
    [85]刘艳贞,雷亚芳,周伟,等.欧洲栓皮栎软木结构与物理性质的研究进展[J].西北林学院学报,2007,22(6):144-147
    [86]赵戈,段新芳,官恬,等.世界软木加工利用现状和我国软木工业发展对策[J].世界林业研究,2004,17(5):25-28
    [87] L.J.Gibson,K.E.Easterling,M.F.Ashby.The structure and mechanics of cork[J].Proceedings of the Royal Society of London.Series A.Mathematical and Physical Sciences,1981,377:99-177
    [88] M.A.Fortes,M.E.Rosa,Lisboa,et al.Growth stresses and strains in cork[J].Wood Scienc and Technology,1992,26:241-258
    [89] H.Pereira,Lisboa,Portugal.The thermochemical degradation of cork[J].Wood Science and Technology,1992,26:259-269
    [90] M.A.Bernards.Demystifying suberin[J].Canadian Journal of Botany,2002,80:227-240
    [91] Pollard,M.,Beisson,F.,Li,Y.et al.Building lipid barriers:biosynthesis of cutin and suberin[J].Trends Plant Sci.,2008,13:236-246
    [92] Graca J.,Santos S..Subrin:a biopolyester of plants’skin[J].Macromol.Biosci.,2007,7:128-135
    [93] Kolattukudy,P.E..Biopolyester membranes of plants-cutin and subrin[J].Science,1980,208:990-1000
    [94] Franke,R.,Briesen,I.,Wojciechowski,T.,et al.Apoplastic polyesters in Arabidopsis surface tissues-A typical suberin and a paritcular cutin[J].Phytochemistry,2005:66,2643-2658
    [95] Kolattukudy,P.E..Polyesters in higher plants[J].Adv.Biochem.Eng.Biotechnol.,2001,71:1-49
    [96] Sandip D.Desai,Anurag L.Emanuel,Vijay Kumar Sinha.Biomaterial based polyurethane adhesive for bonding rubber and wood joints[J].Journal of polymer research,2003,10:275-281
    [97] Miren Nekane Ichazo,Marianela Hernández,Carmen Albano,et al.Curing and physical properties of natural rubber/wood flour composites[J].Macromol.Symp.2006,239:192-200
    [98] B.Thongnuanchan,K.Nokkaew,A.Kaesaman,et al.Epoxidized natural rubber-bonded para rubber wood particleboard[J].Polymer engineering and science,2007,47(4):421-428
    [99]陆仁书.刨花板制造学[M].北京:中国林业出版社,1992,29-33
    [100]刘习军,贾启芬.工程振动理论与测试技术[M].北京:高等教育出版社,2004:31-35
    [101]盛美萍,王敏庆,孙进才.噪声与振动控制技术基础[M].北京:科学出版社,2006:102-104
    [102]李智,殷祥超.复合层板动态特性的数值模拟与实验研究[J].煤矿机械,2006,27(5):779-780
    [103]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000
    [104] Hong ming,Chen haoran.Vibration frequency,mode and damping behavior of laminated composite plates with delamination [J].Journal of ship mechanics,1999,3(6):36-46
    [105]杨淑琴,杨家富,罗江丽等.基于实验模态分析理论的木/竹复合板物理参数识别试验研究[J].林业机械与木工设备,2008,36(9):17-18
    [106] Raju Mantena P .. Low-velocity impact response and dynamic charactistics of glass-resin composites[J].Journal of ReinforcedPlastiees and Composites,2001,20(6):513-533
    [107] L.R.Deobald,R.F.Gibson.Determination of elastic constants of orthotropic plates by a modal analysis/Rayleigh-Ritz technique[J].J.Sound &Vibration,1988,124:269-275
    [108] Hadi A.S.,Ashton J.H..Measurement and theoretical modeling of the damping properties of a uni-directional glass/epoxy composites[J].Composite Structure,1996,34:381-385
    [109] Kwang Seop Jeong,Dai Gil Lee,Yoon Keun Kwak.Experimental investigation of the dynamic characteristics of carbon fiber epoxy composites thin beams[J].Composite Structure,1995,33:77-86
    [110]刘习军,贾启芬.工程振动理论与测试技术[M].北京:高等教育出版社,2004:462-485
    [111]孟春玲,张力,田正兵,等.汽车复合材料制动缸的模态分析[J].工程塑料应用,2007,35(10):34-36
    [112]姚学锋,姚振汉,戴福隆,等.编织结构复合材料动态特性的实验模态分析[J].复合材料学报,1998,15(4):107-112
    [113]李智,殷祥超,何兴华,等.复合层板减振降噪特性的数值模拟研究[J].噪声与振动控制,2006,(6):27-30
    [114]孙启祥,张齐生,彭镇华.地板重量撞击声隔声特性研究[J].安徽农业大学学报,2002,29(2):147-149
    [115]孙启祥,张齐生,彭镇华.地板轻量撞击声隔声特性研究[J].安徽农业大学学报,2002,29(2):143-146
    [116]邓金华,张治宇,黄国亮.木地板工程中地板响声的初步研究[J].中国人造板,2007,14(3):26-28
    [117]马大猷.噪声与振动控制工程手册[M].北京,机械工业出版社,2002,383-391
    [118]薛小艳.解读楼板撞击声隔声的相关参数[J].声频工程,2008,32(4):3-6,9
    [119]陈克安,曾向阳,李海英.声学测量[M].北京:科学出版社,2005
    [120]赵英才,孙裕君.技术经济效益分析方法[M].北京:机械工业出版社,1985:20-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700