抑制镰刀菌及降解两种真菌毒素的益生菌筛选和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禾谷镰刀霉(Fusarium graminearum)是谷物中最为常见的镰刀菌,它们产生的脱氧雪腐镰刀菌烯醇(呕吐毒素)(Deoxynivalenol,DON)、玉米赤霉烯酮(Zearalenone, ZEN)和T-2毒素等单端孢霉烯族毒素是粮食中最常见的一类污染性霉菌毒素,进入人和动物体的DON和ZEN分别产生呕吐、雌激素效应等毒性,还引起免疫毒性、细胞毒性、胚胎毒性和致崎致癌性。
     霉菌引起的粮食和饲料污染腐烂和真菌毒素的污染给全世界造成了巨大的经济损失。常用的物理和化学方法不仅收效甚微,还增加了不安全性。
     本论文首先利用禾谷镰刀菌作为指示菌株,通过在益生菌中大面积的筛选并鉴定,获得具有抑制镰刀菌能力的唾液乳杆菌(Lactobacillus. salivarius ssp. salivarius)、发酵乳杆菌(L. fermentum)和卷曲乳杆菌(L. crispatus)三株乳杆菌。针对未曾报道的发酵乳杆菌(L. fermentum)和卷曲乳杆菌(L. crispatus),我们进行了禾谷镰刀菌和尖孢镰刀菌的孢子萌芽、菌丝体生长抑制试验以及相关的机理研究。实验发现:发酵乳杆菌和卷曲乳杆菌上清液能不同程度地抑制禾谷和尖孢镰刀菌孢子萌芽及菌丝体生长。但这种抑制作用随时间的延长而逐渐丧失;上清液中的酸对抑制禾谷和尖孢镰刀菌生长有显著性作用,发酵乳杆菌培养上清中的细菌素或蛋白类物质也对抑制起了部分的作用。
     其次,深入我国粮食主产地(安徽和河南省)进行DON和ZEN的污染情况的调查采样。经检测、比较分析发现:真菌毒素ZEN和DON污染比较严重,DON和ZEN的检出率分别为72.3%和73.4%,小麦中DON检出率甚至高达97.6%;DON平均污染水平为379.2μg/kg,低于国家限量标准,而ZEN的平均污染水平为178.1μg/kg,高于国家限量标准两倍。
     再次,本文利用快速灵敏的间接竞争ELISA方法在59株乳酸菌和芽孢杆菌中进行筛选具有降解DON毒素潜能的益生菌株。通过选择合适的稀释倍数减弱培养基干扰后,筛选获得枯草芽孢杆菌ZZ(Bacillus subtilis ZZ)(降解率98%)和地衣芽孢杆菌DY(B.licheniformis DY)(降解率30.7%)有效降解真菌毒素DON的两株益生菌,机理研究发现:芽孢杆菌上清中某些对热敏感的蛋白类成分起着主要的作用。对降解时间、温度和振荡转速进行的优化,确定了枯草芽孢杆菌ZZ和地衣芽孢杆菌DY清除DON的最佳条件:37℃,180rpm振荡共培养12h。
     本文还利用间接竞争ELISA方法和HPLC方法,在分离获得的64株乳酸菌,104株瘤胃微生物,13株双歧杆菌和5株芽孢杆菌中筛选得到了一株能有效降解真菌毒素ZEN的腊样芽孢杆菌(B.cereus);同时利用选择性培养基的方法从采自安徽、河南以及其它部分省市粮食产地的土壤和玉米样品中筛选获得6株具有不同降解能力的菌株分别为:鼠李糖短杆菌(Brachybacterium rhamnosum),罗尔斯通氏贪铜菌(Ralstonia metallidurans),粪肠球菌(Enterococcus faecalis),蜡样芽胞杆菌(B. cereus),藤黄微球菌(Micrococcus luteus),洋葱伯克霍尔德菌(Burkholdeia cepacia)。其中以蜡样芽孢杆菌(降解率97.6%)和藤黄微球菌(降解率43.2%)效果比较好。因此,后续试验对这两株菌进行温度、孵育时间、培养基、起始pH值、碳源和金属离子添加量等条件的优化。蜡样芽胞杆菌在pH值为6.5的营养肉汤培养基,37℃培养96h,可以完全降解ZEN,而且试验表明蜡样芽孢杆菌的上清液中存在某种物质能有效降解液体中的ZEN,而不是菌体细胞壁的吸附;产物分析表明:ZEN没有形成有毒的α-zearalenol、β-zearalenol、α-Zearalanol和β-Zearalanol中间代谢产物。藤黄微球菌在pH值为7的LB培养基中(添加0.05M MnCl2),37℃培养120h,能降解99%的ZEN。
     最后,本文从粉红螺旋聚孢霉(G roseum)中扩增文献报道的目的片段zhd101基因。获得的序列与NCBI上公布的基因序列有9个碱基差异。通过原核表达获得了ZEN-JJM (ZEN降解酶),该酶与文献报道的ZHD101蛋白存在着二级结构上的差异,但ZEN降解实验证实ZEN-JJM具有完全降解ZEN的能力。
Fusarium graminearum is the most common Fusarium strain for grain contamination, which can produce a group of toxic secondary metabolites, including deoxynivalenol, zearalenone and Toxin-2. Many side effects such as vomiting, estrogenic, immunotoxic, mutagenisity, cytotoxic and genotoxic can be caused by consumption of cereals contaminated with these mycotoxins.
     Food and feed spoiling moulds cause great economic losses worldwide. A serial of physical and chemical treatments can be applied to prevent or minimize the spoilage of food and contaminations from mycotoxins. However, the efficiency of conversional treatments is low, and a risk of introducing harmful breakdown chemicals is concerned.
     In the present research, firstly, we used Fusarium graminearum as the contamination indicator, and probiotic strains of Lactobacillus. salivarius ssp. Salivarius, L. fermentum and L. crispatus were screened out for their inhibitory ability on the indicator growth. We also tested the inhibitory effect of L. fermentum and L. crispatus on the spore germination and mycelial growth, which have not been reported so far. Results showed that the spore germination and mycelial growth can be inhibited by L. fermentum and L. crispatus, and the inhibitory capacity was decreased with the prolonging of time. Principal components analysis found that the bacteriocins, proteins and organic acids from the supernatant of culture suspension are the main inhibitor.
     Secondly, the contamination status of deoxynivalenol and zearalenone in maize and wheat was investigated in Henan and Anhui province. Deoxynivalenol and zearalenone were found in 72.3%and 73.4%of random selected samples respectively in these provinces. Deoxynivalenol was detected 379.2μg per kilogram, which was lower than the national standard, and Zearalenone was 178.1μg per kilogram, which was much higher than the limitation of the national standard.
     Thirdly, Bacillus subtilis ZZ and B. licheniformis DY were screened out for their degradation ability of deoxynivalenol from 59 Lactobacillus and Bacillus strains by using competitive indirect ELISA. Mechanism analysis showed that the heat sensitive protein substances produced by Bacillus rather than cell itself played the major role. B. subtilis ZZ and B. licheniformis DY can degrade 98% and 30.7% Zearalenone respectively in broth after incubated for 12 h under the optimum condition (37℃,180 rpm).
     Fourthly, B. cereus was screened out with the ability of degrading zearalenone from 186 bacteria strains including Lactobacillus, Bacillus, Bifidobacterium and rumen microorganisms isolates by competitive indirect ELISA. Meanwhile, three other strains isolated from samples of maize, wheat and soil (collected from Henan and Anhui province) were screened out for their degradation ability in selective medium. They were identified as Brachybacterium rhamnosum, Ralstonia metallidurans, Enterococcus faecalis, B. cereus, Micrococcus luteus and Burkholdeia cepacia. Then the growth condition of B. cereus and M. luteus were optimized since they showed better ability of zearalenone degradation. The B. cereus can completely degrade the zearalenone in liquid BA (pH=6.5) after incubated for 96 h under the optimum condition (37℃, 180 rpm), the protein substances produced by B. cereus were anticipated to be the major degrader. M. luteus can degrade 99% zearalenone in liquid LB (pH=7.0) with 0.05M MnCl2 after incubated for 120 h under the optimum condition (37℃,180 rpm).
     Finally, a 795 bp DNA fragment (ZEN-jjm) from Gliocladium roseum coding lactonohydrolase was obtained. Sequencing results showed a 9-base difference in the amplified gene compared with reported gene zhd101, resulting in 3 amino acid difference in lactonohydrolase. The degradation capability of expressed protein in the supernatant of disrupted cells was verified by HPLC, and a similar biological function was observed in the expressed protein.
引文
[1]夏红民,岳宁,张鹏;出入境农产品安全卫生检验的重要对象-真菌毒素,检验检疫科学,2000,10(5):56-59.
    [2]Bennett JW, Klich M. Mycotoxin. Clin Microbiol Rev,2003,16(3):497-516.
    [3]Labuda R, Parich A, Berthiller F, et al. Incidence of Trichothecenes and Zearalenone in Poultry Feed Mixtures From Slovakia[J]. Interna tional Journal of Food Microbiology,2005,105:19-25.
    [4]Tutelyan VA. Deoxynivalenol in cereals in Russia. Toxicol Lett,2004,153: 173-179.
    [5]C布斯著(陈其瑛译);镰刀菌属[M],北京,农业出版社,1988.
    [6]Pitt,J.I., and Hocking,A.D. Fungi and food spoilage. New York:Chapman& Hall. 1999,1949-1953.
    [7]Legan,J.D. Mould spoilage of bread:the problem and some solutions. International Biodeterioration and Biodegradation,1993,32:33-53.
    [8]Pateras, I. M.C. Cauvain, S.P., Young, L. S. Technology of Bread making. Blackie Academic and Professional, London,1998,240-261
    [9]Kimura, N. and Hiram. S. Inhibitory Strains of Bacillus. subtilis for growth and aflatoxin production of aflatoxigenic fungi. Agric. Biol. Chem.1988,52:1 173-1179.
    [10]Messens,W., DeVuyst, L. Inhibitory substances produced by Lactobacilli isolated from sourdoughs -A review. International Journal of Food Microbiology,2002, 72:31-43.
    [11]Lavermicocca,P.,Valerio,F.,Evidente,A.,Lazzaroni,S.,Corsetti,A.,Gobbetti,M. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied and Environmental Microbiology,2000,66:4084-4090.
    [12]L.A.M.Ryan, F.Dal Bello, E.K.Arendt. The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread International Journal of Food Microbiology,2008,125:274-278
    [13]Dodd, H.M and M.J.Gasson. Bacteriocins of lactic acid bacteria, In M.J.Gasson and W. M. DeVos, Genetics and biotechnology of lactic acid bacteria. Blackie Academic & Professional,London, England.1994, p.211-251.
    [14]张柏林,张若鸿,吴风亮,陈为涛;乳酸菌抗真菌活性及其抑制真菌毒素的效果,中国乳品工业,2005,33(6):31-37
    [15]Johan Schnurer and Jesper Magnusson. Antifungal lactic acid bacteria as biopreservatives Trends in Food Science& Technology,2005,16:70-78.
    [16]Rocken,W. Applied aspects of sourdough fermentation. Adv. Food Sci,1996,18: 212-216.
    [17]Corsetti,A., M.Gobbetti, J.Rossi and P.Damiani. Antimould activity of sourdough lactic acid bacteria:identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl.Microbiol.Biotechnol,1998,50:253-256.
    [18]Strom,K., Sjorgren,J., Broberg,A., Schnurer,J. Lactobacillus plantarum MiLAB393 produces the antifungal cyclicdi peptides cyclo(L-Phe-L-Pro)and cyclo(L-Phe-trans-4-OH-L-Pro) and phenyl lactic acid. Applied and Environmental Microbiology,2002,68:4322-4327.
    [19]Lavermicocca,P., Valerio,F and Visconti,A.Antifungal activity of phenyl lactic acid against moulds isolated from bakery products. Applied and Environmental Microbiology,2003,69:634-640.
    [20]Sjogren, J., Magnusson, J., Broberg, A., Schnurer,J and Kenne,L. Antifungal 3-hydroxyfatty acids from Lactobacillus plantarum MiLAB14. Applied and Environmental Microbiology,2003,69:7554-7557.
    [21]CarlaLucianaGerez, MarialnesTorino, GracielaRollan, GracielaFontdeValdez. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control,2009,20:144-148.
    [23]Magnusson, J., Strom, K., Roos, S., Sjogren, J and Schniirer,J. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiology Letters,2003,219:129-135.
    [22]Magnusson, J., Schnurer, J. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound.Applied and Environmental Microbiology,2001,67:1-5.
    [24]Broberg, A., Jacobsson, K., Strom, K and Schnurer, J. Metabolite profile of lactic acid bacteria in grass silage Applied and Environmental Microbiology,2007, 73(17):5547-5552.
    [25]Batish, V. K., Roy, U., Lal, R., Grover, S. Antifungal attributes of lactic acid bacteria - a review.Critical Reviews in Biotechnology,1997,17:209-225.
    [26]Eklund, T. Organic acids and esters. InG.W.Gould (Ed.), Mechanisms of action of food preservation procedures,1989,161-200.
    [27]Niku-Paavola, M.-L., Laitila, A., Matilla-Sandholm, T and Haikara,A. New types of antimicrobial compounds produced by Lactobacillus plantarum. Journal of Applied Microbiology,1999,86:29-35.
    [28]Okkers, D.J., Dicks, L. M. T., Silvester, M., Joubert, I. J and Odendaal,H.J. Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effecton Candidaalbicans. Journalof Applied Microbiology,1999,87:726-734.
    [29]Rouse, S., Harnett, D.,Vaughan,A and vanSinderen, D. Lactic acid bacteria with potential to eliminate fungal spoilage in foods. Journal of Applied Microbiology, 2008,104:915-923.
    [30]Vandenbergh, P. A. Process for producing novel yeast and mould inhibiting products, European patent 1993,0302300 B1.
    [31]DalBello,F., Clarke, C.I., Ryan,L.A.M., Ulmer,H., Schober,T.J., Strom, K., et al. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST1.7.Journal of Cereal Science, 2007,45 (3):309-318.
    [32]Plockova, M., Chumchalova, J and Tomanova, J. Antifungal activity of Lactobacillus acidophilus CH5 metabolites. Potravin,1997a,13(1):39-48.
    [33]Plockova, M., Tomanova, J., Chumchalova, J. Inhibition of mould growth and spore production by Lactobacillus acidophilus CH5 metabolites. Bull.Food Res, 1997b,36:237-247.
    [34]Gourama, H. Inhibition of growth and mycotoxin production of Penicillium by Lactobacillus species. Lebensm.-Wiss.Technol,1997,30:279-1280.
    [35]Gourama, H., Bullerman, L.B. Anti-aflatoxigenic activityof Lactobacillus casei pseudoplantarum.International journal of Food Microbiology,1997,34: 131-143.
    [36]Laitila, A., Alakomi, H.L., Raaska, L., Matilla-Sandholm, T., Haikara, A. Antifungal activities of two Lactobacillus plantarum strains against Fusarium molds in vitro and in malting of barley. J. Appl. Microbiol,2002,93:566-576.
    [37]Stiles, J., Penkar, S., Plockova, M., Chumchalova, J., Bullerman, L. B. Antifungal activity of sodium acetate and Lactobacillus rhamnosus. J. Food Prot,2002,65: 1188-1191.
    [38]Stiles, J., Plockova, M., Toth, V., Chumchalova, J. Inhibition of Fusarium
    sp.DMF0101by Lactobacillus strains grown in MRS and Elliker broth. Adv. Food Sci,1999,21:117-121.
    [39]Roy, U., Grover, S., Neelakantan, S., Batish, V. K. Mode of inhibition of Aspergillus flavus IARI antifungal substance produced by Lactococcus lactis subsp. lactis CHD-28.3. J.Food Sci.Technol,2001,38:489-492.
    [40]Batish, V. K., Lal, R., Chander, H. Effect of nutritional factors on the production of antifungal substance by Lactococcus lactis subsp. lactis biovar diacetylactis. Aust. J. Dairy Technol,1990a,45:74-76.
    [41]Batish,V. K., Lal, R., Grover, S. Studies of environmental and nutritional factors on production of antifungal substance by Lactobacillus acidophilus. R.Food Microbiol,1990b,7:199-206.
    [42]Yousef I. Hassan, Lloyd B. Bullerman. Antifungal activity of Lactobacillus paracasei ssp. tolerans isolated from a sourdough bread culture. International Journal of Food Microbiology,2008,121:112-115.
    [43]Francesca Valerio, Mara Favilla, Palmira De Bellis, Angelo Sisto, Silvia de Candia, Paola Lavermicocca. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Systematic and Applied Microbiology,2009,32:438-448.
    [44]Roy, U., Batish, V. K., Grover, S., Neelakantan, S. Production of antifungal substanceby Lactococcus lactis subsp. lactis CHD-28.3. Food Microbiology, 1996,32:27-34.
    [45]Lindgren, S.E and Dobrogosz, W. J. Antagonistic activities of lactic acid bacteria in food and feed fermentations.FEMS Microbiol. Rev,1990,87:149-164.
    [46]Schnurer, J and Magnusson, J. Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science and Technology,2005,16:70-78.
    [47]Nadia Ponts, Laetitia Pinson-Gadais, Christian Barreau, Florence Richard-Forget, Therese Ouellet. Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. FEBS Letters, 2007,581(3):443-447.
    [48]Soma Mandal, Gervais Berube, Eric Asselin, Iqbal Mohammad, Vernon J. Richardson, Atul Gupta, Saroj K. Pramanik, Arthur L. Williams, Sanat K. Mandal. A novel series of potent cytotoxic agents targeting G2/M phase of the cell cycle and demonstrating cell killing by apoptosis in human breast cancer cells. Bioorganic& Medicinal Chemistry Letters,2007,17(17):4955-4960.
    [49]N. R. Reddy, M. D. Pierson, S. K. Sathe, D. K. Salunkhe. Chemical, nutritional and physiological aspects of dry bean carbohydrates-A review. Food Chemistry, 1984,13(1):25-68.
    [50]S. J. Sathe, N. N. Nawani, P. K. Dhakephalkar, B. P. Kapadnis. Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables, J. Appl. Microbiol,2007,103:2622-2628.
    [51]Batish, V. K., Grover, S and Lal, R. Screening lactic starter cultures for antifungal activity. Cultured Dairy Products Journal,1989,24:21-25.
    [52]Effat Badr, M. Seehy, M. K. Youssef, A. El-Shehawy. Physiochemical properties of chromatin, a molecular assay for genotoxic effects of environmental pollutants. Toxicology Letters,1998,95(1):47.
    [53]Cassandra De Muynck, Annelies I.J. Leroy, Sofie De Maeseneire, Filip Arnaut, Wim Soetaert, Erick J. Vandamme. Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites. Microbiological Research,2004, 159:339-346.
    [54]Gourama, H and Bullerman, L. B. Inhibition of growth and aflatoxin production of Aspergillus flavus by Lactobacillus species. Journal of Food Protection,1995b, 58:1249-1256.
    [55]Gourama, H. and Hullerman. L.B. Antimycotic and antimycotoxigenic effect of lactic acid bacteria. J. Food Prot,1995a,57:1275-1280.
    [56]Gourama. H. and Bullerman. L.B. Relationship between aflatoxm production and mold growth as measured by ergosterol and plate count. Lebensm:Wiss: Technol,1995c,28:185-189.
    [57]Karunaratne, A., Wezenberg, E and Bullerman, L. B. Inhibition of mold growth and afatoxin production by Lactobacillus. J. Food Prot,1990,53:231-236.
    [58]王文龙,刘阳,李少英,云月英;脱氧雪腐镰刀菌烯醇与人类健康,食品研究与开发,2008,29(6):153-157.
    [59]Avantaggiato G Havenaar R, Visconti A. Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials. Food Chem Toxicol,2004,42:817-824.
    [60]Tanaka K, Sago Y, Zheng Y, et al. Mycotoxins in rice. Int J Food Microbial,2007, 119:59-66.
    [61]Lori GA, Sisterna MN, Haidukowski M, et al. Fusarium graminearum and deoxynivalenol contamination in the durum wheat area of Argentina. Microbiol Res,2003,158:29-35.
    [62]Ping HE, Young LG, Forsberg C. Microbial transformation of deoxynivalenol (vomitoxin).Appl Environ Microbiol,1992,58(12):3857-3863.
    [63]James JP. Deoxynivalenol:toxicity, mechanisms and animal health risks. Anim Feed Sci Tech,2007,137:83-298.
    [64]Forsell JH, Jensen R, Tai J-H et al. Comparison of acute toxicities of deoxynivalenol (vomitoxin) and 15-Acetyldeoxynivalenol in the B6C3F1 mouse. Fd Chem. Toxic,1987,25(2):155-162
    [65]Shima J, Takase S, Takahashi Y, et al. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture. Appl Environ Microbiol,1997,63(10):3825-3830.
    [66]Pestka, J.J., Dong, W., Warner, R.L., Rasooly, L., Bondy, G.S. Effect of dietary administration of the trichothecene vomitoxin (deoxynivalenol) on IgA and IgG secretion by Peyer's patch and splenic lymphocytes. Food Chem. Toxicol,1990a, 28:693-699.
    [67]Pestka, J.J., Dong,W.,Warner, R.L., Rasooly, L., Bondy, G.S., Brooks, K.H. Elevatedmembrane IgA+and CD4+(T helper) populations in murine Peyer's patch and splenic lymphocytes during dietary administration of the trichothecene vomitoxin (deoxynivalenol). Food Chem. Toxicol,1990b,28:409-420.
    [68]Greene, D.M., Azcona Olivera, J.I., Pestka, J.J. Vomitoxin (deoxynivalenol) induced IgA nephropathy in the B6C3F1 mouse:dose response and male predilection. Toxicology,1994a,92:245-260.
    [69]Greene, D.M., Bondy, G.S., Azcona-Olivera, J.I., Pestka, J.J. Role of gender and strain in vomitoxin-induced dysregulation of IgA production and IgA nephropathy in the mouse. J. Toxicol. Environ. Health,1994b,43:37-50.
    [70]Pestka, J. J., Zhou, H. R., Moon, Y., Chung, Y. J. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol. Lett,2004,153:61-73.
    [71]Pestka, J.J., Smolinski, A.T. Deoxynivalenol:toxicology and potential effects on humans. J. Toxicol. Environ. Health B Crit. Rev,2005,8:39-69.
    [72]Yang, G., Jarvis, B. B., Chung, Y., Pestka, J. J. Apoptosis induction by the satratoxins and other trichothecene mycotoxins:relationship to ERK, p38 MAPK
    and SAPK/JNK activation. Toxicol. Appl. Pharmacol,2000,164:149-160.
    [74]Moon, Y., Pestka, J. J. Cyclooxygenase-2mediates interleukin-6 upregulation by vomitoxin (deoxynivalenol) in vitro and in vivo. Toxicol. Appl. Pharmacol,2003, 187:80-88.
    [73]Moon, Y., Pestka, J. J. Vomitoxin-induced cyclooxygenase-2 gene expression in macrophages mediated by activation of ERK and p38 but not JNK mitogen-activated protein kinases. Toxicol. Sci,2002,69:373-382.
    [75]Schneider L, Pichler H, Fresenius KR. An enzyme linked immunoassay for the determination of deoxynival in wheat based on chicken egg yolk antibodies. J Anal Chem,2000,367(1):98-100.
    [76]Yuan Q, Pestka JJ, Hespenheide BM et al. Identification of mimotope peptides which bind to the mycotoxin deoxynivalenol-specific monoclonal antibody. Appl Environ Microbiol,1999,65(8):3279-3286
    [77]D. Parent-Massin. Haematotoxicity of trichothecenes. Toxicology Letters,2004, 153(1):75-81.
    [78]Massin D P, Thouvenot D. In vitro toxicity of trichothecenes on rat haematopoietic progenitors. Food Addit Contam,1995,12(1):41-49.
    [79]Instanes C, Hetland G. Deoxynivalenol (DON) is toxic to human colonic, lung and monocytic cell lines, but does not increase the IgE response in a mouse model for allergy. Toxicology,2004,204:13-21.
    [80]Park BJ, Takatori K, Sugita-Konishi Y, et al. Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surf Coat Tech,2007, 201:5733-5737.
    [81]H.-G. Schiefer, H. Krauss, U. Schummer, H. Brunner, U. Gerhardt. Studies with ferritin-conjugated concanavalin A on carbohydrate structures of mycoplasma membranes. FEMS Microbiology Letters,1978,3(4):183-185.
    [82]Robert L. Sprando, Thomas F.X. Collins, Thomas N. Black, Nicholas Olejnik, James I. Rorie, Robert M. Eppley, Dennis I. Ruggles. Characterization of the effect of deoxynivalenol on selected male reproductive endpoints. Food and Chemical Toxicology,2005,43(4):623-635.
    [83]H. Alm, T. Greising, K.-P. Brussow, H. Torner, U. Tiemann. The influence of the mycotoxins deoxynivalenol and zearalenol on in vitro maturation of pig oocytes and in vitro culture of pig zygotes. Toxicology in Vitro,2002,16(6):643-648.
    [84]Alm, H., Brussow, K.P., Torner, H., Vanselow, J., Tomek, W., Danicke, S., Tiemann, U. Influence of Fusarium-toxin contaminated feed on initial quality and meiotic competence of gilt oocytes. Reprod. Toxicol,2006,22:44-50.
    [85]Jouany J P. Methods for preventing, decontamination and mininizing the toxicity of mycotoxins in feeds. Anim Feed Sci Tech,2007,137:342-362.
    [86]Bullerman L B,Bianchini A. Stability of mycotoxin during food processing. Int J Food Microbial,2007,119:140-146.
    [87]Yumbe-Guevara B E, Imoto T, Yoshizawa T. Effects of heating procedures on deoxynivalenol, nivalenol and zearalenone levels in naturally contaminated barley and wheat. Food Addit Contam,2003,20(12):1132-1140.
    [88]Samr M, Resnik SL, Gonzalez HHL, et al. Deoxynivalenol reduction during the frying process of turnover pie covers. Food Control,2007,18:1295-1299.
    [89]Pronyk C, Cenkowski S, Avramson D. Superheated steam reduction of deoxynivalenol in naturally contaminated wheat kernels. Food Control,2006,17: 789-796.
    [90]Huwig A, Freimund S, Kappeli O, et al. Mycotoxin detoxification of animal feed by different adsorbents. Toxicol Lett,2001,22:179-188.
    [91]Lauren D R, Smith W A. Stability of Fusarium mycotoxins nivalenol, deoxynivalenol and zearalenone in ground maize under typical cooking environments. Food Addit Contam,2001,18(11):1011-1016.
    [92]Wolf CE, Bullerman LB. Heat and pH alter the concentration of deoxynivalenol in an aqueous environment. J Food Prot,1998,61(3):365-367.
    [93]Christopher YJ, Zhu HH, Zhou T. Degradation of trichothecene mycotoxins by aqueous ozone. Food Chem Toxicol,2006,44:417-424.
    [94]Yiannikouris A, Jouany JP. Mycotoxins in feeds and their fate in aninals. Anim Res,2002,51:81-89.
    [95]Bakutis B, Baliukoniene V, Paskevicius A. Use of biological method for detoxification of mycotoxins. Botanica Lithuanica,2005,7:123-129.
    [96]Niderkorn V, Boudra H, MorgaviDP. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. J Appl Microbiol,2006,101:849-856.
    [97]Niderkorn V, Morgavi DP, Pujos E, et al. Screen of fermentative bacteria for their ability tobind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro stimulated corn silage. Food Add Contam,2007,24(4):406-415.
    [98]Teniola OD, Addo PA, Brost IM, et al. Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp.nov. DSM44556T. Int J Food Microbial,2005,105:111-117.
    [99]Benedetti R, Nazzi F, Locci R, et al. Degradation of fumonisin Bl by a bacterial strain isolated from soil. Biodegradation,2006,17:31-38.
    [100]Varga J, Peteri Z, Tabori K, et al. Degradation of ochratoxin A and other mycotoxinsby Rhizopus isolates. Int J Food Microbial,2005,99:321-328.
    [101]Castoria R, Morena V, Caputo L, et al. Effect of the biocontrol yeast Rhodotorula glutinis Strain LS11 on Patulin accumulation in stored apples. Biol Control,2005,27:1271-1278.
    [102]Young JC, Zhou T, Yu H, et al. Degradation of trichothecene mycotoxins by chicken intestinal microbes. Food Chem Toxicol,2007,4:136-143.
    [103]Fuchsy E, Binder EM, Heidler D, et al. Structural characterization of metabolites after themicrobial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Add Contam,2002,19:379-386.
    [104]Stob M, et al. Isolation of an anabolic uteritrophic compound from corn infected with Gibberella zeae. Nature,1962,196:1318.
    [105]CCFAC. Codex Committee on Food Additives and Contaminants. Posting date. Joint FAO/WHO Expert Committee on Food Additives:Position paper on zearalenone. Publication CCFAC 00/19. Codex Alimentarius Commission, Rome, Italy,2000.
    [106]Placinta, C. M., D'Mello, J. P. F., Macdonald, A. M. C. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol,1999,78:21-37.
    [107]Zinedine, A., Brera, C., Elakhdari, S., Catano, C., Debegnach, F., Angelini, S., De Santis, B., Faid, M., BenlemLih, M., Minardi, V., Miraglia, M. Natural occurrence of mycotoxins in cereals and spices commercialized in Morocco. Food Control,2006.17:868-874.
    [108]Yoshizawa, T. Geographic difference in trichothecene occurrence in Japanese wheat and barley. Bull. Inst. Compr. Agric. Sci. Kinki University,1997,5: 23-30.
    [109]Park, J.W., Kim, E.K., Shon, D.H., Kim, Y.B. Natural cooccurrence of aflatoxin B1, fumonisin B1 and ochratoxin A in barley and corn foods from Korea. Food Addit. Contam,2002,19:1073-1080.
    [110]Park, J.W., Shoi, S.Y., Hwang, H.J., Kim, Y.B. Fungal mycoflora and mycotoxins in Korean polished rice destined for humans. Int. J. Food Microbiol, 2005,103:305-314.
    [111]Yamashita, A., Yoshizawa, T., Aiura, Y., Sanchez, P.C., Dizon, E.I., Arim, R.H., Sardjono. Fusarium mycotoxins (fumonisins, nivalenol and zearalenone) and aflatoxins in corn from southeast Asia. Biosci. Biotech. Biochem,1995,59: 1804-1807.
    [112]Janardhana, G. R., Rabeas, K. A., Shekar Shetty, H. Mycotoxin contamination of maize grains grown in Karnataka (India). Food Chem. Toxicol,1999,37: 863-868.
    [113]Abdulkadar, A. H. W., Al-Ali, A. A., Al-Kildi, F.M., Al-Jedah, J. H. Mycotoxins in foods available in Qatar. Food Control,2004,15:543-548.
    [114]Nuryono, N., Noviandi, C.T., Bo "hm, J., Razzazi-Fazeli, E. A limited survey of zearalenone in Indonesian maize-based food and feed by ELISA and high performance liquid chromatography. Food Control,2005,16:65-71.
    [115]Hadiani, M. R., Yazdanpanah, H., Ghazi-Khansari, M., Cheraghali, A.M., Goodarzi, M. Survey of the natural occurrence of zearalenone in maize from northern Iran by thin-layer chromatography densitometry. Food Addit. Contam, 2003,20:380-385.
    [116]Zinedine A, Soriano J M, MoltoJ C, et al. Review on the Toxicity, Occurrence, Metabolism, Detoxification,Regulations and Intake of Zearalenone:An Oestrogenic Mycotoxin[J]. Food and Chemical Toxicology,2007,45:1-18.
    [117]Reed K F M, Walsh J R, Mcfarlane N M, et al. Zearalenone and its Presence in Pasture[J]. Animal Production in Australia,2004,25:140-143.
    [118]El-Nezami H, Polychronaki N, Salminen S, et al. Binding Rather Than Metabolism May Explain the Interaction of Two Food-grade Lactobacillus Strains with Zearalenone [J]. Applied and Environment Microbiology,2002,68 (7):3545-3549.
    [119]JECFA. Zearalenone. In:Joint FAO/WHO Expert Committee on Food Additives (Ed.), Safety evaluation of certain food additives and contaminants. WHO/FAO Food additives Series 44. IPCS-Interna tional Programme on Chemical Safety. WHO, Geneva,2000.
    [120]NTP. Carcinogenicity bioassay of zearalenone in F344/N rats and F6C3F1 mice. National Toxicology Program Technical Reports Series 235. National Toxicology Program. Research Triangle Park, NC, USA,1982.
    [121]IARC. Overall evaluations of carcinogenicity to humans. Interna tional Agency
    for Research on Cancer. IARCMonographs,1999,73:1-36.
    [122]Kakeya H, Takahashi-Ando N, Kimura M, et al. Biotransformation of the Mycotoxin, Zearalenone, to a Non-esrtogenic Compound by a Fungal Strain of Clonostachys sp[J]. Bioscience Biotechnology and Biochemistry,2002,66(12): 2723-2726.
    [123]Etienne, M., Dourmad, J.Y. Effects of zearalenone or glucosino lates in the diet on reproduction in sows:a review. Livest. Prod. Sci,1994,99-113.
    [124]D'Mello, J. P. F., Porter, J. K., Macdonald, A. M. C., Placinta, C. M. Fusarium mycotoxins. In:D'Mello, J.P.F. (Ed.), Handbook of Plant and Fungal Toxicants. CRC Press, Boca Raton, FL,1997,287-301.
    [125]D'Mello, J. P. F., Placinta, C. M., Macdonald, A. M. C. Fusarium mycotoxins:a review of global implications for animal health, welfare and productivity. Anim. Feed Sci. Technol,1999,80:183-205.
    [126]Minervinia F, DellAquila M E, Maritato F, et al. Toxic Effects of the Mycotoxin Zearalenone and its Derivatives on in Vitro Maturation of Bovine Oocytes and 17β-estradiol Levels in Mural Granulosa Cell Cultures[J]. Toxicology in Vitro, 2001,15:489-495.
    [127]Yu Z L, Hu D S, Li Y. Effects of Zearalenone on mRNA Expression and Activity of Cytochrome P450 1A1 and 1B1 in MCF-7 cells[J]. Ecotoxicology and Environmental Safety,2004,58:187-193.
    [128]Creppy E E. Update of Survey, Regulation and Toxic Effects of Mycotoxins in Europe[J]. Toxicology Letters,2002,127:19-28.
    [129]Lioi, M.B., Santoro, A., Barbieri, R., Salzano, Ursini, M.V. Ochratoxin and zearalenone:a comparative study on genotoxic effects and cell death induced in bovine lymphocytes. Mutat. Res,2004,557:19-24.
    [130]Abid-Essefi, S., Baudrimont, I., Hassen, W., Ouanes, Z., Mobio, T.A., Anane, R., Creppy, E., EBacha, H. DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells:prevention by Vitamin E. Toxicology,2003,192:237-248.
    [131]Abid-Essefi, S., Ouanes, Z., Hassen, W., Baudrimont, I., Creppy, E.E., Bacha, H. Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicol. In Vitro,2004,18:467-474.
    [132]Grosse, Y, Ghedira-Chekir, L., Huc, A., Obrecht-Pflumio, S., Dirheimer, G., Bacha, H., Pfoh-Leszkowicz, A. Retinol, ascorbic acid and alpha tocopherol prevent DNA adduct formation in mice treated with the mycotoxins ochratoxin A and zearalenone. Cancer Lett,1997,114:225-229.
    [133]Ghedira-Chekir, L., Zakhama, A., Ellouz, F., Dhouib, S., Creppy, E. E., Bacha, H. Induction of SOS repair system in lysogenic bacteria by zearalenone and its prevention by vitamin E. Chem. Biol. Interact,1998,113:15-25.
    [134]Ghedira-Chekir, L., Maaroufi, K., Creppy, E.E., Bacha, H. Cytotoxicity and genotoxocity of zearalenone:prevention by vitamin E. J. Toxicol. Toxin Rev, 1999,18:355-368.
    [135]Kouadio, J.H., Mobio, T.H., Baudrimont, I., Moukha, S., Dano, S.D., Creppy, E.E. Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology,2005,213:56-65.
    [136]Dakovic A, Matijasevic S, Rottinghaus G E, et al. Adsorption of Zearalenone by Organomodified Natural Zeolitic Tuff[J]. Journal of Colloid and Interface Science,2007,311:8-13.
    [137]Mckenzie K S, Sarr A B, Mayura K. Oxidatived Degradation of Detoxification of Mycotoxins Using a Novel Soruce of Ozone[J]. Food and Chemical Toxicology,1997,35:807-820.
    [138]El-Nezami H, Polychronaki N, Lee Y K, et al. Chemical Moieties and Interactions Involved in the Binding of Zearalenone to the Surface of Lactobacillus Rhamnosus Strains GG. [J]. Journal of Agricultural and Food Chemistry,2004,52:4577-4581
    [139]Utermark J, Karlovsky P. Role of Zearalenone Lactonase in Protection of Gliocladium Roseum from Fungitoxic Effects of the Mycotoxin Zearalenone[J]. Applied and Environmental Microbiology,2007,75 (2):637-642.
    [140]El-Sharkawy S H, Selim M I, Afifi M S. Microbial Transformation of Zearalenone to a Zearalenone Sulfate. Applied and Environment Microbiology [J]. Applied and Environmental Microbiology,1991,57 (2):549-522.
    [141]Molnar O, Schatzmayr G, Fuchs E, et al. Trichosporon mycotoxinivorans sp.nov., A New Yeast Species Useful in Biological Detoxification of Various Mycotoxins [J]. Systematic and Applied Microbiology,2004,27:661-671.
    [142]李荣涛,谢刚,付鹏程等;小麦和玉米中玉米赤霉烯酮污染情况初探(Ⅰ)[J],粮食储藏,2004,5:36-38.
    [143]于宝柱;2005年中国四省小麦中脱氧雪腐镰刀菌烯醇的污染调查[D],长 春,吉林大学,2006.
    [144]王晓云;2005年中国六省玉米中脱氧雪腐镰刀菌烯醇的污染调查[D],长春,吉林大学,2006.
    [145]陆刚,李李,薛英;安徽省谷物及制品中脱氧雪腐镰刀菌烯醇的污染调查[J],中华预防医学,1994,1:27-30.
    [146]Truner N W, Subrahamanyam S, Piletsky S.A. Analytical methods for determination of mycotoxins:A review [J]. Analytica Chimica Acta,2009,632: 169-180.
    [147]Lattanzio V. M.T, Pascale M, Visconti A. Current analytical methods for trichothecene mycotoxins in cereals[J]. Trends in Analytical Chemistry,2009, 28(6):758-758.
    [148]王若军,苗朝华,张振雄等;中国饲料及饲料原料受霉菌毒素污染的调查报告[J].饲料工业,2003,24(7): 53-54.
    [149]敖志刚,陈代文;2006-2007年中国饲料及饲料原料霉菌毒素污染调查报告[J].中国畜牧兽医,2008,35(1):152-156.
    [150]张丞,刘颖丽;2007年中国饲料和原料中霉菌毒素污染情况调查报告[J].新饲料,2008,4:28-32.
    [151]张丞,刘颖丽;2008年中国饲料和原料中霉菌毒素污染情况调查总结报告[J].饲料广角,2009,5:18-20.
    [152]Joint FAO/WHO Expert Committee on Food Additives. Safety evaluation of certain mycotoxins in food. JFCFA,2001,47:419-556.
    [153]Eriksen, G.S., Pettersson, H. and Lundh, T. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food. Chem. Toxicol,2004,42:619-624.
    [155]Zollner, P. and Mayer-Helm, B. Trace mycotoxin analysis in complex biological and food matrices by liquid chromatography-atmospheric pressure ionisation mass spectrometry. J. Chromatogr,2006,1136:123-169.
    [156]El-Nezami, H., Kankaanpaa, P., Salminen, S. and Ahokas, J. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, Aflatoxin B1. Food Chem. Toxicol,1998,36:321-326.
    [157]Haskard, C.A., El-Nezami, H.S., Kankaanpaa, P.E., Salminen, S. and Ahokas, J.T. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl. Environ. Microbiol,2001,67:3086-3091.
    [158]Gratz, S. Mykkanen, H. Ouwehand, A.C. Juvonen, R. Salminen, S. and El-Nezami, H. Intestinal mucus alters the ability of probiotic bacteria to bind Aflatoxin B1 in vitro. Appl. Environ. Microbiol,2004,10:6306-6308.
    [159]Zinedine, A., Faid, M. and Benlemlih, M. In vitro reduction of aflatoxin B1 by strains of lactic acid bacteria isolated from Moroccan sourdough bread. Int. J. Agri. Bio,2005,7:67-70.
    [160]Peltonen, K., El-Nezami, H., Haskard, C., Ahokas J. and Salminen S. Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. J. Dairy Sci, 2001,84:2152-2156.
    [161]Petchkongkaew, A., Lebrihi, A., Gasaluck, P., and Taillandier, P.2007. Reduction of mycotoxin by Bacillus spp isolated from fermented soybean. http://vishnu.sut.ac.th/iat/food/FIA2007/FIA2007/paper/P3-10-NC.pdf. Accessed on November 12,2007.
    [162]Poppenberger, B., Berthiller, F., Lucyshyn, D., Sieberer, T., Schuhmacher, R., Krska, R., Kuchler, K., Glossl, J., Luschnig, C. and Adam, G. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J. Bio. Chem,2003,278:47905-47914.
    [163]Takahashi-Ando N, Ohsato S, Shibata T, Hamamoto H, Yamaguchi I and Kimura M. Metabolism of Zearalenone by Genetically Modified Organisms Expressing the Detoxification Gene from Clonostachys Rosea[J]. Applied and Environmental Microbiology,2004,70:3239-3245.
    [164]关舒;降解黄曲霉毒素B1,单端孢霉烯族毒素菌株的筛选、鉴定和毒素降解机理的研究,中国农业大学博士论文,2009.30-32.
    [165]Prashant Kumar Jaiswal and Indu Shekhar Thakur. Isolation and Characterization of Dibenzofuran-Degrading Serratia marcescens from Alkalophilic Bacterial Consortium of the Chemostat. Curr Microbiol,2007,55: 447-454.
    [166]Luis Rivas, Alberto Marquet and Emilio Mufioz. Partial characterization of membrane-associated proteinases from Micrococcus lysodeikticus. Molecular and Cellular Biochemistry,1982,43:27-34.
    [167]Colleen E. Piersen, Melissa A. Prince(?), Mary Lou Augustine§, M. L. Dodson, and R. Stephen Lloyd. Purification and Cloning of Micrococcus luteus Ultraviolet Endonuclease, an N-Glycosylase/Abasic Lyase That Proceeds via an Imino Enzyme-DNA Intermediate. The Journal of Biological Chengmistry, 1995,270(40):23475-23484,.
    [168]F.L. Toledo, C. Calvo, B. Rodelas, J. Gonza lez-Lo'pez. Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Systematic and Applied Microbiology,2006, 29:244-252.
    [169]Jing Wang, Hua Yang, Hong Lu, Jiti Zhou. Aerobic biodegradation of nitrobenzene by a defined microbial consortium immobilized in polyurethane foam. World J Microbiol Biotechnol,2009,25:875-881.
    [170]Chunli Zheng, Baocheng Qu, JingWang*, Jiti Zhou, JingWang, Hong Lu. Isolation and characterization of a novel nitrobenzene-degrading bacterium with high salinity tolerance:Micrococcus luteus. Journal of Hazardous Materials, 2009,165:1152-1158.
    [171]Kimura M, Takahashi-Ando N and Nishiuchi T. Molecular Biology and Biotechnology for Reduction of Fusarium Mycotoxin Contamination[J]. Pesticide Biochemistry and Physiology,2006,86:17-123.
    [172]Higa-Nishiyama A, Takahashi-Ando N, Shimizu T, Kudo T, Yamaguchi I and Kimura M. A model transgenic cereal plant with detoxification activity for the estrogenic mycotoxin zearalenone[J]. Transgenic Research,2005,14:713-71
    [173]Takahashi-Ando N, Kimura M, Hideaki K, Osada H and Yamaguchi I. A novel lactonohydrolase responsible for the detoxification of zearalenone enzyme purification and gene cloning Biochemical Journal,2002,365:1-6.
    [174]Abdulla D. Altalhi, Bahig El-Deeb. Localization of zearalenone detoxification gene(s) in pZEA-1 plasmid of Pseudomonas putida ZEA-1 and expressed in Escherichia coli. Journal of Hazardous Materials,2009,161(2):1166-1172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700